Numerical solutions of
partial differential

equations by the
finite element method

Claes Johnson



U

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York New Rochelle Melbourne Sydney



Library of Congress cataloging in publication data avaiiabie r @\ Tit i

British Library cataloging in publication data availabie

Preface 7

0. Introduction 9

0.1 Background 9

0.2 Difference methods — Finite element methods 10
0.3 Scope of the book 12

1. Introduction to FEM for elliptic problems 14

i.1 Variationai formuiaiion of a one-di H 14

i.2 FEM for the model probiem with piecewise i 18

1.3 An error estimate for FEM for the model problem 23

1.4 FEM for the Poisson equation 26

1.5 The Hilbert spaces L,(Q), H'(Q) and HY(Q) 33

1.6 A geometric interpretation of FEM 38
‘ 1.7 A Neumann probiem. Naturai and essentiai boundary conditions 40
| 1.8 Remarks on programming 43

1.9 Remarks on finite element software 48

2. Abstract formulation of the finite element method for elliptic problems 50
2.1 Introduction. The continuous probiem 50
2.2 Discretization. An error estimate 52

Al rights reserved, including those of translation. No part

T d,
of this publication may be reproduced, stored in a retriev-
al system, or transmitted, in any form or by any means, 2.4 Some examples 55
electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of the publish-
er. This also applies to the use of the publication for 3. Some finite element spaces 67

21 Tha anarou norm 85
<.0 10€ eneigy norm S5

educational purposes, such as preparation of course notes. . . .

© Claes Johnson - Studentlitteratur, Lund, Sweden 1987 3'1 Introduction. Regu'?r}ty requirements 67

Published in Sweden, Finland, Norway, Denmark & Iceland 3.2 Some exanp}es of finite elements 68

by Studentiitteratur, Lund. a2 Q IR

Published elsewhere by the Press Syndicate of the University 3.5 dSummary /

of Cambridge ) ) .

The Pitt Building, Tramping.on e oo mbridge CB2IRP 4. Approximation theory for FEM. Error estimates for elliptic problems 84
Road, Oakleigh, Melbourne 3166, Australia 4.1 Introduction 84

1 345 146 (hardcovers)
13

47 380 (paperback) 4.2 Interpolation with piecewise linear functions in two dimensions 84



4.3 Interpolation with polynomials of higher degree 90
4.4 Error estimates for FEM for elliptic problems 91
4.5 On the reguiarity of the exact solution 92

4.6 Adaptive methods 94

A7 An error estimate 1
4./ An error estimatd in

m 97
5. Some applications to elliptic problems 101
5.1 The elasticity problem 101

5.2 Stokes problem 106

6. Direct methods for solving linear systems of equations 112
6.1 Introduction 112

6.2 Gaussian elimination. Cholesky’s method 112

6.3 Operation counts. Band matrices 114

6.4 Fill-in 116

7. Minimization algorithms. Iterative methods 123
7.1 Introduction 123
7.2 The gradient method 128

’l 2 The coninngate oradient me
.3 Tne conjugate gragient me

7.4 Preconditioning 136

7.5 Multigrid methods 137

7.6 Work estimates for direct and iterative methods 139
7.7 The condition number of the stiffness matrix 141

8. FEM for parabolic problems 146

8.1 Introduction 146

8.2 A one-dimensional model problem 147
8.3 Semi-discretization in space 149

8.4 Discretization in space and time 152
Background 152

Error estimates for fully discrete approx1mat10ns and automatic time
and space step control 158

9. Hyperbolic problems 167

9.1 Introduction 167

9.2 A convection-diffusion problem 168
9.3 General remarks on numerical methods for hyperbolic equations 171
9.4 Guiline and preliminaries 173

9.5 Standard Galerkin 176

9.6 Classical artificial diffusion 181

9.7 The streamline diffusion method 181

9.7.1 The streamline diffusion method with e=0 182

9.7.2 The streamiine diffusion method with e>0 185

9.8 The discontinuous Gaierkin method 189
9.9 The streamline diffusion method for time-de:

problems 199
9.10 Friedrichs’ systems 205
9.10.1 The continuous problem 205
9.10.2 The standard Galerkin method 207

3
s
!
S
ju
e &

o
(]
=]
=
[=%
[=]
=
o
(4]
-
=
<
4=}
]
=
g
2
o
=]
=
[=]
x =
[¢]
3
@
(3]
—_
<

10. Boundary element methods 214

10.1 Introduction 214

10.2 Some integral equations 216

10.2.1 An integral equation for an exterior Dirichlet problem using a single
layer potential 219

10.2.2 An exterior Dirichlet problem with double layer potential 220

10.2.3 An exterior Neumann problem with single layer potential 222

4 Alternative integrai equation formuiations 223

Finite element methods 224

1

2

[EE
==l =]

FEM for a Fredholm Pmmflnp of the first kind 224

2.
3
3. 0 s
10.3.2 FEM for a Fredholm equation of the second kind 227
11. Mixed finite element methods 232

1 Introduction 232

.2 Some examples 234

12. Curved elements and numerical integration 239
12.1 Curved elements 239

12.2 Numerical integration (quadrature) 245



13. Some non-linear problems 248

13.1 Introduction 248

13.2 Convex minimization probiems 248
13.2.1 The continuous probiem 248

13, i 254

13.2.3 Numerical methods for convex minimization problems 255
13.3 A non-linear parabolic problem 257

13.4 The incompressible Euler equations 258

13.4.1 The continuous probiem 258

\)
@
[e]
st
o
=

N

2,

>

3

n

13.4.2 The streamline diffusion method in (w, y)-formulation 259
13.4.3 The discontinucus Galerkin methed in (@, ¥)-formulation 260

13.4.4 The streamline diffusion method in (u, p)-formulation 261
13.5 The incompressible Navier-Stokes equations 262
13.6 Compressible flow: Burgers’ equation 263

Index 275

Proface

A A ViGAvY

differential equations in mechanics and physics covering all the three main
types of equations, namely elliptic, parabolic and hyperbolic equations. The
main part of the text is concerned with linear problems, but a chapter
1ndlcatmg extcnsmns to some nonlinear problems is also included. There is

ini methods forintegral eguati

methods for integral equations
elliptic nmblems The book is based on material that I have used in
undergraduate courses at Chalmers University of Technology, Géteborg. The
first half of the book (Chapters 1-7), which treat elliptic problems in a rather
standard way, is a translation of a textbook in Swedish that appeared 1981

{J1]. Two chapters on parabolic and hyperbolic p“uu‘ems present recent
uevelopmems based on my work on discontinuous Galerkin and streamline

diffusion type finite element methods using, in particular, finite elements for
the time discretization as well. For first order hyperbolic problems these are
the first finite element methods with satisfactory properties and thus show
promise of extensive applications. For parabolic problems, time-discretization
by the dlSCOﬂIanOUS Galerkin method gives new efficient methods and makes
r anquuc with associated automatic time step control possible

1th associated aufomatic ime step control possible

The em, ha51s of the text is on mathematical and numerical aspects of the
finite element method but many applications to important problems in
mechanics and physics are also given. I have tried to keep the mathematics
as simple as possible while still presenting significant resuits and maintaining

a natural mathematical framework. Lately I have used the text of the book

as part of the material in a series of undergraduate courses on partial
differential equations leading up to graduate level treating in integrated form
both mathematical questions on existence and regularity together with
numerical methods. I have found this to be a fruitful approach where, on on

o

B e Pa Y it . B anm kA o Arantinn

hand the numerical methods can be nathematical
I I TP A TPNNpe B R SO P, arnd it kol g

Udcxgrounu, on the other hand, the m)uuauus andi niportant tC\-hlu\iuC)



of solving differential equations numerically using computers can give crucial

motlvatlon for the theoretlcal mathematlcal studies. In fact, the numerical and
Annmmantad and thha aces saaood M) ~F
ll I.l O1

L'

N P akes Broner P H
Ci simuiationi imakes proper unaerstandi

g of the mathematical
structure and properties of the mathematical models very important also in
applications. In the present book only a bare minimum of mathematical
background is included and the reader is referred to the literature for a more
complete account.

sontributions 1mp0rtam for the
itted. T have glven jnst a

1
]
few referencec leadmp into the very rich literat

=

ure on finite element methods.
I want to thank Prof Raymond Chandler for revising the English, Tekn Lic
Peter Hansbo for supplying most of the numerical results and Dr Kenneth
Eriksson for reading parts of the materiai. Speciai thanks aiso to Mrs Yumi
Karisson who swiftly typed a first version of the text and with great patience

he lnpri me with seemi ng]_ ; endless alterations and corrections.

Goteborg in July 1987

Claes Johnson

0.1 Background
The mathematical models of science and engineering mainly take the form
of differential or integral equations. With the rapid development of high speed

computers over the last decades the possibilities of efficiently utilizing these
models have dramatically increased. Using computer-implemented math-

eering and s
1suming expenmenta] testing and makec it possible to compare many
dlfferent alternatives for optimization, etc. In fact, with the new possibilities
an intense activity has started in Computer Aided Design, Engineering and
Manufacturing (CAD, CAE and CAM) which is bringing revolutionary
c'nanges to engineering science and practice, and a new scientific fieid
“scientific computing” is emerging as a complement to theoretical and
experimental science.
To use mathematical models on a computer one needs numerical methods.
Only in the very simplest cases is it possible to find exact analytical solutions
of the equations in the model, and in general one has to rely on numericai

equations in science and engineering. The method was introduced by
engineers in the late 50’s and early 60’s for the numerical solution of partial
differential equations in structural engineering (elasticity equations, plate
equations, ctc). At this point the method was thought of as a generalization
of carlier method!
where the structure was subdivided into small parts, so-called finite elements,
with known simple behaviour. When the mathematical study of the finite
element method started in the mid 60’s it soon became clear that in fact the
method is a general technique for numerical solution of partla 1di fferentlal

in gériintieal A“n‘v\nn—‘“r‘ Ar hanmae framag and nlatac
i urar Cngind 15 T ofams, irames and piails,

P T etho

T PSR, Ao i
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PR Ty Pt ST | S PR 00 L Ty 7 CUNRDE RS R B
e oeginmng ol e ceniury uunug me OUsS anda /UsS uc meuoud was



developed, by engineers, mathematicians and numerical analysts, into a
general method for numenca] solutlon of partldl dlfferentlal cquatlons and

llslllCClllls
i rated in CAD
or CAE svstems) or problems in structural engineering, strengt h of materials,
fluid mechanics, nuclear engineering, electro-magnetism, wave-propagation,
scattering, heat conduction, convection-diffusion processes, integrated cir-

cuits, petroleum engineering, reaction-diffusion processes and many other

0.2 Difference methods — F

lite element methods
The basic 1dea in any numerical method for a dlfferentlal equatlon is to

Aicrvotizn tha
aiscreiize nc

Sremc f

ifinitely many degrees of
freedom to obtain a discrete problem or system of equations with only finitely
many unknowns that may be solved using a computer. The classical numerical
method for partial differential equations is the difference method where the
discrete problem is obtained by replacing derivatives with difference quotients
involving the values of the unknown at ceriain (finitely many) points.

T e ,

111C UIsSCr CllLdl.lUl pl'()cel
case we start from a r

sing a finite element method is different. In this
on of the given d

equivalent variational problem In the case of elliptic equations this variational
problem in basic cases is a minimization problem of the form

(M) Find ueV such that F(u)<F(v) for all veV,

=
vin V often represent a continuously varying quantity such as a d1splacement
in an elastic body, a temperature, etc, F(v) is the total energy associated with
v and (M) corresponds to an equivalent characterization of the solution of the
differential equation as the function in V that minimizes the total energy of

the considered svstem. In ceneral the dimension of V is infinite {ie the
tae ConsiGered systeém. in geénera: (ne Gimension o1 V is intinite (ic the

F(v) a d g the set of real nu

functions in V cannot be described by a finite number of parameters) and thus
in general the problem (M) cannot be solved exactly. To obtain a problem
that can be solved on a computer the idea in the finite element method is to
replace V by a set Vi con51st1ng of s1mple functlons only dependlng on f1mtely

(My) Find upe Vy, such that F(up)<F(v) for all veVy.

This problem is equivalent to a (large) linear or nonlinear system of equations.
The hope is now that the solution uy of this problem is a sufficiently good
approximation of the solution u of the original minimization problem (M),
ie, the original partial differential equatlon Usually one chooses Vi to be a

subset of V (i

(My) corresponds to the classic
beginning of the century. The snecnal feature of a finite element method as
a particular Ritz-Galerkin method is the fact that the functions in‘Vh are
chosen to be piecewise polynomial. As will be seen below, one may also start
from more general variational formulations than the minimization problem
(M); this corresponds e g io so-calied iethods

To solve a given different ial

'—l
o

called Galerkin imethods.
or integral equation approximately using the
inite element method, one h,s to go through basically the following steps:

nnife eiement metho has 10 g yud

VNS [ A, 1atinn of the oiven nroblem

) vdllduuual 1U1u|u|uuuu O1 il given prooicin, ) )

(i) discretization using FEM: construction of the finite dimensional space
vh

(iii) solution of the discrete problem, _
(iv) implementation of the method on a computer: programming.

Often there are several different variational formulations that may be used
depending eg on the choice of dependent variables. The choice of finite

dlmens10nal subspace Vh, ie, essentlally the choice of the finite element
i al fmmu-

To solve the discrete problem one needs 0pt1m1za110n algorlthms and/or
methods for the numerical solution of large linear or nonlinear systems of
equations. In this book we shall consider all the steps (1)—(iv) with (iv) kept
at an 1ntr0duct0ry level
ment mcthods as compared with finite differenc

at complicated geometry, general boundary condmons and
variable or non-linear materlal properties can be handled relatively easily. In
all these cases one meets unneccessary artificial complications with finite
difference methodology. Further, the clear structure and versatility of the
finite element method makes it possibie to

for applications and there is aiso a large n
element codes available. Also, the flmte element method has a SOlld
theoretical foundation which gives added reliability and in many cases makes
it possible to mathematically analyze and estimate the error in the approxi-

mate finite element solution.

11



The purpose of this book is to give an introduction to the finite element

method as a general techmque for the numerlcal solution of partial differential
ral equation:
ical and numerical properties of the method, but we also consider many
important applications to problems from various areas. An effort has been

made to keep the mathematics simple while still presenting significant results
and considering non»trivial problems of practical interest

]
3]
w
W
Q.
¢
F)

To connect these types of
eq uatlons with problems in mechanics and nthwe, we recall that elliptic
equations model for example static problems in elasticity, parabolic equations
model time-dependent diffusion dominated processes, and hyperbolic
equations are used to describe convection or wave-| propagation processes. We

We w1ll mamly consrder lmear problems and only briefly comment
non-linear ones.

The material presented concerning eiliptic problems is by now standard,
but for parabolic and hyperbolic problems we present recent developments

that have not earlier appeared in text books. With thesc lat

thatl Dave Not canier appeared in exX1 0COKS. Wiln tnesc ia

it is possible to give a unified treatment of the three main types of partial
differential equations as well as boundary integral equations. In all cases we
emphasize the basic role played by the stability properties of the finite element
method and the relation to the corresponding properties of the partial

differential or integral equation
The book is an extended version of an earlier book in Swedish by the author
that has been used for several years in undergraduate courses engi 1eering

at other Scandinavian universities.

The necessary prerequisites are relatively moderate: Basic courses in ad-
i nd prelerdoly some acquaintance with the
most well-known lmear partial differential equations in mechanics and

. the heat Pmmhnn and the wave

equation. With some oversimplification we may say that the mathematical
tools used in the book reduce to the following: Green’s formula, Cauchy’s

nequality and elementary calculus and linear aigebra.

12

The problem sections play an important role in the presentation and the
reader is urged to spend time to solve the problems.
As a general reference giving a more detailed presentation of the material

in Lhapters 1to 5 we reter to [ ij (see a lso [SF]). For variational methods
hysics, see eg [DL], [ET]

p‘] ’ L= =P 1=



In this chapter we introduce FEM for some elliptic model problems and study
the basic properties of the method. We first consider a simple one-dimensional
problem and then some two-dimensional generalizations.

model probiem
Let us consider the two-point boundary value problem

X) ior =1,

b —y (@:f(x) r 0<x<1
@) y)=u1)=0

. ,_dv Lo . - - . o . .
where v' =— and f is a given continuous function. By integrating the
X

equation —u"=f twice, it is easy to see that this problem has a unique solution
u. We recall that the boundary value problem (D) can be viewed as modelling,
in particular, the foilowing situations in continuum mechanics:

A An elastic bar

Consider an elastic bar fixed at both ends subject to a tangential load of
intensity f(x) (see Fig 1.1). Let o(x) and u(x) be the traction and tangential
dlsplacement at x, respectively, under the load f. Under the assumption of

isnlacements and a linearlv elastic material. we have in the i
piacements and a uneany eiastic materiai, we nave i the in

where E is the modulus of clasticity. If we take here E=1 and eliminate o,
we obtain (D).

AN
v

u(x)

Fig 1.1

B An elastic cord

Consider an elastic cord with tension 1, fixed at both ends and subject to
transversal load of intensity f (see Fig 1.2). Assumlng again small displace-

mmade aia hoco thios tha feosoiianan 1 displacement u satisfics (D) (cf Problem
nients, we nave that the transversar Qispiaceiicnt U satisiics () (Tt riO0IeH
| v |
[~ Tux) ——71
| |
Fig 1.2

C Heat conduction

Let u be the temperature and q the heat flow in a heat conducting bar, subject
to a distributed heat source of intensity f. Assuming the temperature to be
zero at the end points, we have in the stationary case

—-q =ku’ (Fourier’s law),
q' =f (conservation of energy),
u(©) =u(1)=0,
where k is the heat conductivity, which again gives (D) if k=1.

We shall now show that the solution u of the boundary value problem or
differential equation (D) also is the solution of a minimization problem (M)
and a variational problem (V). To formulate the problems (M) and (V) we
introduce the notation

15



(v,w)=f= v(x)w(x)dx,

0
for real-valucd piccewisc continuous bounded functions. We also introduce
tha Linans gnana
the lincar space

V={v: v is a continuous function on [G v' is piecewise

continuous and bounded on [0,1], a (0) v(1)=0},

and the linear Iunctional F: V— R given by

F(v)— ', v)=({, v).

2

The problems (M) and (V) are the followine:
The problems (M) and (V) are the following:
W) Find ucV such that F(u)<F(v) YveV,
V) Find ueV such that (u’, v')=(f, v) VveV
Let us notice thai in the context of the probiems A and B above, the quantity
F(v) represents the fotal potential energy associated with the displacement
veV. The term % (v', v') represents the internal elastic energy and (f,v) the

load potential. Thus, the minimization problem (M) corresponds to the
fundamentai Principie of minimum potentiai energy in mechanics. Further the

variational problem (V) corresponds to the Principle of virtual work.
Let us now first show that the solution u of (D) also is a solution of (V).

s o (v
To see this we multiply the equation —u"=f by an arbitrary function veV,
a so-called test funtion v, and integrate over the interval (0, 1) which gives
~W, H=(L, v).
We now integrate the left-hand side by parts using the fact that v(0)=v(1)=0
to get
=(u", v)==u'(1)v(1)+u'(0)v(0)+(u’, v))=(u', v"),

and we conclude that

Su?pose then first that u is a solution V), let veV and set w=v—u so tha
v=u+w and weV. We have
1
F(v)=F(u+w)=§ (u'+w', u'+w')—(f, u+w)
B N NN
=5 W, u)=(E w)+ (', w)=(f, w)+5 (W', w)=F(u),
16

since by (1.1), (u’, w')—(f, w)=0 and (w’, w')=0, which shows that u is a
solution of (M). On the other hand, if u is a solution of (M) then we have
for any veV and real number ¢

F(u)<F(u+ev),

since u+€eveV. Thus, the differentiable function

g(e)= F(u+ev)=— W', w)+e(u’, v)+Z 5 (v v)—(f, u)—e(f, v),

g'0)=(’, v)=(,v),
and we see that u is a solution of (V).
Let us also show that a solution to (V) is uniquely determined. Suppose then
that u; and u; are solutions of (V), ie, uy, u;eV and
(u, V)=, v) VveV,
(uz, v)=(f,v) VveV.

)
(<=}

Subtracting these equations and choosing v=u;—ueV, we get

(X)) —uy(x)=(u1—w)'(x)=0  Vxe0, 1].
It follows that (u;—up)(x) is constant on [0,1] which together with the
boundary condition u3(0)=ux(0)=0 gives uj(x)=uy(x), ¥x€[0,1], and the

To sum up, we have shown that if u is the solution to (D), then u is the
solution to the equivalent problems (M) and (V) which we write symbolically
as

(D)= (Ve (M)

D)= (V)=(M)
Let us finally also indicate how to see that if u is the solution of (V) then u
also satisfies (D). Thus, we assume that ueV satisfies

fu'vidx—[fvdx=0  VveV.
0 0

if we now assume in addition that u” exists and is continuous, then we can
integrate the first term by parts to get, using the fact that v(0)=v(1)=0,

17



~j'(u”+f)vdx=0 VveV.
0

But with the assumption that (u”+f) is continuous this relation can only hold
if (cf Probiem 1.1)
(u"+£)(x)=0 0<x<l1,

and it follows that u is the solution of (D).

Thus we have seen that if u is the solution of (V) and in addition satisfies
a regularity assumpton (u” is continuous), then u is the solution of (D). It is
now possible to show that if u is the solution of (V), then u in fact satisfies

the desired regularity assumption and thus we have (V)= (D) which shows

that the three problems (D), (V) and (M) are equivalent (cf Section 1.5
below).

Problems

1 Show that if w is continuous on [0, 1] and

1
Jwvdx=0 VveV,

then w(x)=0 for x€[0, 1].

1.2 Show that under suitable assumptions the problem B above can be
given the formulation (1.1).

1.2 FEM for the model problem with piecewise

linear functions

clall s o A temitn_Aimmnncinnag
ial finite-di 1

now construct a finite-dimensional su Vi of the s /

nace
h Oi i€ Space V¥

a
¢

defined above consisting of piecewise linear functions. To this end let
0=xp<xi. ..<xm<xXm+1=1, be a partition of the interval (0,1) into subinter-
vals Ij=(xj-1, xj) of length hj=Xj—xj-1, j=1,. . ., M+1 and set h=max h;.
The quantity h is then a measure of how fine the partition is. We now let Vi

be the set of functions v such that v is linear on each subinterval Ij, v is
continuous on [0,1] and v{0)=v{1)=0 {cf Fig 1.3)

—— e

/ TN

+ + + + ' x

~

ig 1.3 Example of a function veVy

We observe that V,cV. As parameters to describe a function veVy, we may
choose the values VIJ“V\X,) at the node points xj, j=0,. . ., M+1. Let us

introduce the basis functions @jeVy, j=1,. . ., M, defined by

1 ifi=j
o= |
D= g i i =1, M,

ie, @jis the continuous piecewise linear function that takes the value 1 at node
point xj and the vaiue 0 at other node points (see Fig 1.4).

where n;=v(x;), ie, each veVy can be written in a unique way as a linear
combination of the basis functions ;. In particular it follows that Vy, is a linear
space of dimension M with basis {@;};¥].

The finite eilement method for the boundary vaiue probiem (D) can now

be formulated as follows:

19



(Mp) Find upeVy, such that F(up)<F(v) VveVp.

In the same way as above for the problems (M) and (V), we see that (M)

is equivalent to the finite- dimensional variational problem (V4): Find uy€Vy
uch that

M
up(x)= ,21 Eipi(x), Ei=un(xi),
i=
we can write (1.3)
M .
1.4 I e, )= @) =L M

1

which is a linear system of equations with M equations in M unknowns

1, . . ., Em. In matrix form the linear system (1.4) can be written as
(1.5) AE=Db,
where A=(ay) is the MXM matrix with elements a;;=(®i’, @;'), and where
E=(Ey, . . ., Em) and b=(by, . . ., bm) with bi=(f, @;) are M-vectors:
Bl [ b
. | ,b=l ) |
Em ! |L bm ,l
ss matrix and b the load vector, with
s of FEM in structural mechanics.
) e stiffness matrix A can easily be computed:

w:’
We ﬁrst observe that (cp, s cp, ) 0 if |i—j|>1 since in this case for all xe[0,1]
either gi(x) or @j(x) is equal to zero. Thus, the matrix A is tri-diagonal, ie,
only the elements in the main diagonai and the two adjoining diagonals may
be different from zero. We have for j=1,. .., M,

[N
(=

X

i i 1 _ 1
(cp,,cpj)——f L—zdx+I 2.dx—h—+h”,
Xj-11] Xj Ayl hj M+
and for j=2 M,
X 1 1
(0. @)= (@i_1, @) =— — dx=——
¥ ¥ Wi %5 Xlglh‘]’ h;

Note also that the matrix A is symmetrlc and positive definite since

d with v(x)= 2 njo;(x), we have
i1

M
y =(Z nwi's Zn.(m) (v', v')=0,
i,j=1 i=1 j=1

with equality only if v'=0, that is since v(0)=0 only if v=0, or n;= G for jfl
., M. We recall that a symmetric MxM matrix S=(sij) is said to be positiv
dcflmte if

a

n-Sn= 2 nisiini>0 VneRM, n#0,
i,j=1

where t he dot denotes tne scalar product in RM. We also recall that a

tive definite if and only if the eigenvalues of S are

Sy
smu'ly Vi .
Since a Dosmve definite matrix is non-singular it follows that the linear
system (1.5) has a unique solution. We also note that A is sparse, ie, only
a few elements of A are different from zero {Ais tridigago

1mportant property depends, as we have seen, on the fact that

@j of Vy is different from zero only on a few intervals and thus will interfere

only with a few other basis functions. The fact that the basis functions may
this way is an important distinctive feature of the finite element

method. :
In the special case of a uniform partition with hj=h= M‘Tl the sysiem
(1.5) takes the form

RECEERSE Iy
av o
IR N
DRI R R
[0. ) -1 2_]|§MJ ‘.bMJ

N
—_



‘ After division by h this may be interpreted as a variant of a standard difference
‘h method for (D) where the elements of the right hand side bj/h are mean values
} ornx_ over the 1mefvals (Xj71,4xj+1) (ct Problem 1.4).

To sum up, we have seen that the finite element metho

to a linear system of eguations with a sparse. sy a
inear system of equations with a sparse, symme

stiffness matrix.

V) f or (D) leads

Ivn AAC niba
CIinitc

I Problems

i 1.3 Construct a finite-dimensional subspace Vy, of V consisting of functions
| which are quadratic on each subinterval Ij of a partition of I=(0, 1).
How can one choose the parameters to describe such functions? Find
i the corresponcmg basis functions. Then formulate a finite element

1 na L oa cnnnding
neth using the spac h an wn th sponaing
linear svstem of eguations in case of a uniform nartition
inear system Of equations 1 case Of a untiorm partition.

-
'S
o]

}
>
v
+
)
i
)
)
]
]
-
=h
]

s

t (D) and compare with (1.6).

i5 Consider the boundary value problem

1.7 dx*
u(0)=u’(0)=u(1)=u'(1)=0.

Here u represents e g the deflection of a clamped beam subject to a
transversal force with intensity f (see Fig 1.5).

. Tp—
% lf (x) V/
A ~~ [hw = V

A v vs
Fig 1.5
(a) In mechanics this beam problem would naturally be formulated as
follows:
(1.8a) M=u", 0<x<1,
(1.8b) M"=f, 0<x<1,
{1 90) O — N1V — 1N 0
\1.00) u\v,—u \v)=uiy)=u (1)=v
What does here the quanity M represent and what is the mechanical
interpretation of (1.8a—c)?
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(b) Show that the problem (1.7) can be given the following variational
formulation: Find ue W such that
W', v)=(f,v) VveW
where W={v: v and v' are continuous on [0,1], v" is piecewise
continuous and v(0)=v’(0)=v(1)=v'(1)=0}.

(c) For I=[a, b] an interval, define

Pa(I)={v: v is a polynomial of degree<3 on 1, ie, v has the form
v(x)= agx3+azx2+a1x+ao, xel where a;eR}.

Show that vePs(I) is uniquely determined by the values v(a), v '(a),
v(b), v'(b). Fmd the correspondmg basis functions (the basis function
corresponding to the value v(a) is the cubic polynomial v such that

v(a)=1, v'(a)=0, v(b)=v'(b)= 0, etc).

(d) Starting from (c) construct a finite- dimensional subspace Wy of W
consisting of piecewise cubic functions. Spccnfy suitable parameters to
3 determine p

describe the funcitions in Wy, and determine the ¢
functions.

rresnonding basis
rresponcing dasis

(e) Formulate a finite lemcnt method for (1.
Find the cor g ' o

TILRA l. (RO |

1.3 An error estimate for FEM for the mode
problem

We shall now study the error u—uy where u is the solution of (D) and uy is

the solution of the finite element problem (V4), i€, uh€Vn and uy, satisfies
(1.2). The proof is based on the following equation for the error:

(1.9) ((u—uyp)’, v')=0 VveVh.

This follows by recalling that (u', v/)=(f,v), YveV, so that in particular since
VeV

(1.10) (', v)=(f, v) YveVi.

23



Su‘lflracting (1.2) from (1.10) we obtain (1.9).
We shall use the notation

1
[twil=(w, w)2=( w2dx)12;
0

[I-]| is the norm associated with the scalar
Cauchy’s inequality:

th f llovflmg es‘um:ate for u—up which shows that in a certain
St possibie approximation to the exact solution u.

Theorem 1.1. For any veV}, we have

srfof Let veVy, be arbitrary and set w= up—v. Then weVy, and using (1.9)
1th v replaced by w, we get, using Cauchy’s inequality also,

[[(u=up)'|[2=((u=up)’, (u— up))+((u—uy)’, w')
_((“ un)’, (u=up+w)")=((u—up)’, (u— V))
<litu=un) [} fi(a—vy']].

Dividing by [[(u—up)’|| we obtain the statement of the theorem

[/(u=up)'[|=0, then the theorem clearly holds). O (it

antitative e

@
&
=4
3

ll(From Tlheorem 1.1 we can obtain a quantit ate for th

u—u ative mate the error

functio};) Wbls'h;’lslm}?a‘mg [I(a=an)'|| where UheVh is a suitably chosen
. choose G eV,

u at the nodes h€ Vh to be the interpolant of u, i e, Gy, interpolates

noges xj, ie,

Un(x)=u(xj)  j=0,..., M+1.

Itis casy to sce (cf any basic course in numerical analysis or Problem 4.1 below)
that if GyeVy is chosen in this way, then for 0<x<I1,

(1.12) lu'(x)—@p(®)|< h max [u"(y)],
o<y=<i

h2

1.13) lu(x)—Gn(x)| < - max ()l
8 p<y<1

Using (1.12) and Theorem 1.1 we now obtain the following estimate for the
derivative of the error u—up:
(1.14) ll(u—uy)'lI< h max [u"(y)|

[USES

Since (u—up)(0)=0 we obtain from (1.14) by integration the following
estimate for the error itself (cf Problem 1.6):

(1.15) Ju(x)—up(x)|< h max [u"(y)| for O=x<I.
Osy=i

We observe that this iatter estimate is iess sharp than t
i where we have a factor h2. With a recise analy51s
also the finite element method gives a factor

&
B 5
o
W

'U
('D

~nccihla

it 1S pOssivie

h2 for the error u—up f also Problem 1.19 below)

Examples A and B above, is usually of more (or at least no less) practical
interest than the quantity u itself, representing in these cases a displacement.
Thus the estimate (1.14) is of independent interest and not just a step on the
way to an estimate of u—un.

Let us also notice that to prove (1.14) we do not need to concretely construct
@i (which would require knowledge of the exact solution u); we only have to

be able to give an estimate of the interpolation error, for instance of the form

(i.12). {(1.13)

(1.12), (1.13).

To sum up, by Theorem 1.1 we have
ll(u—uy)'||is ““as small as possible” and by usi also the mterpolatlon estimate
(1.12) we obtain the quantitative error est1mate (1.14), which in particular
shows that the error tends to zero as the maximum length of the subintervais
Ij tends to zero if u” is bounded on [0,1].

mation that

d the boundary conditions

u(0)=un(0)=0. Hint: Use the relation

O“

together with Cauchy’s inequality.
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1.4 FEM for the Poisson equation

We will now consider the following boundary value problem for the Poisson
equation:

(1.162) —Au=f in Q

(1.16a) Au=f in Q,

f1 1L\ n Fal

\1.100) u=v onl,

where Q is a bounded open domain in the plane R2={x= (X1, X2): xieR} with
boundary T, f is a given function and as usual,

A 0% 3%

Auv=—+—.
ax? ox?
A number of problems in physics and mechanics are modelled by (1.16);
may represent for instance a temperature, an electro-magnetic potential or
the displacement of an elastic membrane fixed at the boundary under a
transversal ioad of intensity f (see Fig 1.7 and compare also with problem B
of Section 1 1\

fdx

RN
\ T /T~ 7 \

theorem (in two dimensions):

[divAdx=[A-nds
Q r

where A=(A1, A;) is a vector-valued function defined on Q

. 3A;
divA=—
Aw.
X1
.
and n={ny, n2) is the outward unit normal to I'. Here dx denotes the element
of area in R, and dg the element of arc langth alang T I6 o _ 3
! 2 TS RES Latanthn O are aCngui aiong 1. 1l We apply ihe
divergence theorem to A=(vw 0) and A —/0 vw) e fad ol s
fd corem 10 A=vw, Uy and A=(V, vw), we find that

(1.17) (Y waxt [vo¥ dx= fvwng ds, i=12.
(R .

Q 9% r
[av v\
Denoting by Vv the gradient of v, ie, Vv= ‘ A l , we get from
et 7 \ OX1 OX2/
(1.17) the following Green’s formula
[ov aw , ov_ 3w |
[Vv-Vwdx=f| T == +— = | dx
2 ol 9x1 ox1 OXy OXz |
ow | i 3?w 8wl
=y Dy | as- v 25+ S5 | @
ral oxi ox2 ] Q LOX]  CX72 4
=[v w ds—[ vAw dx,
r on Q
ie,
A
oW
. Vw dx=[v =2 ds—fvAw dx,
(1.18) si Vv 1 o 574
whare
where
3w _ 3w ow
oW _ W 4+
3n OX; x
he derivative in the outward normal direction

is the normai derivaiive, i€, the
to the boundary T
We shall now give a variational formulation of problem (1.16). We shall

flrs't' ‘;};(.)‘v‘;“that if u satisfies (1.16), then u is the solution of the following

variational problem: Find ueV such that

(1.19) a(u, v)=(f,v) VveV,

wherc o ,_,ra_ua_ u v, o
a(u, v)= vu V vdx= gl}l ax; ale

(, v)=vadx,
Q

In exactly the same way as in Se ction 1.1,
A~

and only if u is the soiution of the 1Uuu‘w’iug
(u)<F(v), YveV, where F(v) is

such that F(u)<F(

F(v)= —a(v v)—(f, v).




unction veV and integrate over Q. According to Green’s formula (1. 18)
we then have

see that (1.19) follows from (1.16) we multiply (1.16a) with an arbitrary
fi

(f, v)=—§£Au vdx=—| 2—:11 v dx+vau' Vv dx=a(u, v),

where the boundary integral vanishes since v=0 on T On the other hand, if
u€eV satisfies (1.19) and u is suffncnently regular, then we see as in Section 1.1

that u also satisfies /1 14\ (~f D
.16) {(cf Problem 1. lU)

Let us now construct a finite-dimensional subspace V; of V. For simunlicit
hall sp n of V. For simplicity

we shall assume that I is a polygonal curve, in which case we say that Q is
11 LAaST Wwo Yy uiat 3¢ 1D

apolygonal domain (if I'is curved we may first approximate I with a polygonal
curve, see Chapter 12). Let us now make a triangulation of Q, by subdividing
Q into a set T =K -» K of non-overiapping triangles K;,

..... to aset Th=K,,. .
Q= U K = K|UK;. . . UK,
KeT,

i",wh that no vertex of one triangle lies on the edge of another triangle (see
Fig 1.8) )

Fig 1.8 A finite efe ‘—‘\K
Fig 1.8

Vh={vt Vv is continuous on Q u{ s ig linaas £ v _m

,.
&
¥
o
&
-
[
7
m
o
=
<
Il
=)
o)
=]
=1
-
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estriction of v to K, ie, the function defined on K
ous functions that

The space Vy consists of aii continuous functions tnat
nd vanish on . We notice that Vo V. As

a
ang var

n veVy, we choose the values v(N;) of v at

;
€Vy we Choose

Here v|g denotes the
agreeing with v on K.’

are linear on each tii

parameters to descri cti
the nodes Ny, i=1,. . ., M, of Ty, (see Fig 1.8) but exclude the nodes on the

boundary since v=0 on I. The corresponding basis functions @j€Vh,
j=1,..., M, are then defined by (see Fig 1.9)

Lo (1 ifi=)

D= 0 if i i, j=1,.. ., M.

@;i(D

P

J

N\
V4N
/ A/ \\/\

\/
T =

\\ /@m / //ﬁ
e
e ) 7
‘ W r
=
Fig 1.9 The basis function ;.

We see that the support of @j (the set of points X for which (p,(x) #0) con\snsts
A

of the triangles with the common node N;j (the shaded area in Fig 1.9

function veV}, now has the representation

i@i(x), n;=v(Nj), for xeQUT.

n;
b

v(x)= 2
=1

j
We can now formulate the following finite element method for (1.16)
starting from the variational formulation (1.19): Find uy€Vy, such that

(1.20) a(uy, v)=(f, v) VveVh.
e see that (1.20) is equivalent to the linear system

29



where A= (a,,) the stiffness matrix, is an MXM matrix with elements

auza(¢i, ;) and £=(§;), b=(b;) are M-vectors with elemenis E=up(N;),

Clearly A is symmetric and as in Section 1.2 we see that A is positive definite
and thus in particular non-singular so that (1.21) admits a unique solution E.
Moreover, A is again sparse; we have that a;;=0 unless N; and N;j are nodes
of the same triangle.

In the same way as in Section 1.2 we realize that u,eVy, is the best
so u

approximation of the exact solution u in the sense that
(1.22) [|Vu=Vup[|<||Vu=Vv]| VVEVp,
where

19vll=atv)!2 = ([ 90
In particular we have
(1.23) [IVu=Vuy||<||Vu= Vi,

In Chapter 4 we prove that if the triangles KeTy, are not allowed to become
too thin, then

(1.24) | Vu—Vip||<Ch.

Here and below we denote by C a positive constant, possibly different at
different occurences, that does not depend on the mesh parameter h. In the
case (1.24) the constant C depends on the size of the second partial derivatives
of u and the smallest angle of the triangles KeTy. One can also prove (see

OCLUUH "0 /) llldl
u—unl|=( (u— w2y < Ch2
Q

with a similar dependence of C. In particular these estimates show that if
exact solution u is sufficiently regular, then the error and the gradient of the

error u—uy tend to zero in the norm || - || as h tends to zero.

e a square with side length 1 and let T}, be the uniform
according to Fig 1.10 with the indicated enumeration of
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Fig 1.10 Fig 1.11

In this case the linear system (1.21) reads as follows:

J
)
J

rowN+1[4 -1 0-1 0 - | l’g,l = lb]l.

|1 4-1 0-1 0 . -
o1 421 01 - - LI |1
125) l(l) 0 -1 4 -1 O_é (1)[ L]
R B N B
e e A
A Y §

Note that here the left-hand side of equation i is a linear combination of the
values of uy, at the 5 nodes indicated in Fig 1.10 with coefficients given in Fig
1.11. Dividing by h? we recognize this as the linear system obtained by
applying the so-cailed 5-point difference method for (1.16) with the com-
ponents of the right-hand side being weighted averages of f around the nodes
N; (cf Problem 1.7 below). O

The elements aj;=a(@;, @;) in the stiffness matrix A are usually in practice
computed by summing the contributions from the different triangles:

(1.26) a(g;, @)= Z ag(®;, ©;),

( n= 2 axl
where
ag (@i, ¢j)=[ Vi Vodx
K
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We notice that ag(j, q)j)—O unless both nodes N; and N; are vertices of K.

1A v oxx

Let l‘ll NJ ana Nk be the vertices of the Irlangle K. We caii the 3x3-matrix

121 [ a(ei, @) ak(%i, 9)) ag(®i, @x) |
' ak(®;j, 9j) ak(®j, Px)
| Sym ak{®k, Px) |

the element stiffness matrix for K. The global stiffness matrix A may thus be
computed by first computing the element stiffness matrices for each Ke T}, and

then summing the contributions from each triangle according to (1.26). In a
corresponding way we compute the right-hand side b. This process of

computing A and b by summation is called the assembly of A and b.

To compute the elements in the stiffness matrix (1.27) we clearly work with
the restrictions of the basis functions ¢;, @;j and gy to the triangle K. Denoting
these restrictions by y;, y; and i, we have that each v is a linear function
on K that takes the valuc onc at onc vertex and vanishes at the other two
vertices of K. We call ;, y; and vy the basis functions on the-triangle K, cf
Fig 1.12. If w is a linear function on K, then w has the representation

N () w (N b () +w(N iy
A i v

(x (x) xeK
X)FWIN YR FWINOWKX) X

N €A,

N\
J— // | \\
1
- N
2 7N\
S T NG
\\\
Fig 1.12 The basis function vy; associated with K. !!1

Problems
1.7 Formulate a difference method for (1.16) in the case when Q is a square
using the difference approximation

%, u(xith, x9)—2u(xy, Xp)+u(x;—h, x;)
&%‘ \R1, aZ) h2 s
d%u

E N SN S, P P DT
1g dpproximauon 1or —;. Lompdre wilnl £xamplie
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1.8 Find the linear basis functions for the triangle K with vertices at
(0,0), (h, 0) and (0, h). Show that the corresponding element stiffness
matrix (1.27) is given by

[ 1 I
I
|1 1 ol
| 2 2 )
| 1 1

™

N
=)

[}

Using this result show that the linear system (1.25) of Example 1.1 has
the stated form.

1.9 Find the element stiffness matrix (1.27) for a general triangle K i
terms of the coordinates ai=(al, al), i=1, 2, 3, of the vertices of K.

-
=
=)

Show that if

ueV satisfies (1.19)
entiable, then u satisfies (1.16).

€S b

1.11  Find the element stiffness matrix for the problem

=f for 0<x<1, u(0)=u(1)=0,
if we use piecewise quadratic functions according to Problem 1.3. Then
determine the corresponding giobal stiffness matrix in the case of a
uniform subdivision. Can you 1merpret the resulting equations as

piecewise continuous derivatives used in the preceeding sections. It is also
useful to endow the spaces V with various scalar products with the scalar
product related to the boundary value problem. More precisely, V will be a



Before introducing these Hilbert spaces let us recall a few simple concepts
from linear algebra: If V is a linear space, then we say that L is a linear form
on Vif L: VR, ie, L(v)eR for veV, and L is linear, ie, for aii v, weV

L(Bv+0w)=BL(v)+8L{w).

Furthermore, we say that a(.,.) is a bilinear form on VXV if a: VXV — R,
ie, a(v, w)eR for v, weV, and a is linear in each argument, ie, for allu, v,
weV and B, 6eR we have

a(u, Bv+06w)=Ba(u, v)+0a(u, w),

a(Bu+0v, w)=PBa(u, w)+0a(v, w).

The bilinear form a(.,.) on VXV is said to be symmetric if

Vif

a(v, v)>0 VveV, v#0.
The norm || - ||a associated with a scalar product a(. , .) is defined by
llvll.=(a(v, V)2,  VveV.

ing norm || - ||, then we

We further recall that if V is a linear space with a scalar product with
correspondmg norm || - ||, then V is said to be a Hilbert space if V is compiete,
ie, if every Cauchy sequernice with

a qequence V1, V2, Va,. . ., of elements v; in the space V with norm ||-|| is said
be a Cauchy sequence 1f for all e>0 there is a natural number N such that
Hvl vil|<e ifi, j>N. Further, v; converges to v if [|v— vi|| = 0 asi— . The

reader unfamiliar with the concept of completeness may bypass this remark

th respect to || -

} is convergent. We recall that

Ei

.-»

and think of a Hilbert space simply as a linear space with a scalar product.
W Hiib h n tural to use for variational

We now introduce some Hilbert spaces that are na
formulations of the boun e

with the one-dimensional case. If I=(a, b) is an interval, we define the space
of “square integrable functions” on I:

(=3
)
=
2
=3

La(I)={v: v is defined on I and [vZdx<e}.
i

34

roduct

and the corresponding norm {the L,-norm)
‘ 2dx)2=(v. v)¥2
IVl m=(J v2dx)"== (v, V)=
By Cauchy’s inequality,
RTENT! TIT
(v, wisliviiLmlwiLo.

we see that (v, W) is well-defined, ie, the integral (v, w) exists, if v and
wely(I).

Remark. To really appreciate the definition of L(I) and realize that this
tomaenl Te thic

space is complete requ1res some familiarity with the Lebesgue integrat. In tiis

w we may think

book, howevcr it is sufficient to get an idea cf (I) by using the usual Rie-
£ view we may think of a “typical” function

mann integral; this pom
=T (T ac
VELQ(1) a5 4

that [vZdx<ee. O
i

We also introduce the space HI(D)={v: v and v’ belong to L(I)}, and we equip
this space W h the scalar product

(vw+v'w')dx,

and the corresponding norm

; 2 21dx)1/2.
vl =( fr v2+(v')?]dx)
The space H!(I) thus consists of the functions v defined on 1 which together
with their first derivatives are square- m[egrd() , ie, belong to Ly(I) '
In the case of boundary value probiems of the form —u"=fonI=(a, b)with
boundary conditio u(a):u(b):ﬂ, we shall use the space
Hi(D) = {veH!(D): v(a)=v(0)=0}
with the same scalar product and norm as for HY(I).
35



Our introductory boundary value problem

—u'=f  onI=(0, 1),

2 w)=um=o,

can now be given the following variational formulation:

formulatlon of (1.29) and is in fact the larzest space for which a variational
formulation of the form (1.30) is meaningful. From a mathematical point of
view the “right” choice of function space is essential since this may make it
easier to prove the existence of a solution to the continuous problem. From
the finite element point of view the formulation (1.30) as opposed to (V) is
of interest mainly because the basic error estimate for the finite element
1 estimate in the norm indicated by (1.30) (the HI{I\ norm).
Further, using the standard notation Ly(I), H(I), HY(I) etc, we may give our
boundary value problems variational formulations in a concise way, as will
be seen below.

Now iet & be a bounded domain R¢, d=2 or 3, and define

Ly(Q)={v: v is defined on Q and [vZdx<o},
o}

HY(Q)={veLy(Q): E‘LeLZ(Q) i=1,...,d},

[Ivl |H‘(Q)=(§fz[\7“+ [ Vv[?]dx)12.

We also define
HY(Q)={veHYQ): v=0on I},

where T is the boundary of Q and we equip H,.( 2) with the same scalar product
and norm as HY(Q).
The boundary value problem

36

—Au=f inQ,

(D) o =
’ u=0 onl,

can now be given the following variational formulation:

4%) Find ueH}(Q) such that a(u,v)=(f,v) VveH)(Q),
or equivaientiy

(M) Find ueH}(Q) such that F(u)<F(v)  VveH}(Q),
where

F(v)=%a(v,v)-—(f,v),
a(u, v)=[Vu- Vvdx, (f,v)=[fv dx.
Q Q

Remark The formulation (V) is said to be a weak formulation of (D) and the
solution of (V) is said to be a weak solution of (D). If u is a weak solution
of (D) then it is not immediately clear that u is aiso a classical solution of (D),

since thigs reguires u to be sufficiently rpnnlm— sothat Auisdefinedin aclagsical
CC s requires u ¢ be sulliciently SC tiatl AAuis Geninedin aciassical

sense. The advantage mathematically of the weak formulation (V) is that it
is easy to prove the existence of a solution to (V), whereas it is relatively
difficult to prove the existence of a classical solution to (D). To prove the
existence of a classical solution of (D) one usually starts with the weak solution

of (D) and shows often with considerable effort that in foct thic onlitiaen 1o
O (47 and snOws, OIitn wilil CONsialrac:C Ciiort, uiat in 1act tnis soiution is
sufficiently recular +3 be alss a classical solition For more complicated

suiiiCiently reguiar to o¢ ai 1assiCal SO1ution. r'or more Comipiicateq, €g

non-linear problems, it may be extremely difficult or practically impossible
to prove the existence of classical solutions whereas existence of weak
solutions may still be within reach. O

12 Let Q={xeR%|x|<1}. Show that the function v(x)=[x|® belongs to
HI(Q) if a>0

12 Praove Canchvle inaqguality (1 2Q)

13 Prove Cauchy’s inequality (1.28).

i.i4  Consider the probiem corresponding to (D) with an inhomogeneous
boundary condition, ie, the probiem
—Au=f inQ,
G on T
u=up omi1,

(1.31)

where f and ug are given. Show that this problem can be given the
following equivalent variational formulations:



(V) Find ueV(ug) such that a(u,v)=(f,v)  VveH}(Q),
(M) Find ueV(up) such that F(u)<F(v) Vve V(ug),
where
V(ug)={veH!(Q): v=ug on T'}.

Then formuiate a finite eiement method for (1.31) and prove an error
estimate

i.6 A geometrlc mterpretanon of FEM

We shall now give an interpretation of the finite element method in geometric
terms in the function space Hé(Q). We recall that two elements v and w in
a linear space with scalar product <.,.> are said to be orthogonal if

T At e cisamaaliaiter AmeciAda than £11 ot o et namd Al e meca cacmlal o e
LU W L DIL llJll\«ll_y LULDIUCT LT TULTUWL 15 valldlit vl oul plCVlUub })lUUlCll
1.32 —Autu=f in Q,
(1.32) ©=0 onT
u=0 onI

JVu- Vvdx+ Juv dx=(f, v) VveH{(Q)
Q Q
or
(1 22 n v>S=(f v\ (VA 21770}
(1.33) <u, V>=({i, V) VVEIi ),

using the notation

<u, v>=[[Vu- Vv+uv]dx.
Q

method for (1.32): Find uy€Vj, such that
(1.34) <uh, v>=(f,v) VVEeVp.

(1.35) <u—up, v>=0 VVveVy,

ie the error u—uy is orthogonal to Vy with respect to <.,.>. We may also
express this fact as follows: The finite element solution uy, is the projection
with respect to <.,.> of the exact solution u on Vh, ie, uy is the element in

Vh closest to u with respect to the HY(Q)-norm || - ||i(@), or in other words
(1.36) [lu—up||n'@)s/lu—vlln'@) VveEVh

This situation is symbolically illustrated in Fig 1.13 where H}(Q) is repre-
sented by the whole plane while the straight line through the origin represents
Vh.

Fig 1.13

According to (1.36), uy, is the best approximation of the exact solution u, in

the sense t‘na‘l for no other function veVy, is the error u—v smaiier when
seen that ur. can be found bv solving

vvvvv Uy una by solving

........... g on the given
function f. Thus we can compute a best approxnmauon up of u, without
knowing u itself, knowing only that — Au+u=f in Q and u=0 on I'. This
remarkable fact reflects the ellipticity of the boundary value probiem (1.32).

Problem .
i.15 Prove that (1.35) and (1.36) are equivaient (cf the proof of Theorem
i.1).
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boundar Y conditions

1.7 A Neumann problem. Natural and essential

We shall now consider a problem with another type of boundary condition,
namely the following Neumann probiem (D):

(1.37a) —Au+tu=f inQ
Ju
(1.37b) —=g onT,
3n
where again Q is a bounded domain with boundary I' and 2— denotes the
3n
outward normal derivative to I. The boundary condition is a Neumann

<
(2}
=}
2

condition while the boundary condition u=ug on I considered previously is
said to be a Dirichlet condition. In mechanics or physics the Neumann
condition (1.37b) corresponds to a given force or flow g on I'.

We can give the problem (1.37) the following variational formulation (V):

Tind : cLT1/ON) cinl 4o

iU ucIi \bﬁ} sudil ulat

(1.38) a(u, v)=(, v)+<g, v> VveH{(Q),
where

a(u, v)=[[Vu- Vv+uvldx, (f, v)=[ fv dx, <g, v>=] gv ds.
Q Q r

This is equivalent to the following minimization formulation (M): Find
ueH(Q) such that F(u)<F(v), VveH!(Q), where

To see that (1.38) follows from (1.37) we multiply (1.37a) with the test function
veH!(Q) and integrate over Q. According to Green’s formula (1.18), we then

get, since ?—u=g onT,
dn °©

D.
_.
(..
3.

v)= (—Al +n)_ dx:—!—v +[(Vu- Vvdx+ (uv
} 4 J
r on Q Q

=—<g, v>+f[7u-'Vv+uv]dx==a(u, v)—<g, v>,

which proves (1.38).

40

Let us now also motivate why a solution ue H!(Q2) of the variational problem
1.3
3

71 A Se £

) aiso shouid saust (1.97). Ubll‘lg Green’s formula agalll we find from

8)
8) that if u is sufficientiy reguiar, then

(f, v)+<g, v>=a(u, v)=] 3—uv dx+ [(= Au+u)v dx,
ron Q

so that, rearranging terms,

(139) (- Au+u—f)v dx+

Now, as (1.39) holds in particular for all v in Hé,(Q) and for these functions
the boundary term vanishes, we conclude that (1.37a) holds, ie,

—Au+u—f=0 in Q.

[(ZB—g)v ds=0 VveH!(Q).
i_ on T
But varying now v over H!(Q), which means that v will vary freely on T', we
finaiiy get
@—g 0 onT,
on
and (1.37b) follows.
We note that the Neumann condition (1.37b) does not appear explicitly in
the variational formulation (V); the solution u of (V) is only required to beiong

to H{Q) and is not explicitly required to satisfy (1.37b). This boundary
condition is instead implicitly contained in (1.38); by first varying v “inside’

Q we obtain (1.37a) and then (1.37b) by varying v on the boundary I'. Such
a boundary condition, that does not have to be explicitly imposed in the
variational formulation, is said to be a natural boundary condition. This is in
contrast to a so-called essential boundary condition, like the Dirichlet
condition u=0 on T in eg (1.32), that has to be explicitly satisfied in a
variational formulation of the form (1.33).

Let us now formulate a finite element method for the Neumann problem

(1.37). Let then Ty, be a triangulation of Q as in Section 1.4 and define

Vp={v: v is continuous on Q, vl is linear YKeTy}.

As parameters to describe the functions in Vi we of course choose the values
at the nodes, now including also the nodes on the boundary I'. Note that the

7
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Vi are not required to satisfy any boundary condition and that
£ 1

. By starting from (1.38) we now have the foliowing finite eiement

(1.40) a(up, v)=(f, v)+<g, v> YveVy.

As in Section 1.4 we see that this problem has a unique solution uy, that can
be determined by solving a symmetric, positive definite linear system of

equaiions. We aiso have the following error estimate
[fu—unll@=/lu=vlH'@) VveVh,

and hence as above

if u is regular enough. The function uy will satisfy the Neumann condition

(1.37b) approximatly, ie, aT will be an approximation to g on T (cf Problem
1.16).

Remark When formulating a difference method for (1.37) one meets severe
difficulties due to the boundary condition (1.37b) unless Q has a very simple
shape such as a rectangle. On the other hand, in the finite element formula-
tion, the same boundary condition does not cause any complication. [

Problems

1.16  Show that the problem
—u"=f on I=(0, 1),
u(0)=u'(1)=0,

can be given the following variational formulation:

: . Formuiate a finite eiement method for
this probiem using piecewise iinear functions. Determine the corre-
snondmg linear system of equa ations in the case of a uniform part tion

and study in particular how the boundary condition u’(1)=0 is
approximated by the method.

1.17 Show that the problems (M) and (V) of this section are equivalen
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1.18 Let Q be a bounded domain in the plane and let the boundary I' of
& be divided inio two paris I'1 and I;. Give a variatior i

of the foilowing probiem:

Au=f in Q,

u=ug in Iy,
du_ R
—= omn 17,
dn

are given functions. Then formulate a finite element
method for this problem. Also give an interpretation of this problem
in mechanics or physics.

2
<
«
£
a3

-
—
K=

Consider the finite element method (1.2) for the model problem
(1.29). Let G;eHy(I) satisfy

(1.41) (v, G)=v(xi) YveH}(I),

where x; is a given node, i=1,. . ., M. Prove that G; is given by
s
(1—x;)x for 0=x=x;,

Gi(x):{..,n_«\ for v =1
(Xi(1—X) I =I.

Note that G; is the Green’s function for (1.29) associated with a

/

delta function 8(x;) at node x; (G; satisfies —G;"=06(x;) on I,

G./O\=G.(1\=0)_ Further. note that it so hannens that G;eV:y.. Now
Gi(0)=Gi(1)=0). Further, note that it so happ ;eVy S
by chogsing v=e—u—u in (1.41) show that
by choosing v=e=u—uy in (1.41), show that
soN_s0 AN _n 1 A
e(x;)=(e’, G;)=0, i=1, , M

Thus, uy, is in fact exactly equal to u at the nod ‘e points x;. This some-

what surprising fact is a true one-dimensional effect due to the fact that

£ G.eV.. and does not exist in hicher dimensiong
lllC UlCCll S xuu\,uuu \)|: ¥ hy AliU GULTS UL CAlst 1 SIONS.

The technique of working with a Green’s function in this way is
however useful in proving for instance pointwise error estimates
(maximum norm estimates) in higher dimensions.

1 ngner aimen

program impiemeniing a fini
the Neumann problem of the



triangulation of the domain Q<R? with boundary I and let V}, be the
Lul[cbpunulng space of continuous piecewise linear functions. Let Nj,
=1,..., M, denote the nodes of T, and ¢y, . . ., @M the natural base for Vi,

ie, ‘P.(N,) d;. We want to find the solution EeRM of the linear system o

h T

aj= X af, bj= = b¥,
KeTy, KeT,
PPRPPN K_ro
(1.43) aij—{({ %i* V@it oipj]dx
bi={fodx+ | goids
K KA

The computer program is naturally divided into subroutines carrying out the
following tasks:

(a) Input of data f, g, Q and coefficients of the equation.

{b) Construction and representation of the trlangulatlon Th

((;) Computation of the element stiffne

(d) Assembly o !
(e) Solution of the system of equations AE=b.
(f) Presentation of result.

v-n.

Let us now consider the steps (b)—(e) in more detail.

(b) Construction and representation of the triangulation Ty,

A program for automatic triangulation of a given domain may be based on

the idea of successive refinement of an initial coarse triangulation; for

example, we may refine each triangle by connecting the midpoints of each side
(see Fie 1.14)
14).

\S€e g :.

/N AN L
/S /N Y S VAVAN
AN VAN %7

\ N XA XA
VA T VA VA W v74 VA V4 V4

Fig 1.14
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A triangulation process of this type leads to quasi-uniform meshes where the
triangies have essentiaily the same size in ail parts of €. If the boundary of
€2 is curved, this technique has to be modified close to the boundary.

As discussed below, it is often desirable to be able to construct triangu-

lations where the size of the triangles varies considerably in different parts
of Q. In fact one would need smaller triangles in regions where the exact
solution varies quickly or where certain derivatives of the exact solution are
large, see Fig 1.16 where the triangles get smaller in the area where the

sclution has a quick variation {cf Example 1.3). A possible refinementstrategy
ic indicate in So are ffaran coarse gri rianolag ara rafinad
indicated in Fig 1.15. Here, different coarse grid triangles arc refined

differently. Notice also the dotted lines introduced to complete the triangu-
lation in the transition zone between regions with elements of different size.
Recently, methods which automatically refine triangulations where needed,
so-called adaptive methods, have been introduced, cf Section 4.6 below.

Fig 1.15

To represent a given triangulation T, one may proceed as follows: Let Nj,
i=1,...,M,and K, n=1,. . ., N be enumerations of the nodes and triangles
of Ty, respectively. Then T, may be specified using the two arrays Z(2, M)

and T(3 N), where Z(], i), j=1, 2, are the coordinates of node N; and
f the verti

1\], u} J—J 2,3, are the number of the
let us consider the following triangulation where the numbers of the triangles

are indicated by a circle:

o

m
O \o~4H 1 o
o /X
1L/m\@/U/Y/
\/ o \

O
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In this case we have

[1 1 2 3 4 5 3 3 38 7]
=|3 4 4 8 8 8 6 7 7 6 10|.
[4 2 5 4 5 9 7 8 910 9

way. For 1nstance, if we intend to store the stiffness matrix A as a band matrix,
then we want the band width of A to be (nearly) minimal.

Writing a general program for triangulation, including refinement and node
enumeration (if needed), is a complicated task that we will not comment on
further. Let us just note that if the geometry of Q is simple and we are satisfied
with a quasi-uniform tnangulatlon, then it is rather easy to write a subroutine
for triangulation in each individual case.

We now assume that in some way we have obtained a triangulation T}, and

PO PR B TRNDE TR SR I, R .
tinat 1p IS ICPICSENLCd DYy UIC drrays £ dand 1 as above.

(c) Computation of the element stiffness matrices

The next step is to compute the element stiffness matrices with elements a"
given by (1.43). We know that a;; 9&0 only if both N; and Nj are nodes of K.
Let now Kp€Ty. Then T(a, n), a 1, 2, 3, are the numbers of the vertices of

K;, and the x;-coordinates , 2, for these vertices are given by Z(i, T(a,

BV =1 2 2 Kanwing tinne AfF K v ~am nawe anmamiidba tha alamea
i), G=1, <, 5. l\llUWlllE the vertices of Ky We can now compite the element

stiffness matrix AMW=(al), o, B=1, 2, 3, for element K,

a? —

{'([ Vyg- wawuws]dx,

where Y, is the linear function on K, that takes the following values:

(d) Assembly of global stiffness matrix

To assemble the global stiffness A=(a;) we just loop over all elements K,
and successively add in the contributions from different K, as follows (here
A(M, M) and b(M) are arrays where the matrix A and right hand side b will
be siored):

Set A(i, j)=0, b(i)=0, i, j=1,. .., M.

Forn=1,.. ., N, fetch AM=(agg) and b(M=(bg) from scratch file

and set

A(T(a, n), T(B, n))=A(T(a, n), T(B, n))+ags.
B(T(a. s =b(T(q. n))+h" a. B=1.2.3
DU, B TOUA, By T Y &, p=i 4 2

PR P A TN S
(€) dotunion oj tne inear sysiem Ag=o

To solve AE=b we may use various variants of Gaussian elimination or
iterative methods. This is discussed in more detail in Chapters 6 and 7.

Remark In practice we do not use an array A(M, M) for the stiffness matrix
A; since A is sparse this would not be economical and would require storage
of a large number of zero elements. Instead A is stored e g as a band matrix
if Gaussian elimination is to be used to solve AE=b, or if an iterative method

Remark In a certain variant of Gaussian elimination (the frontal method) the
assembly and elimination is carried out in parallel which may save storage (cf
Section 6.5 below). O

0 not sa

conditions, we may directly derive the systems of equations AE= B correspond-
ing to other boundary conditions. If on a part I'y of the boundary I' we

replace the Neumann condition 3— g with the Dirichlet boundary condition
n

u=u; on I'i. then we obtain the corresponding system AE=h by simply
up on Iy, then we obtain the corresponding system AE=b by simpl
deleting the rows in A corresponding to the nodes on I'y and by entering the

values of & given by the Dirichlet boundary condition. O
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1.9 Remarks on finite element software

Writing a finite element program for a general ¢l

mng a mmu € ewement pregram ior a gen ems

geometry and variable coefflclents (cf Example 2.7 below) is very time
consuming and requires expert knowledge. Therefore, much effort may be
saved by using, at least in part, existing software. There are several general
purpose finite element codes available for academic or commercial use. In

1onlar lat 11g mantinn a ~ndac th whish houva enma Aaveasiamas
particular let us mention the codes with which we have some experience,

namely CLUB MODULEF based at INRIA in France [CM] which is an
extensive general purpose library of finite element routines, FIDAP (Fluid
Dynamics Analysis Package) by M.S. Engelman [Fi] for problems in fluid
mechanics, the adaptive multigrid code for elliptic and parabolic problems

DY TR (D

PLTMG (Piecewise Linear Trianguiar Muiti Grid) by R. Bank {Baj, the
smaiier LSD/FEM package by M. Bercovier {Be] and the MACFEM program
for the Macintosh personal computer by O. Pironneau [Pi]. These codes have

a modular structure, clear documentatlon, give access to the source code and
thus are suitable for research, development and educational purposes.

Problem

1.20  Write a computer program implementing the ideas of Section 1.8.
Assume first simple geometry, eg € a square, and a uniform
triangulation. Use a standard routine to solve AE=b with Gaussian
elimination and A stored as a band matrix.

Example 1.3 Consider the Poisson equation (1.16) in a disc with radius 1
centered at the origin and with the load f=—1 in a small disc with radius 0.25

centered at (0.5, §.5), and { equal o zero eisewhere. In Fig 1.16 we give the
finite e]ement mesh together wnth the level curves

G uses
piecewise linears on triangles, and thus corresponds to (1.20), and also
automatically refines the finite eilement mesh in order to controi the error in
a chosen norm. We notice that the elements are smaiier in the area where the
solution has a quick variation, cf Section 4.6 below.

For more information on adaptive methods, see Section 4.6. Note that also
the triangulation on the cover was generated by the modification of PLTMG
applied to the Laplace equation with Dirichlet boundary conditions in a case
wnere tne exact solution has a smgulanty at the ongm and where accordmgly
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2.1 Introduction. The continuous probiem

We shall now give an abstract formulation of the finite element method for
elliptic problems of the type that we have studied in Chapter 1. This is not
a goal in itself, but makes it possible to give a unified treatment of many
probiems in mechanics and physics so that we do not have to repeat tinprinciple
in different concrete cases. Further the abstract formu-

us to understand the basic structure of

to

@
4
2

y easy

~<
o

the flmte clement method '
Thus, let V be a Hilbert space with scalar product (., .)v and correspondmg

)
norm || - |jv (the V-norm). Suppose that (cf Section 1.5) a{.,.) is a bilinear
form on VXV and L a linear form on V such that
(i) (a.,.) is symmetric,

(ii) a(. , .) is continuous, ie, there is a constant y>0 such that

1) lalv w)ls v”\]”un”w Yv, weV,

*r) AN S I RIS I A RARIE ’ ;
gren g Ne WM si o thara io a constant o>0 such that
(1) a(.,.) 1s V-euiptic, 1&, 1erC is a Consiant G~u SUL et

2

(2.2) a(v, v)=allvlly VveV.
(iv) L is continuous, ie, there is a constant A>0 such that

£ Y OIT = Al YveV

{ ) LAV SOV V vvev.

Let us now consider the following abstract minimization problem (M): Find
u€eV such that

(2.4) F(u)=Min F(v),
veV

w
(=}

where

F(v)=% a(v,v)—L(v),

and consider also the following abstract variational problem (V): Find ueV

(2.5) a(u,v)=L(v) VveV.

Let us now first prove:

Theorem 2.1 The problems (2.4) and (2.5) are equivalent, ic, ueV satisfies
{7 A\ if and only if u satisfies (2.5). Moreover. there exists a uniaue solution

..... Ony U SauUSies (£.5). MOredver, uiei CXists a unique soution
ueV of these problems and the following stability estimate holds

TR
(2.6) llully<—.
[¢1

Pronf Evictence of a caliution follawe fram tha T av Milgram thaneam wrhink
Proof Existence of a solution follows from the Lax-Milgram theorem which
is variant of the Riesz’ representation theorem in Iilhort gnnoa thaooo l(cee
15 Vaiiani Ul uav fulos iepilotiitauiUil uilirdii lll 11Tl Spatt uiculy (e

e g [Ne], [Ci], cf also Theorem 13.1 below). The reader unfamiliar with these
concepts may simply bypass this remark. To prove that (2.4) and (2.5) are
equivalent, we argue exactly as in Section 1.1. We first show that if ueV
satisfies (2.4), then also (2.5) holds, and we leave the proof of the reverse
implication to the reader. Thus, let veV and eeR be arbitrary. Then
(u+ev)eV so that since u is a minimum,

F(u)<F(u+ev) VeeR.

Using the notation g(e)=F(u+¢v), eeR, we thus have

2(0)=g(e) VeeR,

= Lagw, w+ La(e, v+ Eav, w+ La(v, v)~Lw—eL(v)
2 2 2 2
1 .
= za(u u)—L(u)+ea(u, v)—eL(v)+—a(v, v)
of a{.,.). It follows that

O=g’(0)=a(u, v)—L(v),

S1



which proves (2.5). To prove the stability result we choose v=u in (2.5) and
use (2.2) and (2.3) to obtain

al[ulR=a(u, w)=L(w)<Allullv,

which proves (2.6) upon division by ||u|lv#0. Finally, the uniqueness follows
from the stability estimate (2.6) since if u; and u, are two solutions so that
u;eV and

a(u;,v)=L(v) YveV, i=1, 2,

then by subtraction we see that uj—ueV sa
a(u;—uy,v)=0 VveV.

Applying the stability estimate to this situation (with L=0, ie, A=0) we
conclude that [[u;—u,|ly=0, ie, uj=up. O

and the stability estimate (2.6) of course holds (cf Example 2.6 beiow). In this
case there is however no associated minimization probiem. U

2 nend i PPN A = wenwe

2% T 2 Ly
2.2 Discretization. An error estimate

: 221
AiawC

Now let V}, be a finite-dimensional subspace of V of dimension M. Let
{®1,. . .,m} be a basis for V, so that ¢;eVy and any veVy, has the unique
representation

M
2.7) v= 2 n;
‘7 . i

A~

We can now formulate the following discrete analogues of the problems (M)
and (V): Find upeVy, such that

(2.8) F(up)<F(v) VveVp,
or equivalently: Find upeVy, such that
(2.9) a(up, v)=L{v) VveVy
52

As in Section 1.2 we see that (2.9) is equivalent to

M

(2.10)  up= _:z‘lgiq)i. geR,

(2.9) can be written as

(2.11) AE=h
(2.11) AE=b,
where E—fENcRM sy M e x oo s OA N s AR A
where £=(&)eRM, b=(bje with bi=L{@i), and A=(ajj) is an MxM
matrix with elements a;=a(@; @;). From the representation (2.7), we have

M M M
a(v,V)=a(Elmq);,jzlmw_i)é Z ma(@iein=n - An,
z z et

M

e s

S N= & GiNi

i=1

It follows that (2.8) may be formulated as
2.12) lt.At_h.t—mﬁn rlm Amv_b.ml
\&.12) STAST O = MIn S N AYN—0- 7).

> nefm 12 174N ]
We also have, recalling (2.2),

n- An=a(v,v)=allv|Z>0,
oo sl e 0 q 1o g N s
if v#£0, ie, if n#0. Since aiso a(Pi,Pj)=a(@j, i), this proves the tollowing

result.

Theorem 2.2 The stiffness matrix A is symmetric and positive definite.

wr

We can now prove the foilowing basic resuit where the equivalence follows
as above.
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Theorem 2.3 There exists a unique solution EeRM to the equivalent problems
(2.11) and (2.12), ie, there exists a unique solution up€eVj, to the equivaient
problems (2.8) and (2.9). Further, the following stability estimate hoids:

o~
N

Alg) !!uh!!\l$

Proof Since A is positive definite, A is non-singular, which proves existence
and uniqueness. The stability estimate follows by choosing v=uy, in (2.9) which
gives, using (2.2) and (2.3),

o [up| Z=a(up,un)=L(un)<Allun|lv,

from which (2.13) follows upon division by ||up|[v#0.

Remark The stability estimate (2.13) for the finite element solution, which
AN P R

is an analogue of the stability estimate (2.6) for the continuous probiem,
inite element method. In a certain

lu-unflvs  [la=vlly WeVh.

Proof Since VyhcV we have from (2.5) in particular

a(u,w)=L(w) VYWEVh,
so that after subtracting (2.9),
(2.14) a(u—up,w)=0 VWeVh.

For an arbitrary veVy, define w=up—v. Then weVy, v=up—w and by (2.2)
and (2.14), we have

aHu—uhH%,Sa(uh, u—up)=a(u—up, u—up)+au—uy, W)
=a(u—up, u—up+w)=a(u—un, u—v)<yllu—up/|vl/lu—vlly,

\ 1 (1.

N N i~ 1 P T Pl
where the last 1nequamy foilows from (2.1). Dividing by |ju—un||v

. ally o
interpolant of u (e g m,u may be the piecewise linear interpolant i of Section

1.3). In Chapter 4 we give estimates for the interpolation error |lu—mpul|y in
a variety of situations.

iivii2=a(v, v), veV.
This norm is equivalent to the norm || - ||y, ie, there are positive constants ¢
and C such that
2.15)  clvllvs[ivil.<Clvilv YveV.
More precisely, we may choose c="" o and C="V v . The scalar product (. , .)a

(v,w).=a(v,w).

The norm || - |la is referred to as the energy norm. The error equation (2.14)
may now be written

(u—up, v)a=0 VveVp,
from which follows as in Section 1.3 or by the proof of Theorem 2.4, that
(2.16) [lu—unllas|lu=v][a VVeVy,

or equivalently that uy, is the projection of u onto Vi with respect to the scalar
product (.,.), (cf Section 1.6). Clearly (2.16) shows that uy is a best
approximation of u in the energy norm.

a bounded domain in R? or R w1th boundary I'. The
R3 are denoted by x=(xy, x2) and x=(x, X2, X3).



Example 2.1 Let V=H!(Q), QcR?,
a(v, w)=[[Vv- Vw+vw]dx,
Q

L(v)=jfvdx,
Q

where feL,(Q) in which
problem (1.37) with g=
satisfied. Clearly a(.,.) i
form. Further,

2.5) is a variational formulation of the Neumann
us Vi

erify that the conditions (i)—(iv) above are
symmetric bilinear form on VXV and L is a linear

case (

0. Let

is a sy

2

a(v, v)=[|vlli(o)

and by Cauchy’s inequality
a(v,w)<a(v,v)2a(w,w)!=[lvll'(o)IWllH'(@),

which proves (2.1) and (2.2) with a=y=1. Finally
|L(V)|$|S£ fv dx[<|lfl L@ VL),

which proves (2.3) with A=|ifi|L,(@). O

where feLy(1) is given, which corresponds to our introductory boundary value
problem (1.30). To verify that (i)—(iv) are satisfied, we first note that a(. , .)
is obviously symmetric and bilinear and L is linear and since

[a(v, W<Vl Wl lLm<IIVIa'ml vk,

we have that a(. ,.) is continuous. The continuity of L follows as in Example
2.1 and it thus remains to prove the V-ellipticity (2.2), ie, the inequality

~
[S)
~

—~

2.18)

2.18)

from which (2.17) follows with 0.=%. Since v(0)=0 for veH)(I), we have
2

X X
v(x)=v(0)+ [v'(y)dy=[Vv'(y)dy,
0 0
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so that by Cauchy’s inequality

Squaring this inequality and then integrating over I we obtain (2.18). We note
that the inequality (2.18) does not hold for v(x)=1, in which case the left hand
side is 1 and the right hand side 0. Thus we need e g a boundary condition
of the form v(0)=0 for (2.18) to hold in order to control the norm of the

function v by the norm of the derivative v/, ie, we need a “fixed point” to

the ¢err ¢ pomnt

w
-
W
=3
1
2
3

[lu—uyllgoy<Ch
il hlH'(Q) s
if 1 ig emanth ananch
if u is smooth enough. O

Example 2.3 Let V=HL(Q), QcR2,

alv.w)=[Vv- Vw dx, L(v)= (fvdx
AR J v ahtd \"7 J AT RS
Q Q
where feL,(Q), in which case (2.5) is a variational formulation of the Dirichlet
problem (1.16) for the Poisson equation. We directly see that (i), (ii) and (iv)
are satisfied in this case. Thus, only the V-ellipticity, ie, the inequality

(2.19) I Vv|2dea(v,v)>aHv\|%{I(Q)Ea( [ (v3+|Vv[?)dx)
Q Q

requires comment. To prove (2.19), it is sufficient to prove that there is a

nnnnnn + 0 ok thas
constant € such that

(2.20) JvAx<C[|Vv]2dx  VYveH}(Q),

since then (2.19) follows with a= The proof of (2.20) is analozous to
since then (2.19) follows with a===~. The proof of (2.20) is analogous to
the proof of (2.18) (cf Problem 2.1 below). With the Vy, of Section 1.4 we

obtain the error estimate
[lu—un[u'(@)<Ch,
if u is sufficiently smooth. O
Exampie 2.4 Consider the foliowing boundary vaiue probiem
d*u
X

(2.21a) —=f for xel=(0, 1),
d 4
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(2.21b)  u(0)=u'(0)=u(1)=u'(1)=0,
where feL,(I) (cf Problem 1.5). We introduce the space
HAI)={veLy(I): v', v'eLo(D)},

Hj(D)=(veHX(D): v(0)=v'(0)=v(1)=v'(1)=0}
\jvith tpe.same norm. The problem (2.21) can now be given the variational
formuiation: Find ueV such that

a(u,v)=L(v) VveV,
where V=H3(Q),

a(v,w)=Jv'w"dx, L({v)=ffv dx.
1 1

We see that the conditions (i), (ii) and (iv) are satisfied. By (2.18) we have
for veH3(I)

and (iii) holds with a=%. o
We now introduce some notation that will be used below. We define
N0y — a‘ulv
Doy=

ax axge’

where here a=(ay, a2), a; is a non-negative natural number and |o|=0+ 0.
As an example, a partial derivative of order 2 can then be written as D% with
a=(2, 0), a=(1, 1) or a=(0, 2), which are the a with |a|=2. We now define
for k=1, 2,. . .,

HX(Q)={veLy(Q): D%el,(Q), |a|<k},
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with norm

I!VIIHk(g)=( > I|D“V‘2dx)”2.
Q

<
Thus the space H¥(Q) consists of all functions v on Q that, together with the
partiai derivaiives D% of order |a| at most k, belong to Ly(Q). The space
HXY(Q) is a Hiibert space wiih the indicated norm and corresponding scalar
roduct. The spaces HX(Q) are examples of so called Sobolev spaces named

after the Russian mathematician S. L. Sobolev 1908—, cf [Ad].

Example 2.5 Let us now consider a fourth-order problem in a two-dimensio-
nal domain Q, namely the biharmonic problem:

(2.22a) AAu=f inQ,

a " PETY . .
where 5— denotes differentiation in the outward normal direction to the
n

boundary T'. This problem gives a formulation of the Stokes equations in fluid
mechanics (cf Problem 5.3) and aiso modeis the dispiacement of a thin eiastic
plate clampcd at its boundary, under a transversai ioad (cf Probiem 5.4). To

................ 1 formulation of (2.22). we introduce the sp:

EIVC a variational formulation of (2.22), wen pace

H}(Q)={veH¥(Q): v———O on I}.

Now we multlply (2.22a) with veH3 §(Q) and integrate over Q2. By Green’s

formula as v—— 0 on I', we have
O 1

Jtvdx=J A Auv dx=
Q Q

—J1V(Au)\/vdx=—i

o
e

We are thus led to the folioy
problem (2.22): Find ueV su

a(u, v)=L(v) VveV,
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where v=H}(Q) and
a(u, v)=[Au Av dx, L(v)=[fv dx.
Q Q

égil..; see directly that (i), (ii) and (iv) are satisfied in this case and the
‘v -iilp ticity (iii) can easily be proved using the hints of Problem 2.2 below.
in Chapter

3 below we shaii construct finite element spaces Vi, H3 (). O
Example 2.6 Consider the following problem in a domain Q—R2:
(2.23a) —uAu+fy —+f32—+u f in Q,

(2.23b) PN
{2.23b) u=0onT,
where u and the f; are constants with u>0. This is an example of a stationary

convection-diffusion problem, the Laplace term corresponds to diffusion with
d\fﬁlunn coeffic

Aavieasioo

aerivatives correspond to convection
i

in the direction B=(B; us here assume that w=1 and that the size
of |B| is moderate (for convection-diffusion problems with [Bl/u large, see

Chapter 9). By multiplying (2.23a) by a test function ve V= Hi(Q), integrating
over Q and using Green’s formula for the Laplace-term as usual, we are led
to the following variational formulation of (2.23): Find ueV such that
(2.24) a(u, v)=L(v) VveV,

where

. - Qv jaty
a(v,w)=J(Vv: Vw+(B L +p, 2%
»—+v)w)dx, L(v)=
A % p 3 T v) gv dx.
iq Alana sloa L S PR T e . o -
is clear that a(. , .) is V-elliptic since if ve V, we have by Green’s formula:

é BI_VHSZ —V)dX fV2(31n1+anz)ds—

_I(V B1 _+V BZ-)dX"‘ f(61 a—v+ﬁv 2Y—V\(‘lx

X1 X2
ie,
(B i*‘ﬁz Ny dx=0
Q X1 ale ’
so that
a(v, V)=I[NV|2+V2]dx=HVH%ﬂ(n)
60

Existence of a unique weak solution of (2.23) now follows from Remark 2.1.
Starting from (2.24) we may formulate the foiiowing finite element method
for (2.23): Find up€Vj such that

(2.25) a(up, v)=L(v) YveVp,
where Vj, is a finite-dimensional subspace of V. If {gi,. . ., om} s 2 basis

for Vy, we have as above that (2.25) is equivalent to the linear system AE=b
where A=(a;j), aij=a(g;,¢;), and b=(b;), bi= (f,i). Note that in this case the
matrix A is not symmetric.
By the V-ellipticity it follows that solutions of (2.25) are unique and thus
A is non smgular so that Ag—o admits a unique solution, ic, there
i the same argument as in the proof of Theorem

existg a
SXi515 a

=

[

iiU—UhiiH‘(Q)SYHu—VHHi(n) VveVh. O

Example 2.7 Let u be the temperature in a heat conducting body occupying
the domain Q<R3. We have in the stationary case the following relations:

(2.26a) in Q, i=1, 2, 3, (Fourier’s law),

in Q (conservation of energy),

(2.26b) div g=f
where the g; denotes the heat flow in the xj-direction, ki(x) is the heat

Lact sesduction at x, If

conductivity at x in the xi-direction and f(x) is the heat production at x.
xeQ, i=1, 2, 3, ie, if the heat conductivity is constant and equal in

3,1¢e, the

inating g in (2.26), we obtam Poisson’s equatnon

(

o
[
=3

are not assumed to depend on the soiution u. if this was the case and the
i

~ ’\/\ ,,,,,, 13

conductivities k; depended on the temperature u, then (2.
example of a non-linear partial differential equation, see Chap ter 13 below.
Let us now give a variational formulation of (2.26) which in the usual way
can be used to formulate a finite element method for (2.26). This shows that
the presence of the variable coefficients k; do not introduce any difficulties.

We complement (2.26a, b) with the following boundary conditions:

(2.26¢) u=0 on Iy,

on Iy
on Iz,

61



where I'=T1UT; is a partition of the boundary I' and n denotes the outward

unit normai to I'. The condition (2.26d) corresponds to a situation where the
heat flow is given on I';.

multiply (2.26b) by veV and integrate over Q. By Green’s formula we then
get

[fv dx=[v div q dx=fvq-n ds— fq- Vv dx=
Q Q r Q

=/s ,_1k()°’—“ ov - dx- fgvds,

1% V

where the last equality follows from (2.26a), (2.26d) and the fact that v=0

on I';. Thus we are ied to the foliowing variationai formulation of (2.26): Find
ueV such that
(2.27) a(u,v)=L(v) VveV,
where
e ow
a(v,w)=J Zki(x) — dx
Qi=1 3x; axi

L(v)=[fv dx+ [gv ds.
Q r,

)

We easily verify that the conditions (i)—(iv) are satisfied under the following
hypothesis: There are positive constants ¢ and C such that

c=ski(x)<C, xeQ, i=1, 2, 3,

fel5(Q), gely(Ty), and the area of T'y is positive.
Starting from (2.27) we may now formulate a finite element method for
(2.26) by replacing V by a finite element space Vy=V. This leads to a linear

system AE=Db with stiffness matrix A=(a;;) with elements a,,—a(q},,(pj) where

., oM} is a basis for Vj. To find the aj; we have to compute integrals
involving the variable coefficients ki(x). In practice we may for this purpose
want to use numerical quadrature, ¢f Chapter 12. O

Problems
2.1 Let Q be a square with side 1. Show that

(Jvdx)12<(f| Vv|2dx) 12 VYveHY(Q).
Q Q
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2.

2.

N
w

2

3

Let Q be a square with boundary I'. Show that there is a constant C
such that

|{v||§z(g)sCé(Av)2dx YveH3(Q),

by using the boundary conditions v=-"-=0 on I and the fact that by
Green’s formula, on

. e o - . . OV o -

Note that if v=0 on T, then aiso é—v=u on T, where —
S

differentiation in a tangental direction to I'.

Give a variational formulation of the problem

=u"(0)=u'(1)=u"(1)=0,

o
=}
=3
(=%
=
(=4
=}
=]
7]
—-
hoe
=
—

K¢

g
=
)
19
]
=
=3
w
=
=
[
ou
[
=
o
o)
=2
=]
=
Qo
=
o
=

([v2ds)2<C|vlluq) VYveHYQ).
r

Using this result show that the linear functional L:H!(Q)— R defined
by
L(v)=[ gvds
r

is continuous if geLy(T), ie, if [ g2ds<co.
r

Give a variational formulation of the inhomogeneous Neumann
problem
— Au+u=f in &,
du
—=g onT
3n
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2.6

2.7

Fig 2.1

(2.28a)

(2.28b)
(7 75{(‘\

(2.28d)

64

and check if the conditions (i)—(iv) of Section 2.1 are satisfied. Give
an example of a probiem in mechanics that takes this form.

Give a variational formulation of the problem

. 2.8
— Au=f in Q,
yuw'——u =g on I
on
where v is a constant. When are conditions (i) —(iv) satisfied? Give an
interpretation of the boundary condition (which is sometimes referred
to as a Robin (or third type) boundary condition).
Consider the variational problem (2.27) with variable coefficients.
Suppose that € is composed of two parts £ and £, with common
boundary S (see Fig 2.1) and suppose the coefficients ki(x) are defined
bv
Y
Ki(x) = [»1  for xeQy,
|#2 for xeQy,
where the %; are positive constants.
— T
/4 i \
A Ko
2
/ Ky \X \
d
7o /S % /
a, 2
( s / 2.9
v/ \/
vt /A AN s AT el bs e okl Do PR
1 IS €ase (£.47) moucns bldllUlldly ncdat conaucuon lll amn lbUll pi \,
body composed of two materials with heat conductivity coefficients %1

and % occupying the regions €1 and Q5. Show (formally) that ueV
satisfies (2.27) if and only if

—%jAu=f in Qj, j=1, 2,
u=0 on I'y,
g-n=g on I
1 o “7
duy duy
% —=%p—— on S,
on an
Ju; L . L . ; ;
where —! denotes the derivative of uJ-=u|gJ in a direction n normal
+~ C
to S.

Notice that (2.28d) represents a balance of heat flowing between Q;
and £2;. Observe that this reiation is “‘automatically built in”” in the
variational formuiation (2.27).

Show (formally) that u is the solution of the variational problem

i o 1

1 if xel1=(0, =
xel=( ,2),

. 1

if xelb=(=, 1),
2

if and only if u satisfies

—k(x)u"(x)=1inI; and I,

dU1 du i
(2.30) u=up, 2— =z for x=—,
dx dx 2
u(0)=u(1)=0,
where uj= ull, i=1, 2. Then formuiate a finite element method for
(2.30) using piecewise linear f‘lnr‘hnnc Determine the correcnonding

nctions. Determine the corresponding
lmear system in the case of a uniform partition and give an interpre-
tation of this system as a difference method for (2.30).

Show that if u is the solution of the Dirichlet problem

23 Au=f in Q,

@31 u=0 onT,

shara :,r 702} 1 N2 a1 7 . ey : . P
where 1eip(dd) and $2cKRe, then p=\Vu 1s the solution of the
minimization problem

(232) Min 7 [lqPdx,
.......
Hf—{qu‘ div q+f=0 in Q},

73N

H ={q=(q1, q2): qiel2(€)}.

The minimization problem (2.32) corresponds to the Principle of
minimum complementary energy in mechanics. Starting from (2.32),
acing Hj by a finite-dim nal sub:

PRSI [P T
ICINIUIIal bullbpdk«C, Oner ldy construct l]nllC
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2.10

)
—a

66

-

element methods of so-called equilibrium type (for such a method the
equilibrium condition div q+f=0 wili be satisfied exacily in the discret,
modei). Methods of this type may in certain cases have advaniages

compared to the conventional finite element methods, m-called
displacement methods, that we have studied above (in a displacement
method for (2.26) the compatibility relation (2.26a) is satisfied
exactly). Hint: First show that peHj is a solution of (2.32) if and only

if

(I\

g

[ p-qdx=0 VqeHo,
Q
where Hp={qeH, div q=0 in Q}.
Solve Problem 2.3 with the following alternative boundary conditions:

u(0)=—u"(0)+vu’(0)=0, u(1)=u"(1)+yu'(1)=0,

give a mechanical interpretation

(2.33c) f udx=0.
Q

Note that if u satisfies (2.33
C, dnu Indl mc LUIlulllUll
variational formulation o

V={veH!(Q): [ vdx=0},
Q

3.1 Introduction. Regularity requirements

We shall now present some commonly used finite element spaces V. These
spaces will consist of piecewise polynomial functions on subdivisions or
“triangulations” Tp={K} of a bounded domain QcRY, d=1, 2, 3, into
elements K. For d=1, the elements K will be intervals, for d=2, triangles or

second order or fourth order boundary value Droblems respectively. Smce
the space Vj consists of piecewise polynomials, we have

(3.1) V. cHIOY V, —C0O)
3.1 VicH(Q) & VicCU(Q),
(3.2) VhcHA(Q) © Ve Cl(Q),

C%(Q)={v:v is a continuous function defined on Q},
Cl(Q)={veCYQ): DWeCQ), |u|=1}.

Thus, VycH!(Q) if and only if the functions veVy, are continuous, and
VpcH(Q) if an only if the functions veVy, and their first derivatives are
continuous. The equivalence (3.1) depends on the fact that the functions v
in Vy, are polynomiais on each element K so that if v is continuous across the
common boundary of adjoining elements, then the first derivatives D%v,
!a!_] exist and are mprewmp continuous so that V¢H1(0\ On the other
hand, if v is not continuous across a certain inter-element boundary, ie
v¢C%(Q), then the derivatives D%, |a|=1, do not exist as functions in Ly(£2)
and thus v¢ H!(Q) (if v is discontinuous across an element side S, then D%,
|u|—l would be a tuncuon supported by S which is not a square-integrable
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29 Qoo ave 1
J.2 DOIie exXampies O
Let us now consider some examples
me N2 itk o
1C N iul pu

domain in the pla
trianguiation of £2
following notation for r=0,

et ]

Thus, P1(K) is the space of linear functions defined on K, ie, functions of the
form

v(x)=agp+aiox1t+ao1x2, XK,
where the ajjeR. We see that {y1, Y2, Y3}, where

PY1(x)=1, Ya(x)=x1, V3(X)=xX2,

o sTr P e - s . S anntan tha
is a basis for Py(K), and that dim P;(K)=3, where dim W denotes the
dimension of the linear space W,
QIMCISIUL Ul ulv uuvar spavs vy
Further, P»(K) is the space of quadratic functions on K, ie, functions of the

form

vix)=ann+210X1+2a01Xo+a0X

(x)=agop+a10X1+ao1x2+a20
where the ajjeR. We see that {
that dim P>(K)=0. In general w

P(K)={v:v(x)= Z

H(K)=1 (x) ocinjc
and
and

(r+1) (r+2)
TN 7

dim P,(K)=~ 5
Example 3.1 Let o o
3.3) Vh={veC'(Q): v|[kePi(K), VKeThn},
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ie, Vy is the space of continuous piecewise linear functions that we have met
in Section 1.7. As parameters, or global degrees of freedom, to describe the
functions in Vy, we choose

(3.4) the values at the node points of Ty,

(including the node points on T'). Let us now convince ourselves that this is
a legitimate choice and show that a function ve Vy, is uniquely determined by
the values (3.4). This is of course intuitively quite obvious but let us anyway
carry out the argument in detail here, since it will be a model to be used in
more complicated situations below. We then first notice that if KeTy is a

triancle with vertices al. i=1. 2. 3. then the deor:
triangie with vertices a', 1=1, 2, 3, then the degr

corresponding to (3.4), ie, the element degrees of freedom, are

(3.5) the values at the vertices a', i=1, 2,
To show that a functlon vth is uniquely determined by the degrees of

t
dom (2 4) i is au £Faa to show
a 3.4) Show:

Theorem 3.1 Let KeTy, be a triangle with vertices ai=(a1f., azi), i=1,2,3. A
function veP(K) is uniquely determined by the degrees of freedom (3.5), ie,
given the values a;, i=1, 2, 3, there is a uniquely determined function veP;(K)
such that

(3.6) v(a)=q i=1, 2, 3.

Proof Since v(x)=cx;+cox;+c; for some constants ¢;

-------- c3 for som 1stants c;€R, (3.6) is equivalent
to the linear system of equations
(3.7) clajt+casrta=a;, i=1,2, 3,
in the unknowns ¢;. This system has a unique solution for given a; if and only
if the determinant detB of the coefficient matrix
if the determinan coefficient matrix

(3.8) detB/Z=area of K,

and thus detB#0. Hence B is non-singular, which proves the desired result.
Since this argument will be used below, we also give a somewhat different
of. We IIUULL lll'ST that



dim P{(K)=number of degrees of freedom (=3),

ie, (3.7) has the same number of unknowns as equations. In this case it follows,
again by basic linear algebra, that detB+0 if and only if solutions of (3.7) are
unique, or in other words if the only solution of (3.7) with ;=0, i=1, 2, 3,

is oiven bv ¢: =0,i=1,2, 3, or formally:
1 g1 by ¢ 1 2, 3, or formally:

(3.9) If veP(K) and v(al)=0, i=1, 2, 3, then v=0.

In fact it is easy to prove (3.9) directly without using (3.8), which shows that
we do not have to be able to compute detB in order to prove that detB+0.
As we shall see below, this latter method of proof makes it possible to easily
prove analogues of Theorem 3.1 for higher order polynomials in which casc
a direct computation of the determinant of the corresponding coefficient
matrix could be very complicated. O

We can now determine the (nodal) basis functions for P;(K) associated with
the degrees of freedom (3.5), ie, the functions AjeP(K), i=1, 2, 3, such that

fcoe T 2 1),
(8€€ rig J5.1):

. Lifisj .
Ai(al)=d;= {0 i BimL2,3

°

A function v{x)eP;(

3
.10) v(x)= 3 v(a;
) (x)= 2 v(

o~
[

To determine the basis functions A;, we have to solve the system of equations
(3.7) for three special choices of right hand side, namely, (1, 0, 0), (0, 1, 0)
and (0, 0, 1).

N . -

@ A, A s

1 3

N

Fig 3.1

The basis function A4, say, can also be determined as follows. Let

dix;+doxa+ds=0,

1{(x)=v(d1x1+daxa +d3),

>
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where the constant v is chosen so that Aj(a')=1. In the same way we may
determine A, and Aj3. If the triangie K has vertices at (1, 0), (0, 1) and (0, 0),
then Aj=x1, A\,=x; and A3=1—x;—x,. The notation A, A> and A3 for the nodal
basis functions for Pi(K) will be kept below

S IUNCUens I0r XS ) Wi O Spt OCiOw.

Given the choice of global degrees of freedom in (3.4), it is natural to
describe the space Vy, given by (3.3) alternatively as

2 11\
5.11)

7 VeI Y’

Vh={v: vikeP1(K), VKeTy, and v is continuous at the nodes}.

—

We then view a function ve V}, as a piecewise linear function taking on certain
values at the nodes of Ty. Let us be careful and check that (3.11) defines the

same space as (3.3) above. We need to check if a function veVy, according

1Q oy satie 1A = e s n_‘.. bt
to (3.11) is continuous, ie, if chO{Q) Clearly, it i

ie JRUSPRPE TE SPE I

S Sulllbltlll tO Cneck tnat
1
1

.1
CONnENIIANS a0TOS PS | SO P, cidac ML
continuous across all interelement sides. Thu

triangles in Ty having the common side S with the cnd points Ny and N, say.
Suppose now ve Vj according to (3.11) and let vi=v|g eP1(K;), i=1, 2, be the
restrictions of v to the K. Then the function w=v;—v; defined on S vanishes
at the end points Nj and N and since w is linear on § it follows that in fact
w vanishes on S. Hence, v is continuous across S and we obtain the desired
conclusion that veC(Q).

et K1 and K; be two

Example 3.2 Let us now show spacc Vi uamg pxcwwmc

Example 3.2 Let us now show how a
quadratic functions v, ie, vlgeP,(K). Let us first specify the element degrees
of freedom. Let KeT, be a triangle with vertices ai, i=1, 2, 3, and denote the
midpoints of the sides of K by all, i<j, i, j=1, 2, 3, see Fig 3.2.

-
>
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v(ai), i=1, 2 3,

(3.12)
v(al), i<j, 1, j=1, 2, 3.
Proof Since dim Pz('() is equal to the number of degrees of freedom (=6),

then v=0. To this end, consider the side aZa’. Along this side the function

1o P N AP RS It LIS SR a2 223
ion and v vanishes at the three distinct po: Oiiits @ , a

v has a quadratic varia
and a. Thus, (cf Problem 3.1) v vanishes identically on a23> which means (cf

Problem 3.3) that we can “factor out” the function A; and write

n o

where wieP1(K) and A;, 1=1, 2, 3, are the basis functions for P1{K) according
tf

1
3.

to Exampie 3.1. In the same way we see that v aiso vanishes along the side
ala3 which means that we may also factor out the function };, so that
)/ \2,
V=) Lo\ (o \ex . 7¢
v(x)=M(x)Aa{x)Wo, xeK,

where now wy has degree zero, ie, wop=y=constant. If we now finally take
x=alZ, we see that

0

@
=}
=
=
i
-

=2
o
®
=
[=9
=
(]
=
o

Il
(=]
o
=
=
o
el
=
(=]
o
=
@
[«
Q
3
=
o
=
o

3
(3.14) v= '):lv(ai))\i(Z)», 1+ 2 v(all)4rd;.
i=

i, j=1
i<j

RH, and left hand side, LH of (3.14) take the same values at the node pomts
al and all, since the difference LH-—RHeP,(K). From (3.14) it is clear what
the nodal basns funcuons for P2(K) correspondmg to the degrees of freedom

-2 w
.—.
» \.
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three distinct points on S so that w=0 on S.
Defining now

Vh={veC%Q): v|xePx(K), YKeTp},

we have seen that the global degrees of freedom of the functions veVy, can
be chosen as follows:

Fig 3.4

Example 3.3 We now define a space Vy, using piecewise cubic functions, ie,
functions v such that v|geP3(K), VKeTh. Let K be a triangle with vertices
i i=1, 2, 3, and define (see Fig 3.5):

aiij=§ Qai+al), i, j=1,2,3, i#i,

21123--2 (a'+a2+ad).
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Theorem 3.3 A function veP3(K) is uniquely determined by the following
degrees of freedom:

v(@), v(all), i, j=1, 2,3, i#j,
v(al?).

(3.16)  v(a)=v(ail)=v(a?)=0, i, j=1, 2,3, i#j,

then v=0. Observe that if v has a cubic variation along the side aZa3 then v=0
on a‘a’. In the same way it follows that v vanishes on the sides a'a3 and ala?
and hence

v(x)=yM()ha(x)R3(x),

where v is a constant. If we now choose x=al23 we get from (3.16)

. 1 1
Ozv(3123)='\{ - 2

3.6

io
g 3.

We can now introduce the space

Vi={veCUQ): vlxeP(K), VKeTh},
with the following degrees of freedom
@) the values of v at the nodes of Ty,
(i) the values of v at the points a'l on the sides of Th,
(iii) the values of v at the center of gravity for all KeTh.

Example 3.4 There is another way of choosing the degrees of freedom for
P3(K), where K is a triangle with vertices al, i=1, 2, 3, and center of gravity
a!23, We have

Theorem 3.4 A function veP3(K) is uniquely determined by the following
degrees of freedom:

v(a), i=1, 2, 3,
(3.17) @), i=1,2,3,j=1,2,
v(a'?).

Proof Since again dim P3(K) is equal to the number of degrees of freedom,
it suffices to prove that if veP3(K) and
(3.18) v(ai)=gl (a)=v(a1?%)=0, i=1, 2, 3, j=1, 2,
Xj
then v=0. It follows from (3.18) that

@(ai): al(a‘)s t
3s Xy X7
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where g‘—’ 1s the derivative in a direction s=(s, s). In particular we then have
s

where s is the direction from a2 to a3. Together with the fact that v(a2)=v(a?)
this shows that v vanishes along the side a%a3 since v varies as a cubic
polynomial along this side. In the same way see that v vanishes on ala? and
and tha o

ala
a‘a

n the proof of Theorem 3.3. O

We further note that if vie P3(K;), i=1, 2, where K; and K; are two triangles
with the common side S With endpoints N~:1 2, and vy and v, agree together

with the first denvatlves — (N ) and — (N) =1, 2, then vij=vy on S.
The corresponding fi _,_Aite element space V.L,:CO(Q) is given by

Vi={v: ‘v'\KEP3(K), VKeTh, and v and
v
Foo i=1, 2, are continuous at the nodes},
Xi

with the following degrees of freedom:

(i) the values of v an ,i=1, 2, at the nodes of Ty,

ox;
(i) the values of v at the center of gravity of each KeT,. O
Example 3.5 Let us now consider a finite element space Vj, satisfying the
condition V;,=C(Q). We will then work with functions that are polynomials

constructions are required to satisfy the Cl-condition.

of degree five on each triangle; with polynomials of lower deg gree, special

Theorem 3.5 Let K be a mangle with vertices a', i=1, 2, 3 and let aii be the
midpoint on the side alal, i, j=1, 2, 3, i<j (see Fig 3.2). A function vePs(K)
is uniquely determined by the following degrees of freedom:

3. <2,
G-19) g—(al) i, j=1, 2, 3, i<j,

a
where ;— denotes differentiation in the outward normal direction to the
n

boundary of K.

Proof S im PS('(\ nnnnnnn to

f Since dim P5(K) is equal to the number of degrees of freedom (=21),
it is sufficient as usual to prove that if all the degrees of freedom according

76

direction of the side a®a”, then

2
G20y = D= a0 i=2,3
S s 3s

Since v is a polynomial on the side a%a’ of degree at most 5, it follows that

v vanishes on aZa3. Further, ? is a polynomial of degree at most 4 on a%a’
n

V(X)=(7~1(X))2p3(X), xeK,

where p3eP3(K).. In the same way we see that we may also factor out (A(x))?,
i=2, 3, and thus

v=yA{A3A3,
where yeR. But vePs5(K) and the only possibility then is that y=0so that v=0

D%=D%, attheendpointsof S, ja|<2,
— = at the midpoint of S,

where ?— denotes differentiation in the normal direction to S. Then we have
on

the relations (3.20) and (3.21) for the difference w=v;—v; and it follows that

(3.22) w-"—f_o onS.
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where — denotes differentiation in the direction tangential to S. By (3.22)
oS
nd (3.23) we see the function v defined by vl =v; varies continuously across

a
S as do its first derivatives. _
We may now define the space VheCH(Q) as follows

continuous at the nodes for

a

of a collection Tp={K} of non- overlappmg
r x of one tetrahedron lies on a side of another
tetrahedron. As above, for =l, 2,. .., and KeTy, we define

P(K)={v: v is a polynomial to degree <ron K, ie vhas the form

v(x)= Z aumX1X’JX1’ anmER}
i+;+m<r

vh={veC0(s‘z): v|kePi(K), VKeTh},

and as global degress of freedom we may take the values at the nodes of Ty
points. 0O

finite elements that can

uare. Let then K be a rectangle with
., 4, and with sides parallel to the coordinate axis in R2.

Qi(K)={v: vis bilinearonK, ie, v(x)=ago+aox1 +agxa+anxixz,
xeK, where the ajjeR}.

It is easy to see (prove thls') that a function veQ;(K) is uniquely determined

by the values v(a), i=1,. . ., 4. Further, if K; and Kj are two rectangles with
the common side S anu‘ the functions v Ol(K,) gree at the endpoints of S
then vi—v,=0 on S since vi—v; varies i We may now define

Vi={veC¥(Q): vikeQi(K

assuming that T,={K} is a subdivision of Q into non-overlapping rectangles
such that no vertex of any rectangle lies on a side of another rectangle. The
values at the nodes may be used as giobai degrees of freedom.

~J
w

w7 b

We can aiso use pmynomldls of ﬂlgl’ler uegree on edcn rcctanglc. For
example we may choose

={veCY(Q): v|keQa(K), VKeTy},

where Q,(K) is the set of biguadratic functions on K, ie,

R
Qa(K)={v: v(x)= Z ajxx}, xeK, where the ajjeR},

£
o1 &

qul Clel bCUlI]Cl[y 1
is of interest to also consider more general quadrilateral elements. The
mpleer such element is nrf-qem‘ed in Problem 12.3 below in connection with

o-called isoparametric finite elements.

a ““finite

5
o
o
=.
0
3

L@
&

K is a geometric object, for exampl
AN i

a finite-dimensiona

>
o

a ge
a s¢

@

::.
a
02
=
a
a
w
=)
=
-
=
I
o
e
=]
3

such that a function ve Pk is uniquely determined by the
2. From Example 3.1 we have that (K, Pg, X), where

Ve K, &=, WA

K is a triangle,
I K=P1(K)

Z s the values at the vertices of K,

common fi

as follows:
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function values

o values of the first derivatives,
O values of the second derivatives,
/ value of the normal derivative,
- raliio AF slo nio oA Aol nbiern azv
7 vailuc O1 € mixcea acrivauve —— .
axlexz

Finally, Fig 3.8 indicates in the case of two dimensions the support of certain
basis function ve Vy, ie, the points x such that v(x)#0. The different cases
correspond to a value at a node, the midpoint of a side or a point in the interior
of an element. Clearly the support is always small and if ¢ and y are two basis
ted with the nodes Ny and N, then the supports of the

ap only if Nj and N, belong to the same element.

1T Ny and INp belor

b ov

& 16 Qs(K) c
—— 2 P1(K) CO
—— 3 P2(K) ol
o— 4 P3(K) c!
JOR
5N Ps(K) cl
—F—=
@
A/ \- 18 Ps’(K) c
@ ®© (see Problem 3. 7)
>
77 A D_ /W) ~o
\J/ h [ (V] (S
—/'{1—\—) 10 P2(K) co
~ {See Probiem 3.4)

Fig 3.7 Some common finite elements.

Degrees of freedom Degree of continuity
Geometry Function space Pk of corresponding
FEM-space Vi
A\
/ \ Q P1(K) co
/ N 3 P(K
:/ \: [ Pa(K) ce
/ “\ P3(K) co
~/_ * > 10 P3(K) co
4 Q1(K) co
° 9 Qa(K) co
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Fig 3.8 The support of different basis functions.
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Problem
ovlems v(al), ——(a‘) i=1,2,3, j=1,2
J

r . | 2,
3.1 Show that if veP{I)={v: v(x)= Z aix, xel, where 2;€R}, the set of
i=0 Sy
Lo v(aY), i, j= i<i 123
polynomials of degree at most r on the interval I, and if v vanishes at @), 1,j=1, 2,3, i<j, v(a'®).
r-+1 distinct points on 1, then v=0. Recall that if veP(T) and v(b)=0 Also show that the functions in the corresponding finite elemen
for some bel, then v(x)=(x—b)v P, are continuwous. .
3.2 Prove that if ve P{(K

33 Let K be a trlangle with vertlces al, i=1, 2, 3. Suppose t
¢

v(x)=Mm(X)wr-1(x), x€K,
where w;_1€P;—1(K) and A, is defined in Example 3.1.

34  Let K be a tetrahedron with vertices ai, i=1, . . ., 4, and let all denote
the midpoint on the straight line alal, i<j. Show that a function
veP;(K) is uniquely determined by the degrees of freedom: v(a'),

v(all), i, j=1,. . ., 4,1<j. Show that the corresponding finite element
space Vi SaLich Vi CHQ).

35 Determine the stiffness matrix corresponding to the Poisson equation

(1.16) when Q is a square with side 1 and we use the bilinear element
of Example 3.7 with h=—

et K be a triangie with vertices a' and let all,

es of K. Show that a function vePy(K) is uniquely determined
egrees of f 1 v(all), i<j. Consider the corresponding
finite element space V. Is it true that VhcH!(Q)? Can we apply the
theory of Chapter 2 in this case?

=
(=X
=

e
-
T
o
@,

id
d

g O

o
®

27 P v. .
3.7 Show that a function veP 5(K)={vePs(K): = is a polynomial of de-
n
gree at most 3 on each side of K} is uniquely determined by the degrees
of freedom D%v(a!), |a|<2, i=1, 2, 3, where the a' arc the vertices of

the triangie K

3.8

o
L8]



FEM. Error estimates for

4.1 Introduction
For a typical elliptic problem satisfying the conditions (i) —(iv) of Section 2.1,
we have by Theorem 2.4

lla=unflvs<y llu=vllv
a
Choosing v=mpueVy, to be a suitable interpolant of u and estimating the

interpolation error |ju—mpul|y we obtain an estimate of the error |[u—up|ly.
In this chapter we study the problem of estimating the interpolation error

|ju=mthully. The interpolant styue Vy is usually chosen so that the degrees of
freedom for Vy, agree for u and myu. In this case the prob!em of cstimating
llu—m wully is reduced to the problem of estimating u u individually on each
elemen KeT

We shalil first consider the case where V=H'(£) and V
VKeTy} where Th={K} is a trianguiati of i

finite element snace of niecewise linea
finite eiement space Of piecewise ea

1.7). For KeTy we define (see Fig 4.1)

7 <
=
z

,-\

1 a1 1 /e b1 A ~F W
hg=the diameier oi K=ine 10ngest sia€ Oi K,
ox=the diameter of the circle inscribed in K,
h= max hg

KeT,

To be more precise, we will subsequently be concerned with not only one
triangulation Ty, but a family of trianguiations {Tp} that are indexed by i

f4

parameter h. We shall below assume that there is a positive constant B
independent of the trianguiation Tpe {Ty}, ie, independent of h, such that

.1 h—“aﬁ VKeTh.

This condition means that the triangles K eTy, are not allowed to be arbitrarily
thin, or equivaiently, the angles of the mangles K are not allowed to be

arhwrardv small; the constant B is a mcasure of the s

..... the const i 18 a mcasure of the smallest dngle in any KeTy
for any The{Th}

Let Nj, i=1, . . ., M, be the nodes of Ty. Given ueC 0(Q) we define the

interpolant m,uth by

mu(N;)=u(N;) i=1,..., M.
Thus mtqu is the piecewise linear function agreeing with u at the nodes of Ty,
We will start by estimating the interpolation error u—muu on each triangle K.

We have the following result.

Theorem 4.1 Let KeTybe a triangle with vertices al, i=1,2, 3. GivenveCY(K)
let the interpolant mveP.(K) he defined bv
P tvePi(K) be defined by
A N AN /0N 1 A
\.2) avia’)=via’), 1=1, £, 5
Then
(4.3) [lv=avl[L.x)<2hg max|[DV||L k).
jaj=2
2
h
4.4 fuax ID4v—av)|L.(x)<6 —X max [[Dov]|L k),
= LK jaj=2
where
[WllL.k)= max [v(x)|
xeK
v _ - 1
T
/— --7 // :
N /]
R NN S T A
a' W ! /
V '\\ /Px // V
\ /
N S
Fig 4.1 i



Before giving a proof of Theorem 4.1 let us comment on the estimates (4.3)
d (4.4). We note that the size of the errors v—nv and D%(v—nwv) depend
on the second partlal derivatives of v; the larger these denvatxves are, themore

deviation v—av from the piane represen
the assumption (4.1) wiil be used in the es i

bl
1K/ CK-

Proof of Theorem 4.1 Let N, i=1, 2, 3, be the basis functions for P1(K)
described in Example 3.1. A general function weP((K) then has the

representation

3 .
wx)= = wlahh(x), xeK,
i=1
so that in particular
3 .
4.5) nv(x)= _2 v(a)Ai(x), xekK,

e by (4.2) v(a)=v(al). We now derive representation formulas for the
=1, using the following Taylor expansion at

errors v—mv and D%(v—mv), |

xeK:
2 9v
viy)=vix)+ = —&) G x)+RE ¥,
i=1 an
12 3
R, y)== = ——— () Gi—x) =%,
Zij, j=1 COXjUXj

is the remainder term of order 2 and & is a point on the line segment between

R choosing v=al_ we have

x and y. In particular by choosing y=2', we

(4.6) v(ah)=v(x)+pi(x)+Ri(x),
where
20V, i s o in
pix)= 2 —(x) (a;—%j), a'=(3ay, 42),
j=1 SXj N
Ri(x)=R(x, a').
Since

|a}—Xj|$hK, i=1,2,3, j=1,2,

86

we have the following estimate of the remainder term Rj(x):

(4.7 Ri(x)<2hg mgllD“VIILT(_K), i=1,2,3.
Now (4.5) and (4.6) combine to give

{4.8) avix)
We now need the following lemma whose simple proof is given below.

Lemma 4.1 For j=1, 2 and xeK we have

3
(4.9) s M(x)=1,
i=1
3
(4.10) _Elpi(x),’»;(x)=0,
iz
..... 39 3 3
(4.11) = —h(x)=— Z Ai(x)=0,
i=1 an axj i=1

By (4.9), (4.10) and (4.8) we have
av(x)=v(x)+ Z Ri(x)ki(x),
i=i

which gives us the following representation of the interpolation error:

Since 0<Ai(x)<1, if xeK, i=1, 2, 3, we can use the previous estimate (4.7)
of the remainder term R; to get

1 -
VIL.(K)» xeK,

proves (4.3).
To prove (4.4) we differentiate (4.5) with respect to x; to get
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anv AN

—() Zv(a‘) (X)

which together with (4.6) shows that
3 3

(4.13) g(x)=v(x)'2 —'(x)+ 2 p,(x) A (x)+ Z R(x) A (x)
oX1 i=10

Hence, by (4.11) and (4.1‘2) we have

3 .
V) = ¥ )+ £ R (x),
X1 ax1 i=1 9x1
which gives the following representation of the error ov _ Sy
axl ax1

av , 33N, .

—x)—-—x)=— Z Rj(x) — (), xeK

ax X1 i=1 X1
It is now casy to see {cf Problem 4.2) that

b aa 1 2
[S1¥] 1
(4.14) max ‘E—i(x) ] <—,
2 | 3x; ox

xeK | ©R1 I K

which together with (4.7) finally gives
h2

12 00~ )| < 62K ma Do -

|9x1 axy OK [af=2
In the same way we estimate 8__ - ? and thus (4.4) follows. The proof of

UAZ X2

the theorem is now complete once the lemma is established.

Proof of Lemma 4.1 The proof is based on the following observation:
(4.15) nv=v if veP(K),

follows from the fact there is a unique fun

of ¢ € cti el
assuming given values at the vertices of K. If we now choose v(x)=1in (4.8),

and further

88

pi(x)=di(aj—x1)+dxat—x2),
and Rj=0 so that by (4.8)

[dl(a —x1)+da(ab—x2)] Mi(x)=0 xeK.

T

This proves (4.10) by choosing d;=ZL_ (x), i=1, 2. Finally, (4.12) follows in

a similar way by choosing v=d;x;+d;x; in (4.13). This finishes the proof of
the lemma and the proof of Theorem 4.1 is complete. O

L.(K)-norm, it is not ideally suited to give estimates for [lu— m.u\lu
involving the Ly-norm. For this purpose we will use instead the followmg
analogue of Theorem 4.1. Here we use the following notation for r=0, 1,
2.,

Note that |v|g () measures the L,(Q)-norm of the partial derivatives of v of
order exactly equal to r, whereas derivatives of order less than r are not
included. We say that |- |y (q) is a seminorm. Since we may have |v|nr(@)=0
even 1t v#0 (eg it v=1 and r=1), 1t 1s not a norm.

4.1 there is an absolute

T (W) .
L <ChzIvlmx;,
hi 5
[v—av|1' (k) <C 2 [v[uk)
4.8

NET el T A [ E EUS T
YE SCC Udl 1neorem 4. 1 dIlU 4 L lldVC €X4dcClly e same
T

ructure, the only
x .
1€ L.~ norm. ror

)
a proof in the I..-case since we then avoid

dlflcrenw being the norm invoived, either the L. or
ta
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llu—rnullZ, )= KZTHU—M“”EZ(K)\K 2hicfulfe)

<24 S [ulZs = 2Ry,
<Ch* = |ulipk)=C*h"ulizq)
KeT,
s sy hg _1
and similarly using (4.1), ie, — < —,
ox B
- 11;4( 7 C2“]2< 7
4.16 u—my| Q)< C2 2l = ul 12
(4.16) Ju—my|HY (@) e hzl | (k) = [ul F2(x)
n UK L
C2h2, 12
= — |uIHZ(Q\
B2 (Q)
so that
PPN " no < Chy
(4.17) [[u=Thuj[H(Q)S F [ujH (@)=LnuiH (Q),
if the constant B is included in the constant C, and
74 10N 1 m —m2l
(4.108) [[U=ThU||L(Q)SLN7|U|HY(Q)
4 3 Internolation with nolvnamialg of hichar
<O ANMIErpeialIon wiinl poiynomia:s o1 nigner
Aarmenn
acgree

lull\/llUllb ll WE W

jork wml piecewise polynomiais of degree r=1 on triangu-
lations Ty, satisfying (4.1 he t

ypical case the following estimates:
(4.19) [|u—mpu||L2@)<Ch ™ iu]y/ (@),

(4.20) [u—sthul1(@)<Ch’u|g(@),

where the constant f is absorbed in the constant C in (4.20). If V,cH%(Q),
then we also have

(4.21) [u—mhu|2@)<Ch" !u| @)

Nt

o 4k 1 - P TR £ SRS
Note that for each derivative of th

1€ €IT0T U—7hu, the power Of I o1 tue rignt
hand side drops by one. Note that the constant Cin (4.19)—(4.21) only depends

90

on the constant f in (4.1) and the degree r, but not on the mesh parameter
h or the function u.

Remark 4.1 If u does not have the regularity required in (4.19) or (4.20), we

get the corresponding reduction in the power of h: For 1 <s<r+1, we have

A AN [ ISp— = ksl
\(*.22) [|UTJLhU[[L,(82)==A1 [UIH(82)»
" , o
(4.23) [lu—mhulln'(@) Hulp ). U

Example 4.1 Let {T;} be a family of triangulations Tp={K} of QcR?
satisfying (4.1) and let Vy={veC%(Q): v|xeP(K), VKeTy}. For the finite
element of Example 3.2 we may for veC%(Q) define the interpolant m,ve Vy,
by

mpv=v at the nodes of Tp,

mpv=v at the midpoints of the sides of T.

In this case (4.19) and (4.20) hold with r=2. O

(4.19)—(4.21) hold with r=5. O

4.4 Error estimates for FEM for elliptic probiems

Recalling again the typical abstract error estimate for an elliptic problem

and choosing here v=mpu with mhueVy, and interpolant of u, we have

(4.24) [lu—up|lv=Cllu—mpully  VveVy.
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Using estimates for the interpoiation error [ju—myujjy we then obtain

estimates for the finite element error ju—uplly. Using the interpolation
estimates of Sections 4.2 and 4.3 we have for example the following error

estimates:

Example 4.3 With V=H}($2) and (cf Examples 3.1-3.3)
Vi={veV: v|[keP(K), VKeTy}, r=1, 2, 3,
we obtain from (4.20) and (4.24)

1

{[u—up|[H(@)<Ch™uly (o)

for the finite element method for the Dirichlet problem (1.16). We obtain a

similar result for the Neumann problem (1.36). O

Example 4.4 With Vy, as in Example 4.2 we hav

of Example 2.5 the following estimate

fhe—unll @) <Ch*fuluie). O

Remark 4.2 1t is possible to prove analogues of (4.24) in norms other than
that given by the space V. For example one can prove for the finite element
method of Section 1.4 that (see [RS])

[1Vu=Vusl@)=Cl| Vu= V(o).
which together with Theorem 4.1 gives

(4.25) [[Vu=Vup|l_@)<C m

=
=

z
0

4.5 On the regularit

‘<
=)
H
\=-
(]
[}
el

. Let us now give

ng the error H.._“. Iy in th
a typical result that shows how the regu larn of the exact solution u depends

re
on the regularity of the given data. Let us then consider the Poisson equation:

o —Au=f inQ
(4.26) ’
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where Q is bounded domain in R2 with boundary I and f is a given function.
Let us first assume that T is smooth, ie, I is a smooth curve in particular

without corners or cups. In this case there is for s=0, 1,. . ., a constant C
independent of f such that

"1 - — 11
(4.27) Hulle @) =<Clifllir ),

ie, if feHS(Q) then ueH*2(Q), or loosely speaking, we “gain two deriva-
tives” in (4.26).

~F 1L

singularities at the corner even if f is very smooth (feHS(Q) for s large). More
precisely, the solution u of (4.26) with f smooth basically has the following
form close to a corner with angle o (cf Problem 4.6):

(4.28)  u(r,8)=r7a(8)+p(r,0)

A

7
Y=,
®

where o and f are smooth functions (here we use polar coordinates (r, 6) with
the pole at the corner). It is easy to see that if w>x then a function u of the
form (4.28) does not beiong to H3(Q) if a#0. On the other hand one can
show that (4.27) holds with s=0 if Q is a convex p:
........... if Q is a convex polygon main
v <)
fy w<m).

For the biharmonic problem (2.22) we have if the boundary I is smooth,
for s=0, 1,. . .,

case the corner angles satis

Example 4.5 For a solution u of the form (4.28) we have formally that
ueH%(Q) & derivatives DSu of order s belong to Ly(Q) &

S R ;
JIDsuf?dx ~ C [ [rV~)2rdr < .
Q 0

polygonal domain that fo any £>0

(4.29) [[u—un||x(@)y<ChY~#||u| s 1-+qy=ChY~¢,
where y=m/w and o is the maximal angie of a corner of I'. For example ify="5,
which corresponds to a concave corner of angle 3n/2, then
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4.6 Adaptive methods
If the exact solution u has e g a corner singularity, then it is natural to refine

the triangulation close to the corner to increase the accuracy. Recalling that
for the method of Section 1.4 (cf (4.16))

(4.30) lu—up|H'(@)<|u—mhulnte)<C[Z(hk|ulr2k))?] 2,

it is clear that we somehow would like to balance the size of hg with that of
|u|(k) and in particular choose hg small where |u|yk) is large. If u has the
form (4.28) with 0<y<1, then one possible refinement is given by (cf Problem

4.4)
(4.31) hg=Chd¥ ",

if hg<dg, where dy is the distance from K to the corner and h is the mesh

size away from the corner. With this refmement we have, disregarding the

e form (A 31

is of the order O(h ), i.e., the same as w1th a umform mesh of size h. Thus
in this case the refinement does not increase the total number of unknowns
significantly but significantly increases the precision (from (4.29) to (4.32)).

In generai the nature of the exact solution u 1s not known beforehand and
then it is not clear how to locally refi
been developed which do not require the user to supply information on the
smoothness of the exact solution. In these methods this information is instead
obtained through a sequence of computed solutions on successively refined
meshes.

To very bricfly descri
methods, suppose >0 is a given folerance
finite element approximation uy, such that

iha came o e hocin daoe ndadlo
be some of the basic ideas u 1Geinyi
a S

(4.33) ly—us lesteoy < &
522 i i O.
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Relying on the error estimate (4.30) we see that (4.33) will be satisfied if the
corresponding finite element mesh Tp={K} is chosen so that

d
(4.349) = (hlulig?~(2)?
KeT, C
ws: C]

To determine a mesh satisfying (4.34) we may proceed as follows: Choose a
first mesh Tp={K} and compute a corresponding finite element solution i
Usmg uh compute approximations to |u|n%®) denoted by |in|1(g) for KeTh
finfr*(k) may be obtained using difference quotients based on
‘\7E1h at the centers of gravity of K and neighbouring triangies
construct a new mesh T, ={K} by subdividing into four e

i DY subdvidin mie

triangles each KeTy, for which

hg|a 2> 2
(hgtn|12(k)) N(‘Z

@35 = (hfunlie) <(2)

KeTy

Note that by the construction if follows (if & is small enough) that for the final
mesh Th satisfying (4.35), all the terms in the sum will be approximately equal
Note also that after refinement of certain triangles, the resulting m
completed into a triangulation as in Fig 1.15.

It is also possible to control the error in other norms than the H!(Q)-norm
used in (4.33), for instance we may want to control the gradient error in the
Kimum norm. In this case we base the adaptive method on the error

estimate (4.25) and seek to find a mesh T,={K} such that

(4.36) ChK’m’axHDuuh“LZ(K) ~8 VKeTy,
lal=2

where as above [[D%pllL,(x) is a computed approximation of [[D%ull_k).
Again the final mesh satisfying (4.36) is constructed through a sequence of
successively refined meshes where triangles K for which the left hand side o
(4.36) is larger than 8 are refined. In Fig. 4.2 we give the sequence of meshes
(with azoom at the origin for the final mesh) obtained by applying an adaptive

method of this form with 6=0.1 and C=1 to the problem

Au=0in Q,
u=ugon I,



where Q={x=r(cos6, sinf): 0<r<l, 0<6<3w/4} with exact solution
u(r, 8)=r"sin(y8), y=4/3. In Fig. 4.3 we give the actual gradient error | Ve(x)|
as a function of the distance [x| to the origin along the radius 6=m/2. We

v equal to the tolerance and thus w!

ohaerve that tho gradiont arr, ig "n
5u| €qua: 10 tnd witrance

obscrve that the gradient error is 1o a
see that the adaptive method is able to find a good mesh in this case. This
example is taken from [EJ2], where theoretical and computational results for
adaptive methods of the indicated type are given, see also [E].

For adaptive methods for parabolic problems we refer to Section 8.4.4. For

JRNPL T, sdosioten oo MM IDAAL
another appluaul to adaptivity, see [BR], [BM].

/KNBAI/M\

2\
g
X

vavavAvAY g
vavavavAVaS
VAVAVAVAVAYG

=4

TOVIM —AZM=O>DE mC

o N T TS
rig 4.5 Graaient error

Vh={veH}(Q): v|KsP|(K Th} to the Poisson equauon (1.16) with Q
a nolvoonal domain then we hava $ha Fallai o oo

Poeygona: gomain, inén weé nave tne 1 Howin, g Cestimaie for the error u—up
in the HYQ)-norm:
in the HY(Q)-norm:
fA AN 1" "o N N 5
(2.57) [lu=un|[H' (@) <SChju|H Q).

This trivially gives the following L,(Q)-estimate:

(4.38) [lu—un|lL@)<Chlulizg).

On the other hand by (4.18) the interpolation error, u—mu, satisfi
second order estimate:

v prove that we have a similar estimate for |ju— Uh”LZ(Q) so that
ntity in fact converges at the opumal rate. We shall then assume that
the polygonal domain Q is convex (if Q ha
is not required).

o
@

£
<
]
=

Theorem 4.3. If Q is a convex polygonal domain and uy, is the finite element

solution of the Poisson equation (1.16) with piecewise linear functions, ie u up
satisties (1.20), then there is a constant independent of u and h such that

[lu—up||L ) <Ch?uliq).

(4.39) ale. vI=0 VYveV.
) (e,v)=0 V¥veV,,
where e:u—‘uh and the notation of (i.19) is used. We shail now estimate
A\ — II
(e, &)= €ILAQ) using a so-cailed duaiity argument which is often used in finite
elemem analysis (see also Chapter 8). Let ¢ be the solution of the following
). the solution of the following
auxiliary dual problem:
— ANo=eo i O
Agp=ec in Q,
©=0 onTl
Since Q is convex we have from (4.27) with s=0,
(4.40) 1ol ) =<CllellL o),
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where the constant C does not depend on e. Using Green’s formula and the
fact that e=0on I,

(e, e)=—(e, Agp)=a(e, p)=a(e, Pp—mP),

where the last inequality follows from (4.39) since m@eVy so that
ale. mn@)=0. Apnlving now the interpolation estimate (4.18) to @ and using
ale, mpe)=0. Applying now the interp
also (4.40), we find
llell?  o<llella o) lo—mnol ' @y=<Cllelln@hlole)
HellixaySllelln'(

Chllelln'@llellL,@)-

Dividing by |lell1() and recalling (4.37) we finally get

llellLy@)=<Chlle|ln'@)<Ch?*uln(e)

and the proof is complete. [

Remark 4.3 The basic stability inequality (2.6) for (4.26) states that

(411
(4.41

Z
3
N

where A is any constant such that
1
ILW)|=I(f, v)I<AllVIH(@) VveHy(RQ).
The smaiiest possibie choice of A is given by

5. V)|
(4.42) A= sup HI(“_V)|
VEH%,(Q) [IVIIH' ()

v#0

Clearly the quantity A defined by (4.42) measures the size of f in a certain
sense and in fact we may define a norm || - [|y~'(@) by
@i b= sp A0

' VEH%(Q) ”VHH’(Q)

v#0
- 1
This is the norm in the so-called dual space H™1(Q) of Hy(Q). Note that
PPN
i, v
Il @)= ‘i” )
vely(@) M@’

v#0

el

and since we take sup over a larger set, we clearly have that [ llLye) is a
stronger norm than || - iz (@), 1€,

It )< lfllL)-

By (4.42) and (4.43) it follows that the basic stability inequality (4.41) may
be written as
lulle=  [iflln@),
which formally corresponds to (4.27) with s=—1. O
Probiems
4.1 Let I={0, hj and iet mvePy(I) be the li linear interpolant that agrees with
veCO(1) at the end points of I. Using the technique of the proof of
Theorem 4.1 prove estimates for [[v—nv|r_q) and ||v'—(av)'||L_qp), cf

(1.12) and (1.13).
4.2 Prove (4.14).

w1 for Problem 1.5 and Exampie 2.4.

4.4 Prove that the total number of elements with a corner refinement of

T

the form (4.31) is O(h 2).

4.5 Determine a suitable refinement in case the exact solution has a
singularity of the form (4.28) with 1<y<2 and we want to control

7w 4 Ay st

Va=-V uh ||[ (@) via the estimate (4. 25), cf |EJZ].

4.6 Using polar coordinates (r, ), let Q={(r, 8): 0<r<1, 0<B<w} be
a pie-shaped domain of angle . Prove that the function u(r, 0)

=rYsin (v0), y=5, satisfies: Au=0 in Q, u=0 on the straight parts
®
of the boundary of Q.

4.7 Prove, by modifying the

[lu—up]y@y<Ch¥3-¢,
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(4.44)  (up, v)=(u, V) VveVy,

where (., .) is the scalar product in 1.5(Q). Prove the error estimate
1 s<inf lla—vll S L ([T
[lu—unllr,@<inf |lu—vllL@)<Ch" el @),
veVy,
and that
haplly cov<llully oy,
N8 == 11L,(82)

This chapter presents applications of the finite element method to some basic
problems in continuum mechanics of elliptic type. We first give suitable
variational formulations of the continuous problems.

E 1 Tha alac#ialés, bl

S.1 1€ S1aSucity prooscii

Consider a homogenous isotropic elastic body B occupying the bounded

Arnie O

—Tn3
domain Q<R

vith buuuu‘aly I" decomposed into two parts I’y and T2 with
B pUn Uy a VUlume lUdu I—
g;) n Ty, where the f; and g; are

and g; are

=

s
11

<

PSR
uic arca 2

=

: > 8
the components in the X dlrectlon Further, let us assume that B is fixed along
I'; (see Fig 5.1).

N\

P AN

z AN

a N
AV

1 S\

\\\ u(x)ﬁ’ \\\Q\\\«
-

2

— 4
&
k\

Fig 5.1

We want to determine the displacement u=(uy, uy, uz) and the symmetric

._.
o



du;
=3t ) BTkl
j(u) 3% ]
is the deformation (tensor) associate with the displacement u. Assuming that
Bis linearly elastic and that the displacements are small, we have the following

rCl llUl’l DCIWCCH stresses d.ﬂu ucwrmduons or cummuuve retauon (nooxe .\
lawj:

(5.1a) C’ij=)‘» divu oij+ueij(u),

where A and p are positive constants,

(5.1b)

together with the boundary conditions

(5.1¢) u=0 on I';,

£ 13\
J.1q)

—~

where n=(n;) is the outward unit normal to T.

where E is the modulus of elasticity (Young modulus) and v is the contraction
ratio (Poisson ratio) of the elastic material of B. O

In the remainder of this chapter the following notation for partial derivatives
will be used
v
V,i= T’ j=1,2, 3.
‘We shali aiso use the summation convention that repeated indices indicate
summation from 1 to 3. With this convention we may write the equilibrium
mmflnnc (ﬁ 1h\ as follows

102

~Oij,j
We will now give a variational formulation of the elasticity problem (5.1).
Let us then first note the following Green’s formula:

(5.2) i oijsij(v)dx='_[ oijniv,-ds—i oij,j VidX,

where the summation convention is appiied in all terms, ie, we sum over i

: ] 1
and j from 1 to 3. To show (5.2) observe that since ojj=0j; and eij(v)=§ (Vij
+vj,i), we have

i i
aijeii(V)= 503V, 05ivj,)= 3 (0ijVi,+0ijVi,)=Oijvi .

then have

[fividx=— [ 0y jvidx= [ 0y&;5(v)dx— [ ojn;vids,
Q Q Q I

1

the following variationai formuiation of the elasticity
a

a(u, v)=J[A div u div v+pei(u)g;(v)]dx, L(v)= Jt,v,dx+jglvlds
Q
\_/:{vg[Hl(Q\]3' v=0 on I},
L \==/1 “J
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Let us now check if the assumptlons (1)—(iv) of Section 2.1 are satisfied in only (no transversal loads). Assuming “plane stresses” (ie, 0j3=0,
(i iv) t only remains i=1, 2, 3) prove that in this case (5.1) is reduced to:

oij=A(er1(u)+exn(u)d+i ei(u), i, j=1,2,

3
IVIv=IIvlla@y=( = Ilvill Aray)2.

This inequality follows directly from Korn’s inequality: There is a positive
constant ¢ such that

(.5 Jeii(V)ei(v)dx=clV][§=c(vl oy + VI (0y)-
@ formulatlon of this problem and formulate a correspondmg finite
Wc notice in partlcular at (5.5) amounts to proving that the L,-norm of any element method. Determine the stiffness matrix in a problem with
n be estimated ¢ Lo-norms of the deformations simple triangulation and piecewise linear displacements. In Fig 5.2
binations of the v; j. Since (5.5) invoives aiso below we give the computed displacements using bilinear elements on
the Lp-norm on the right hand “'de we need I'; to have positive measure (cf the indicated triangulation for the above problem corresponding to a
Example 2.7). For a proof of Korn’s inequality we refer to [Ni] (the proof is thin plate fixed at both ends and subjects to a distributed load as
easy in the case I';=T, cf Problem 5.2). indicated. The Young modulus E is here different in the upper and
Now we are able to formulate a finite element method for our elasticity lower halfs of the plate denoted by I and II, with E being larger in II.

IR

prul)lcm Let then Th={K} be a Irlangulatlon of Q into tetrahedrons K as

Vh={veV: ije[Pl(K)P, VKeTh}.

Each component v; of a function veVy, is thus a piecewise linear function e T 1 "{3 -
vanishing on I';. We now formuiate the following finite element method for = 1 i = g
2N, 1 < - 7 = 1|
(9.1): FInd up€ Vy, such that A 1 —— _,: b 2
a(up, v)=L(v) VveVy. ; A N —4"4"'* 2
According to the general theory of Chapter 2 this problem has a unique iz 'I__ﬁ___:__ :____—-f— z
solution and by the interpolation results of Chapter 4 we have the following f +—— 1 Z
error estimate: Z
[lu—us/[1'(2)<Chlulnq). Figs.2
Probiems
5.1 52

Vi jvj,idx -Jvl ivijdx.

:
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The stationary Stokes equations for an incompressible Newtonian fluid with
v1scosnty W, encl seu in the domain @ <R?, and acted upon by the voiume ioad

oij=2u&ij(u)—p 8 in Q, 1i,j=1,2,3,
oy g I ) —1 7 1
—0jj,j=1i i 8, 1=1, 2,0,
div u=0 in Q,
u=0 on€, [
where o={gjj) is the stress, p the pressure and u={x;) the velocity. Eliminating
j; we obtain the following equivalent formulation
(5.6a) —nAu+pi=fi in &, i=1i, 2, 3,
(5.6b) div u=0 in Q,
(5.6¢) u;=0 onl, i=1,2,3

We now seek a variational formulation of (5.6). Let ve[H}(Q)]? be a test
function saustymg the incompressibility conamon div v=0 in Q, mumply

Au:
=—l[—a:vds+u_[Vu, Vv,dx+]pn,v,ds _[pv, idx
R S S
=uj V- Vvidx,
o)

since v;=

sin ;=0 on 0 in Q. Thus we are led t
variational formulation of the Stokes problem (5.6): Find ueV such that

D
"~
w

ddivy

5.7 a(u, v)=L(v)

where

L(v)=Jfividx,

Q
V= fvelalroyd. ai., o e
V—thlllo\}‘}] < Uiy v=u i éél.
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We can easily check that the conditions (i)—(iv) of S ectlon 2.1 are satlsfled
Note that in the formuiation (5.7) the prcsaur
comes from the fact that we are working with a sp
the incompressibility condition div v=0 is satisfied.

To formulate a finite element method for (5.6) based on the variational
formulation (5.7) we need to construct a finite-dimensional subspace Vy of
V. It turns out that this is not altogether easy since we have to satisfy the
condition div v=0 exactly For simplicity, et us consider the anaiogue of (5.7)

in two dimensi

v v,
1+,\2

3X1 ox2

V={v=(v1, v2)[H)(Q)]* div v= =0in Q},

where QcR2. By a standard result in advanced calculus it follows that if €2
is simply connected, ie, if Q does not contain any “holes”, then div v=0in

O if and 1o e
32 1I ana omiy 11

SN
v=rot q’)E' -_— ——cE'\
\ axz a

for some function ¢. More precisely (cf Problem 5.1), one has

(5.8) veVev=rot 9, peHA(Q).

ity field v.

iy In

with the ve
of H3(Q) e g constructed using

The function ¢ is the stream function connecte

Let now W}, be a finite-dimensional subspace o
the Cl-element of Example 3.5 and define

{v: v=rot @, ®eWy}
t P, PEWh;
rmulating a finite element method in the usual way by
Vh in {5.7) we obtain a discrete solution uy satisfying the
timate
[la—uy !l Ch#lulisio
12T Shiigig) =2 1210(8)

Chapter 11 gives other finite element methods (so-called mixed methods)

. PR PR, sl Qéloao Allaws (& £) not P
dal dlldlUguC Ul UIC DIWURCS PIUUICIAI \V-U) 1ut 1itqul
h t

satisfy the incompressibility condition exactly.

Py 1 : _ A

for the ‘lwo dimensior
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5.3 A plate problem
QcR?

Consider a thin elastic piate P with middie surface

with bot ludary I" and acted unon by th

i ang acied upoen 2y

=
<
o
=
g

>
=
o
o
2
£
=

We seek the transversal deflection u together with the moments gij, 1, j=1,
2, under the ioad f. Here oy is the bendmg moment n the dlrcctlon and

{5.9) Gij:)t/ﬁu (‘)ij-i-pxij(u), i=1, 2,

where A and p are positive constants, and

oxioxj
defines the curvature tensor. Further we have the following equilibrium
equation:
(5.10) Uij,ij:f in Q,
where again the summation convention is used.

To define the boundary cond e
normal to T, t=(t;, t2)=(ny, —n;) the tangent to T and define

s let n=(ny,

An
cu

a—=u‘jn,— (normal derivative),
n

108

0:

~

ou

o Uit (tangential derivative),
nn = 0jjnin; (normal moment),
Ont=0jjnit; (twisting moment),
SN Ot )
R(0)=0;j jnj+ T (transversal force).
Now let the boundary T be partitioned into three parts T, i=1, 2, 3, and

consider the following boundary conditions:

o Y
(5.11a) = on I'y (clamped),

an
{5.11b) u=0p,=0 on I'; (freely supported),

(5.11c) Onn=R(0)=0 on I'3 (free boundary).

Let us now give a variational formulation of the plate problem (5.9)(5.11).
Let veH%(Q) be a test function satisfying the essential boundary conditions

on

v=—=0U on Iy
on

(5.12) v=0 on I'y.

If we now multiply the equilibrium equat
Q, then repeated use of Green’s formula

(5.13) [tv dx=[o; Gijijv d x={o; Gij jiiv
Q Q r
B e e s
=) Gij,jnjv ds— J gjjn;v jds+ | oiju;j(v)dx.
r r Q
Since
v ov, .
vi= g nj+ -a—tli, i=1, 2,
we have

v v v av
GijnjV i=0ijnin; —+0,Jnjt, —;—onn n + Gm —
en ot

so that (5.13) can be written

(5.14) Joyni(v)dx= [fv dx— [a;; ;v ds+
Q Q r



If the boundary T is smooth, partial integration along I gives Problems
5.2 Prove (5.8).

5.3  Show that the analogue of Stokes equations (5.6) in a two-dimensional
simply connected domain Q can be formulated as the biharmonic
probiem (2.22) by introducing the stream function as unknown.

[oinii(v)dx=[fv dx+fom,¥ds—IR(0)v ds. 5.4  Show that the plate problem (5.9)—(5.11) takes the form (2.22) if
Q Q r om T Iy=T.

If we now use the boundary conditions (5.11) and (5.12), we see that the
boundary integrals disappear and on eliminating o;; also, by using (5.9), we

where

Q
T ()= (F, Ay
L{v)=Jfvdx,
Q
v
V={veH¥Q): v= ==0 on I';, v=0on I}}.
n

We immediately see that the conditions (i), (ii) and (iv) of Section 2.1 are
satisfied and it is possible to verify the V-ellipticity for example in the case

Remark The constants A and p in (5.9) are given by

,_ _Ea ., _VEa3
To12(+v)] T 12(1-v2)

where E is the Young modulus and v the Poisson ratio of the elastic material
of the plate. O
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linear systems of equations

Direct methods for s lvin_g

£1 Wendooo oot

V.1 1Toaucuoii

We have seen in Chapters 1 and 2 application of the finite element method
to a linear elliptic problem typicaily leads to a linear system of equations
(6.1) AE=b,

where A=(ajj) is a symmetric, positive definite and sparse MXM matrix, and
beRM. We also know that the unique solution EeRM of (6.1) can be
equivalently characterized as the solution of the quadratic minimization
probiem

To compute the solution § we can start either from (6.1) or (6.2). In this
chapter we shail study some direct methods, or methods based on Gaussian
elimination, for the solution of (6.1). In the next chapter we shall study some

minimization algorithms for the solution of (6.2) that may be viewed

equivalently as iterative methods for (6.1).

Remark Finite element methods for first order hyperbolic problems typically
lead to no

=2

symmetrlc lmcar systcms of equations, sce Chapter 9 below. In

t
methods for general classes of non-symmetric problems Thus for such
problems Gaussian elimination (with plvotmg, cf below) is often used. O

6.2 Gaussian elimination. Cholesky’s method

We recalii (c

cf
elimination to

any basic course in numerical analysis) that using Gaussian
s

olve IF\ 1\ we obtain a LU- fnrtnvwnhnn of A of the form

(6.3) A=LU,

where L= (1) is a lower triangular Mx M matrix (ie, I ;=0if j>i), and U=(u
is an upper triangular matrix (ie, u;;=0 if j<i), or dlagrammatlcally

[x | [xxxx ]
IXX 0 I l X Xee-.X
RS LS IS |
[ N IR

i |

From the factorization (6.3) it is easy to solve the system AE=b by using
forward and backward substitution to solve the triangular systems:

(6.4a) Ln=b,

(6.4b) UE=n.

We recall that U= A™) where the matrices A®), k=1, . .

that U -» M, are successively
computed as foiiows:

@) A=A,
(ii) Given AK®) of the form
W a0 |
®)= I 0 ol éx) ,
Alki= l : 0ay ..... aj, I
[o PR |
l V.ol Van ..., nn J
determine A(k+1)=(ag‘+”) as follows
ak+t) _ () i=1,.. .k, or
o i =1, ... k-1
(6.5)
k]
afth=a00 _ a® i=k+1,.. ., M, and
ij lJ (k) K] c ’ T
=k, .., M,
under the assumption that ai((lf()#().
We also recall that L=(/;;), where
hi= 1, i=1,...,M,
(k)
! = — i=k+1 M, k=1
l Nk s » M, =1, , M,
Kk
[ =0, if i<k.



One can show that if A is symmetric positive definite, the:
k=1, ..., M. Thus, Gaussian elimi
In addition, under the same hypoth

0 vent numerical instability due to too small pivot elements a(k).
we may perform the Gaussian elimination in any desired order. We will see
below that different direct methods for (6.1) essentially differ in the choice
of the order of the elimination, ie, the enumeration of the nodes in case we

pertorm the elimination accoramg to the oruermg of the nodes.

ination can be perform

1esis it is not

to prpvpnf num

Since A is symmetric positive definite we may alternatively factor A as
A=BBT,
with B=DL and where D is a diagonal matrix with diagonal elements
dy= ai((li((), k=1, , M,
and L and af(k) are obtained through the Gaussian elimination given above.

Here BT denotes the transpose of the matrix B. The elements b;; of the matrix
B can alternatively be determined using Cholesky’s method as follows:

=\/a1
vil AMad P 8 )
a1 _ <
b|1=:, 1=2,..., M,
Vil
and fae 129 LV ¢
ana 101 j=<, , IV,
- i71A -
2
bj,i=|lan' =z bjy Jl
k=1

it -
bij=(aij_k§1bikbjk)/bjj, i=j+1,...,M.

6.3 Operation

The number of arithmetic operatlons to obtain

A AA

M XM mairix (i e matrix / Z
M>3/3. If the matrix is sparse, then it is possible to greatly reduce the number

e R

of operations by using the sparsity. This is particularly easy to do if the matrix

A is a band matrix, ie, there is a natural number d, the band width, such that

iiowmg 1orm, where the shaded area indicates where

-zero elements may occur (some elements in the band may be zero):

3 g
S
=
[=F
3
)
=
=.
E
=
o
7
o
.:..
'—h

To factor an MXM matrix with band width d one needs asymptotically Md?/2
operations (cf Problem 6.1), which is much less than the number M3/3 for a

d is much smaller than M.

Example 6.1 Let us consider the following enumeration giving minimal band
width

5 10 50
4 9
v
3 g
2

A A AA A

6 1 16 21 2 31 36 41

>
[=))

=

n this case we have d=5 (assumin
»ach node ) With a horizo

a horiz

nta
nia



Example 6.2 1n a typical application with a uniform triangulation of the unit
square wit'n mesh size h and node enumeration according to Exampie 6.1, we
0(h-2) and d=0(h- 1)

j(h~!), and thus the work estimate for Gaussian
this case O(h"‘\ orO(M?). O

mination n th h™") or U(M*)
Nt that o oo d et A G e o A no ook s il ootk anTiieng o tha
INote that a bana matrix A is Storéa as a vector witin € g i€ Coumis in nc

PRSI SN 7 ARESUI S UIPUI SRPT RGNS NP, I
pand in consecutive Order. 1f A 1S aiso symmetriC tnén omy € g i upper

triangular part of A needs to be stored. Thus, if A=(a;) is a symmetric band

matrix with band width say 2, then A may be stored as a vector a=(a;) with
the elements a; corresponding to the matrix elements ajj as follows:

fas; a a 0 0 0]
az as az 0 0’

A= ] ag ag ap O |
Isym ag an al3|
| R

Remark 1t is sometimes convenient to allow the band width to vary from one
column to another. To store A in this case, we again store the columns of the
band consecutively in a vector a=(a;). We then also have to supply inforn

fo
concemmg the indices of the Uldg()ndl elemenis. As an cxamplc a matrix

hati
PUEIERUN
L A

Ma an o n n n n 1

aj az a4 0 0 0 0
e a4 a0 0 o

a3z as aj aio v v
' as ag ar 0 0 '
A= | a ap 0 0|
|sym a;3 a0 |

| ais  ae
al—”

can be stored as the vector (aj, . . ., a17) together with the list of indices of
diagonal elements (1, 3,6,9,13,15, 17) This is referred to as a sky/ine method

of storage. O
6.4 FillLin
WUe™ A RERATRAR

Using (6.5) it is easy to see that if A is a band matrix with band width d, then

so are the factors L and U in an LU- factonzanon of A. HOWCVC]’ the matrices

ndUUm
G

elements of A are zero. This is called fill-in. In the applications most of the
elements of A within the band are zero (see eg (1.25)), while with usual
orderings such as in Example 6.1, most of the elements of the factors L and
U within the band are non-zero. Thus, the f iz
non-zero elements than A and we have a considerable fill-i
enumerations of the nodes may give different degrees of fill-in, Vf
dissection method below. Notice that the density of the factors L and U
influence the cost of the backward and forward substitutions (6.4a, b). With
most of the elements non-zero within the band, as is typical with usuai

RSN

oruenngs this cost is u(ma).
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3
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We will now briefly consider some common v. ariants of Gaussian elimi-

tinm moreale sha P RN
1ion ac inéei

a £ro oA o d dioo o ar o I avel
1ation, nameiy tne jroil

I o d oo =T
[1]) ana rie. d dissection (Cr jue)).

Y
iination are carried out in parallel. Moreover, it is not necessary to store
the entire matrices A() obtained through the elimination process in the fast
memory, which may be difficult if M is large; instead it is sufficient at each
step of the elimination to store just a smaller part of AK®) in the fast memory
and communicate with a secondary memory only at the beginning and end

of each step

"3
"=
[¢
¢
C
s
I:

»
¢
§
i
¢
<

stlffness matrix assoc1ated w1th the Neumann problem of Example 2.1 and
the standard finite element space of piecewise linear functions on a triangu-

iation Th={K} with basis {@y, . . ., ¢m}. Suppose further that the nodes are
enumerated so that A is a band matrix with band width d<M. The frontal
method is based on the followino facte-
method is based on the following facts:
() The matrices A®), k=1, . . ., M, obtained through the Gaussian
elimination, are ali band matrices with band width d. To compute
AKk+D) with AK) given, we need to change the elemen sa(k by
subtracting the quantities
ao
%“ af(l;) for i=k+1, , k+d, j=k, k+1, . . ., k+d.
k)
ajy



In other words, to compute A®+1) it is sufficient to work with the
(d+1)x(d+1) matrix

k k
31(,1,) a\<f )lr+d
Bi=
*)
lak+d Keoon A+d, k+d

k)

%)
N

(ii) In the assembiy

ajj=Zak (i, ¥j),
1S

<]
=S

we d(_lu iﬂC LUl'lll']l)UllUnb dKl(‘)lv (‘)J) ll'UIl'l (ndnglcs l\ ill WlllLll D
node i and node j are vertices. Now, to eliminate the variable Ek,
ie, t p from A® to A(k+1) we only need I
matnx elements m column and row k fully assembled while the
matrix element aj; with i, j=k+1 may be modified at a later stage

by adding the contributions ak{®;,®;j) not yet inciuded.

From (i) and (ii) it follows that we may perform the assembly and elimination
in parallel. In step k with A®) given, we first assemble all remaining

SV SIS S O T TP [ RS T P
ouuons 1rom llldllleb l\ Wllll nouc K ad voricx, dia uicil we computic
)
7

usual way. In this case only the elements in By, the so-called
active area, will be modified. At the end of step k we store row k of A®) (or
AK+D) " which will be row k of the upper triangular factor U in the
factorization A=LU, in a secondary memory and then move the active area
one step in the south-east direction.

The line dividing the triangies with fuily assembied contributions and the

—
o

remaining triangles with not yet fully assembled contributions, is called the
front. The assembly activity takes place at the front and with a suitable
enumeration the front will sweep over the region Q in the combined
assembly-elimination. We now consider an example.

Example 6.3 Consider the followine trianonlation of the resion Q-
D Consider the followin, g triangulation of the region Q:
3 6

\\\BV

where the nodes have been numbered and the triangles are denoted by the
letters a-i. The corresponding stiffness matrix has the following structure
where x indicates non-zero elements.

active [x 1
area at X
step 1 X X

X X X X

<

>
MM M M

>

>

Step 1. Assemble contributions from triangles with node 1 as vertex, ie, the
triangles a and b. Eliminate node 1 (variabie &;) and store row 1.

Let x; den he el
following situation (note the fill-in: the element at locatnon 23 is now non-zero
corresponding to the fact that node 2 now is coupled to node 3 through the

eliminated node 1),

l"b
[v]



active x X _ X X ]
area at xi! x,—x_f_x_1~—"
step 2 xi: Xi X1 X1 i x
xil x1 x1 x1 x! x X
Lx___x_x| x
X X X X X
X X X X X
X X X X X
L X x x x|

6.6 Nested dissection
In the nested dissection method one uses an enumeration of the nodes
radically different from the ones we have used above. We illustrate the method

in a simple example with the finite element method of the previous subsection
on the following triangulation of the unit square :

15\1 \5 \2\\‘!6

17\ 7\ 9\ a\ 18
AR

19 \3 6 4 20

ANANANAY

21 N\J22 \]p3 N\J2a \[25

iangulation of £ subdivided into four

. .
A B
. .
c D

We then eliminate the inner nodes in each substructure, ie the nodes
ito4.

Step 2. We now combine A and B into one structure AB, and C and D into
one structure DC:

CD

W

oc)
G

e then eliminate the inner nodes in AB and CD, and combine AB
h .

0O

ints on ra ADOTY
ch CD into t ure AbCU:

and eliminate the inner nodes 7-9.
Step 4. The nodes 10-25 are eliminated.
121



Analogously, it is possible on more general triangulations to perform the

ion by successwe;y creating larger and larger substructures and

. ~dec +
i

ing inner nodes. Suppose  is the unit square with a uniform
triangulation with step length h/(P—1), where P=2P+1, p a natural number,
with M=P? nodes. One can then show (cf Problem 6.2) that the nested
dessection method requires 0(M?2) operations for LU-factorization of the
corresponding stiffness matrix A. This should be compared with the 0(M?)
operations needed using the usual enumeration and storing A as a band matrix
with band width M (cf Example 6.2).

The reason !hat the nested dissection method is more efficient in thi

son e nested dissection metnod 1s more efiicien

Probiems
6.1 Show that the number of onerationc t0 factar a MM mateie coieh b 3
thatihe numbder o operations (o factor a M XM matrix with band
width d, is of the order Md?/2
£ QL ~ Loos 4L _
0.2 Show that the operation count for the nested dissection method is
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7. Minimization algorithms.
Iterative methods

7.1 Introduction
In this chapter we consider iterative methods for the numerical solution of
minimization problems of the form

7.1 Min f(n),
neRM
where f: RM— R is a quadratic function
(7.2) fm=Ln. An—b.n
\r 7 ' 2 1 1 ”

with A a sparse symmetric positive definite MXM matrix and beRM. As we
have seen above, application of the finite element method to a linear elliptic
problem typlcally leads to a problcm of the form (7. 1) We know that (7 1)

P forea o ion EeRM eguiva lantly oharantariza d cqguat
aamits a unique solutio 5':1\ cx.‘unau:uuy characterized u_y the equation

Iterative methods for the solution of (7.1), or equivalently (7.3), play an
increasingly important role in finite element applications. A key fact making
iterative methods advantageous is the extreme sparsity of the matrix A in
standard applications. For a given type of finite eilement the number of
non-zero entries in each row of A is bounded independently of the mesh size.
f only the non-zero entries of A are stored, then to compute
An for a glven neRM takes O(M) operations (compared to O(Mz) if A is full).
We emphasize that to achieve the operation count 0(M) we may not store A
as eg a band matrix; only the non-zero entries of A shouid be stored, (cf
Remark 7.3 beiow).

We will consider iterative methods or minimization algorithms for (7.1) of
the form: Given an'initial approximation £ RM of the exact solutlon E, fmd
successive approximations EkeRM, k=1, 2, of the form

(1.4)  El=ghiaydk, k=0,1,. .,

123



where d*eRM is a search direction and ax>0 is a step length (note that the
summation convention is not used in this chapter). Different methods differ
in the choice of the search direction d* and step length ax. We will con51der
(a) the gradient method, and (b) the conjugate gradient method to
so- called preconditioned variants of these methods.

We use the following notation. Given a smooth function g: RM— R, denote

by g’ or Vg the gradient of g=g(v), ie,

e[ & % o)
b L) .
\om” amp anwm/
Further, define the Hessian of g to be the MXM matrix g'=(g, i), ie,
EE
| amp T o |
g'=
| o% g |
!—anManl ............ an !\21 _jl
For the quadratic function f of (7.2), we have
f'(m)=An-b, neRM,
and
f'(n)=A, neRM.

With EX*1 given by (7.4), we have by Taylor’s formula
2
PR N o1 + o o N -
B(E*T)=g(E") +axg' () - d*+=2d* - g'(m)d,

the elements in g”

It follows that if
(7.5) g'(E%) - dk<0,

then g(Ek+1)<g(EK) if oy, i suff

dkis a descent dtrectton for g if (7.5) ho]ds because then g wi ll decrease if
we move a §mall distance from EK in the direction dX. In particular, (7.5) holds
if we choose (see Fig 7.1)

(7.6) dk=—g'(g")

124

and if g'(EX)#0. In this case (7.4) corresponds to one step of the gradient
method or the steepest descent method for the minimization problem
min g(n). To choose the step-length ox we may, for exampie, determine oy
neRM

so that
g(E*+0oxd*)=min g(E*+ad¥),

a=0

one-dimensional /ine-search to minimize g in the direction d* starting from
EK. If ay is optimal, the d—i g(Ek+ad¥)=0 for a=ox so that (see Fig 7.2)
07 gEe-d=0
£
e
\\/ N
W~
\." \\/
N e S
2T T
\{ \/
\-/
T
1
1
/Q
ST T\ 2
((/C + Y ))
N QTN VY
X\_%k
/ S~
*1
Fig 7.1
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In particular, if g is the function f given by (7.2), then by (7.7)

0=1"(Ek+ o) - dk=(A(EK+ayd¥)—b) - d¥
=(AEk—b) - d*+ oy dk - AdK,

so that in this case oy is given by the following simple formula:

(AEK—b) - d¥
7. ax=—
7.8) TR AGK

Remark 7.1 Note that g'(E¥) is orthogonal to a level curve for g through &k
(a level curve for g is a curve y: [a, b]— RM such that g(y(t))=constant for
tefa, b], see Fig7.1). O

We will be particularly interested in the rate of convergence of the different
methods to be studied, ie, we will be interested in estimating how many steps
or iterations of the form (7.4) will be needed to reduce the initial error E—&°

Uy a certain facior. We wiil then see that the rate of convergence uepenus on
the condiiion number K\A} of A defined Dy.

(7.9) (A)—“m“*

where
Amax=max Aj, Amin=min A;,
j i

and A, j=1, . . ., M, are the (positive) eigenvalues of A. We assume that the
eigenvalues are ordered so that Aj<A,< . . . Ay, in which case of course

Amin=A1 and Amax=Am.
Example7.1 Consider the special case of (7.1) with A the 2X2 diagonal matrix
[m o]
A= | s
l 0 %3 J

where 0<A;<A; and b=0, ie, we consider the problem

S IR
(7.10) Min> (Ami+2am3),

with solution E=0. The level curves of f are in this case ellipses with half-axis
oroportional to V1/h; and V1/A,. The segue noe E0 gl ohtained by
proportional to V1/A; and V1/&;. The sequence £, £, obtained by
applying the gradient method with optimal step length to (7 10) is plotted in

1 U\ i 7
N Tt —
-
M

1
(/a2
1

o]
S
™
N

Fig 7.2. We see that as the condition n

umb 1a
curves more elongated, the sequence &7, El ., has a more pronounced
zig-zag and convergence becomes slower. O

The above ex.

of the condition number %®(A). We w1ll see that in a typical case when A results
from application of the finite element method to a second order elliptic
problem (such as e g the Poisson equation (1.16)), then

(7.11) %#(A)=0(h"2),

wharo ag 11guial h ig tha mach narameater Eor a nroblem of order four quich ag
winlic as usua: i is in meésn parameilr. r'or a proo:&m O Oralr iour sudln as
aotha L;Ln—mn“:n -\—l‘l‘\lgm %) ’3’7\ ana l‘nn il AY=(h—=4\ Th ha more nranica

€ g uiC oinarmonic proociCiii \«.24), ONiC ias Ay y=vin 7). 10 o€ oI piclist,

these estimates hold if the finite element mesh is quasi-uniform, ie, all
elements have roughly the same size (cf (7.44a) below), and if the usual
minimum angle assumption (4.1) is valid.

We finally conclude our preparations by recalling that

7 122) e MUAN
(7.122)  Amin= min 10,
neRM ||
n#0
-A
(7.12b)  hmax=max 10
€RM |Tj|°
n#0
[ IR = RS N B o R L [
whnere | - | denotes ine usual cuciiaean norir
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Further, defining the matrix norm

iBi: max ——t- |
neRM n]
n#0

for the MxM matrix B, we have by definition
(7.13) [Bn|<|B| |n| VneRM.

If B is symmetric with eigenvalues yy, . ., um, then we have (cf any basic course
in linear algebra):

(7.14) [B|=max |uj|.

W< Wi

g
with constant step length, ie, the method
(7.15) gk+l=gkygdk k=0
\ 7 -] ] £l

dk=—f'(£5) =~ (AE*—b).

Here o is a suitably chosen (sufficiently small) positive constant. The
appropriate size of o will become clear through the following analysis. Since
the exact solution satisfies AE=b, we have

(7.16) E=E-a(AE-b),

which after subtraction with (7.15) gives the following relation for the error
ek=g—gk:
(7.17) ektl=(I-aA)ek, k=0,1, ...

(7.18) \ek“|$|l—aA| e].

We would now like to be able to guarantee that

(7.19) [I-aA|=y<1.

so that (7.19) holds if and only if
l-ar>-1,j=1,.. ., M,

since the }; are positive. We thus conclude that o has to be chosen so that
OAmax<2. Choosmg now a=1/Ayax, which is close to the best choice, we have

) A 1
T-aA|=1-lmin =
Amax %(A)

with y=1—,L, and by induction
wWA) .

leX[<ve?, k=1,

Let us now estimate the number of steps n required to re
|e% by a certain given factor >0. That is, we seek the

na
A) ror reduction factor €. In
EM aDDllcatlo involving a second order elliptic equation we have

'rj

a typical
that %(A)=0(h~2) and in this case we would have n=0(h~ 2), ie, a very large
number of iterations would have to be performed.
By using an eigenvector expansion, it is possible to see more clearly why
the gradient method is not efficient if x(A) is large. To this end, iet yy, . .
WMGRM be the orthonormal basis of eigenvectors correspondine to the

e e

[t esponding to the
elgenvalues A, .., Aof A
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Expanding the error e¥ in the basis Y1, . . ., YmM, we have

k_ M K. Kok
er= z.eij, CJ-—C Wi,

and the relation (7.17) takes the form

(7.22) ek“—(l——L)e i=1, ..., M,

m
with a=lAmax. The relation {7.22) gives the error reduction for each
component clj‘ of the error ¢X. As the A are ordered in increasing order with
Amax=AM, we see from (7.22) that for j such that A>kmax/2 (ie for “big” j),

the corresponding component ek gets reduced by at least a factor '/ at each
step and a considerable reduction takes place. On the other hand, for “small*
j» A/Amax is much smaller than 1, the error reduction factor (I=Aj/Amax) is close
to one and the reduction is smali. Thus, error components ¢ for large j are
reduced quickly, while components eX for j small are only slowly reduced.

4 is that highly oscillatory components of the error
are quickly reduced whlle more slowly varying components only get slowly
reduced. This is because the eigenvectors ; for large j are rapidly oscillating
and for smalii j the y; vary “more smoot'niy“, cf Probicm 8 i.

ay of sam

the

oscillatory components of the error w s on
become small very slowly, and thus as a whole the gradlent method is
inefficient (cf Section 7.5 below on multi-grid methods where the gradient

method is put to very efficient use.)

The convergence properties of this method are similar to those of the gradient
method with constant steps just studied and in particular the required number
of iterations is proportional to x(A), cf Problem 7.2. O

130

7.3 The conjugate gradlen t method

We will now describe

p length
oy is chosen to be optlmal and the search dlrectlons dk are conjugate, ie,

(7.24)  di-Adi=0, i#j.

A
\Y
=]
=
7
2

and (7.24) can then be written
<di, di>=0, i#j.

The norm || [|a corresponding to <. , .> is the energy norm

[lnlla=<mn, n>12 neRM,

1, M- N HESESS

The cgnjugate gradient method can now be stated as follows: Given E0e RM
A k

and d’=—1", find % and d¥, k=1, 2, . . ., such that

(125d) == 4>

where

rk=f'(Ek):AEk—
If we compare with (7.8) we see that (7_25b\ means that o tima
note that the new search direction d¥*! is a linear combination of the ne
gradient r**1 and the old search direction dk Further, in view of (7.25c), the

condition <d¥*!, dk>=0 is equivalent to

is o

W,
VY

(¢}

£

<—rk+14 B, dk, dk>=0,

t

step in he dn.ilysls o




respect to all other previous search directions di, j=0, . . ., k (cf. [Lu]). We

. o sawhkasa o g o tha o
will need the following lemma, where we use the not.

M2 ..., n™]={neRM:n= X ap), ajeR}
j=0

=linear space spanned by 1/€R

I
=y
- =)

Lemma 7.1 For m=0, 1 ., we have s dm]=[l’0, e l’m]

rorm=u, 1, .. 1.

=[r0, Ar0, . . ., Am0].

Proof We use an induction argument. The stated equality clearly holds for
m=Lk. We first observe that

N Qi oo amsas thot thha amriality knlds for m=k. We first

m=u. OUPPUDC now tnat tné equaiity nd
after multiplication by A, (7.25a) gives

(7.26)  rti=rk+opAdE.
By the induction assumption, we have d¥e[r, Ar’, . . ., A%%] so that Ad*e
[r°, Ar® . . ., A¥*!%] which shows that

(7.27) [, . .., ][, AL, . . ., AkHILO).

On the other hand, according to the indu_ction hypothesis, we have {Afro-e[do,
k] so that Ak*t1r%¢[Ad?, . . ., Ad¥| which together with (7.26) shows

, d] s 8 e

that Ak+10¢[r0, . . ., rk+1]. I‘hus we have [17, ArY, . . ., ARFIO]c[rf, L,

k413 AN ko that F0 A.n Ak+1..01_f—0 k+11 Rinally

r¥*1} which by (7.27) shows that 1", Ar’, . . ., =", ..., r<7] Finally,

from (7.25¢) we clearly have that [1°, . . ., r*+1]=[d", . . ., d**1] and the

induction step is thereby complete. [

Lemma 7.2 The search directions d' are pairwise conjugate, ie,

(7.28)  <di, di>=0, i#j.

Further, the gradients r' are orthogonal, ie,
(7.29) =0, i#]j
Proof Suppose the statement is true for i, j<k. Since [d*, . . ., di]=[t", . . .,

1], by Lemma 7.1 we have in particular r* - di=0 for j=0, . . ., k—1, so using
(7.26)
rk+1. gk=rk. ditoy<dk, di>=0, =0, ..., k-1

But ay is optimal and we also have

sork+1.di=0,j=0, ..., k. Together with Lemma 7.1 this shows that "1 - fi=0
for j=0, . . ., k, which proves (7.29) for i, j<k+1. Finally, to show (7.28) for
i, j<k+1 we note that since Adie[r?, . . ., ri*1] by (7.26), we have by (7.29)

that <r¥*!, di>=0, j=0, . . ., k—1. Together with (7.25¢) and the induction
hvnothesis thuc nroves that
hypothesis thi proves that

<dk*tl di>=<—rk*+1 di>+B<dk, di>=0, j=0, . . ., k—1.

But we already know that <d*+1, d¥>=0 and thus we have proved (7.28) for
i, j<k+1. The induction step is now complete and the lemma follows since
the statement is clearly true for i, j<1. O

We can now prove that the conjugate gradient method gives the exact
solution after at most M steps:

Theorem 7.1 For somec m<M, we have AE™=b.
Proof By (7.29) the gradients ri, j=0, 1, . . ., are pairwise orthogonal and

since there are in RM at most M pairwise orthogonal non-zero vectors, it
foliows that r*=AE™—b=0 for some m<M. O

By Theorem 7.1 the conjugate gradient method gives, in the absence of
round-off errors, the exact solution after at most M steps. In our applications,
however, we will view the conjugate gradient method as an iterative method
and the required number of iterations will be mu
the convergence prope of the method, we fi

BEC il S g

have for k=0, 1,

—~

=}
=
"1

By the orthogonality (7.28) it follows that

<Ek dk>=<fg0 dk> k=01
<EX, df>=<El d¥>,| k=0,1,...

Using also the fact that AE=b, we see that for k=0, 1,
—rk. d“——(AEk —AE) - dk=<E—Ek dk>=<E-E0 dk>,

which shows that (7.

Thus, by (7.30) we have in particular
<E*-E di>=<g-E" d>  j=0,1.... k-1

w
w



But this is the same as saying that Ek—£0 is the projection of the initial error
E—EV with respect to <., .> on the space

Wi=[dY, . . ., d 1]
spanned by the first k search directions, and thus
(7.31) IE—EXlla= lIE-E"—(E*-E")[[a<|lE-E
Recailing Lemma 7.1 and the fact that r’=AE%’— AE=—A(E—EP), we see that
, ARIO=[A(E-ED), . . ., ARE-ED)].
Using (7.31) we thus have the following result:

Wi=[r’, Ar%,
Theorem 7.2 For the conjugate gradient method (7.25),

|'E—Ek'|A$’(Pk(A)(E—EO)HAgmé_IX Ipk()| [IE=Eolla,  VpkePi,
where Py is the set of polynomials pk(z)— z [5JzJ BjeR, of degree at most k
with Bo=1.

To estimate the reduction of the initial error ||[E—EC||4 after k steps, it is
by Theorem 7.2 sufficient to construct a polynomial px of degrec at most k

1is a Che
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it is sufficient to choose n such that y,<eg, or by a simpie computation, such
that

(7132 n=1VA(A) log

m [N

We thus conclude that the required number of iterations for the conjugate
i

UL Rt P, AS AN wobiol ol d b L
nethod is Propor tional to V n\n) which should be u)ulpulcu with

%(A) in the case of the gradient method. Thus, for ®(A) large, the conjugate
gradient method is much more efficient than the gradient method. In a typical
finite element application we have x(A)=0(h~2), and thus in this case the

reguired number o erations would be of the order ML =1 £ ol oo
required number of iterations would be of the order 0(h~!) for the comjugatie

gradient method and 0(h~2) for the gradient method.

Remark The subspace Wx=[r%, A0, . . ., Ak-19]=[d?, . . ., d*~1] is called
the Krylov subspace related to the con]ugate gradient mcthod (7.25). By

{7.31) we have that ||[E—EK]| 4 is the norm of the difference between the initial
error E-E0 and its projection on Wi. O

1
(7.33)  Min (un?+iand),
neR?

with 0<A;<<. Applying the gradient method with optimal or constant step
length, we have that the required number of iterations is proportional to
A/A1. Introducing the new variable {=(C;, &)=(VAm2, VAan), the prob-
iem takes the form

1 - -
] 1 Z L
(7.34) Min Z(§{+83).
CeRz <«
ndition number of the corresponding mairix is equai to 1, and the
method with optimal step length for (7.34) finds the exact solut

ust one iteration. This qhn ws that a suitable rhan_op of variables mav

s shows that a suitable char les may
reduce the number of iterations significantly. We see that the very elongated
elliptical level curves of (7.33) are replaced by the circular level curves of
(7.34). The possibility of reducing the condition number for more general
probiems by a suitable change of varxables corresponding to so-called

oning, will be discussed in

Problems
7.1 Show that By of (7.25d) can alternatively be computed as follows:
rk+1. pk+1
=
; K.k

7.2 Prove for the gradient method with optimal step length (7.8) that

g 13<a- Loy fen)3,
*(A)
by proving
[EMIR-IlEk IR _ rkerk rkerk
[BHIA Al A 135



7.4 Preconditioning

(7.36) Min [:cAc—B ..
teRM 2

The gradient method with constant steps a for this problem reads:
(7.37) cktl=gk—g(ALk-b).
The rate of convergence of this method depends on the condition number

#(A). If %(A)<<x(A), then the gradient method for (7.36) will converge
much faster than the same method applied to the original problem (7.35).
Before discussing how to choose the matrix E note that setting {=En and
multiplying by E~ in (7.37), we get
T]k+]=1]k—(1E_]E_T(AT|k—b).
Thus, setting C=ETE so that C-!=E~'E~T, we see that (7.37) corresponds
to the following method for (7.35):

(7.38) nktHl=nk—aC-1(Ank-b), k=0, 1,

We say that this is a preconditioned version of the usual gradient method for
(7.35) with the matrix C being the preconditioner. To compute n**! from
(7.38) for a given n¥, we have to solve the system

Cd=(Ank-b),
(note that we would not explicitly form C~1).

o T

e can HUW state the UDVlOubly desired properues of the mairix C=E'E

—TAam-1\

(I'C(,dll that 1'\ ETAE *)

=
£
i
T
]
=
>
t
I
N>y
A
A
A

(7.39b) the system Cd=e can be solved with few (0(M)) operations for
a given right hand side e.

Suppose that C=ETE is the Cholesky factorization of C, and hence E is upper

trianguiar. Then (7.39b) wili be satisfied if E is essentially as sparse as A, ie,

if the number of non-zero entries in each row of E is bounded independently

fy (7 30a) the best choice wouldbe C=A

the other hand, to .392) the best ch

with ETE the Cholesky factorization of A, in which case ®(E"TAE~!)= 1
However, with this choice the matrix E is not as sparse as desired (cf the
discussion of fill-in Section 6.4), and (7.39b) will be violated. With this
background we are led to try to construct C=E'E such that E is sparse and
ETE is an approximate Cholesky factorization of A. We may require E to have
a sparsity structure that is similar to that of A; for example we might allow
an element e;; of E to be non-zero only if the corresponding element ajj of
A is non-zero. To obtain an approximate factorization ETE of A with this
structure we may perform a modlfled Gaussian elimination where non-zero

lem tha allnlantine meA~acg Cefn o
the at “forbidd

ions are

(<R
o
:}

nnnnnnnnnnnnnnnnnnnnnnnn fon_~alla

buﬂpy leldLCu Uy zeros. Such modified elimination Processes (so-cauca
incomplete factorizations) only take 0(M) operations and result in approxi-
mate factorizations with corresponding considerable reduction of the condi-
tion number, (e g, *(E"TAE~1)=0(h~!), see [Ax], [Me]).

7 E Naléigeid
7.9 IVIGIUgria

Recently a class of methods for our typical system of equations (7.3) have been
developed that are opnmal in the sense that the required number of operatlons

dex DN
acr v\xv’{),

P ad iaaot [PSroN ,l,-“..
requircea Jubl 1o write Gow

Upllllldl blll\rC llllb amoun .
These methods are the so-called multi-grid methods (see eg [BD]. [Bral,
[Hac]). A multi-grid method is an iterative method where one uses a collectio
of successively coarser finite element grids.

To give an idea of the basic features of the multi-grid method we consider

tﬂc b[dnudru llnllc clcmclll IllClllUU Ul D(:LllUll l ‘Q on a llldllguldllUll lh
ding each triangle of a coarser triangulation Ty, into four

i
|
)
)
3
)
>
)
i
i
a2
z
o
r

@

s 1 .14, Let the correspongding finite element spaces be Vy
and V2h Then the corresponding matrices Ay and A, have dimension MXM
and (M/4)x(M/4), respectively. Assume that we want to solve the system
ApE=Db, and to start with assume that the system Ayn=d for a given d can
be solved in 0(M/4) operations. A step of the multigrid method ieading from
a given approximation EXeRM to an improved approximation E¥*1eRM now



consists of two substeps: a smoothing step and a coarse grid correction. The
smoothing step consists of m usual gradient steps:

(7.40) ntl=ni-a(Ami-b), i=0,1,..., m-1,
with a suitably chosen (cf Section 7.2), and n=Ek. This step gives the
1
+5
approximation § “=n™. The coarse grid correction is obtained as follows:

Let €V, be the solution of the problem
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where u 2eVy, is the finite element function with nodal values g 2
M

at other nodes are obained
t

I
f)
=]
o
&
w
=X
=
a
e

0(M/4) perations by assumption.

To sum up, a multlgnd step leading from EX to Ek*+! consists of a simple
smoothing step together with a coarse grid correction requiring few oper-
ations. Under suitable assumptions one can prove that there is a constant C

_______ 13 1

independent of € and k such that
it _gk+ij< g gk
je-gerij< Sje-gv,

which proves that for m sufficiently large each multigrid step reduces the error
significantly.

The algorithm is now applied recursively so that to solve a problem of the
form A2h7]=d in the step described above, we invoke a coarser grid with
Co ucbpuuulug matrix A4h, assummg that Tlh iS Obtained as above by
refinement of the corser grid Tyy. This gives a procedure where we work on
a sequence Ty, Ton, Tan, Tey, . . ., of successively coarser grids ending with
a coarsest grid for which the corresponding linear system can be solved by
direct Gauss elimination with few operations. One can show that this
combined process wili give a solution of the original matrix problem A,E=b
in 0(M) operations.

T

the following: In the smoothing step the high frequency components of the
error (corresponding to large eigenvalues) are significantiy reduced. This fact
is easy to understand from the analysis of the gradient method in Section 7.2

ST tha anarea orid carractian the low and medium fanllP[\r‘\l
above. Further, in thc coarse gnia correction tne 10w ant medium Irequenic

components of the error are also significantly reduced and thus in each
multigrid step all components of the error are reduced significantly.

7.6 Work estimates for direct and iterative
methaods

azavenaUNeS

(7.42)  AE=b

by direct and iterative methods, where A is a sparse, symmetric and positive
definite MxM matrix. We then suppose that (7.42) is related to a second order
elliptic probiem in R¢, d=2 or 3. In this case M=0(h"¢) and the condition
A)=0(h~2). We further assume that in the preconditioned variants

radient method the c.gnd tion number is reduced to 0(h~1).

number x(

u;
of the coni
of the co

Also, in the Cholesky factorization we assume that A is stored as a band matrix
with band width 0(h~9+1). With these assumptions we have an asymptotlc
0(M®) s

work estimate for the solution of (7.42) of the form O(M%), where the
exponents o are given by:

J
oate
gaie

a3

Band-Cholesky: factorization

back-substitution 1.5 1.67

Nested dissection: factorization 1.5 2
back-subst 1 1.33
Conjugate gradient 1.5 1.33
i 1.25 1.17

1 1

Clearly, the multigrid and preconditioned conjugate gradient method have

the most favourable exponents and for M large enough wiil be superior to

band-Cholesky and nested dlssectlon This holds particularly for d=3.
o .

S SR b
noOwcEver, uic



considerable overhead to organize the computations while band-Cholesky
requires littie overhead. Thus, for a given M it is not clear which method would
require the least total cost, and of course this cost also depends on the problem

and on the implementation of the particular method

............................. 1 of the particular method.

We also note that one sometimes wants to solve the system AE=b many
times with the same A but different right hand sides b. For example we may
want to compute the stress distribution in an elastic body under various loads.
In this case we may factorize the matrix A once and for all and then only a

totically inferior t
methods.

To sum up we may say that, roughly speaking, band-Cholesky may be used
for coarse to medium fine discretizations in two dimensions whereas iterative
methods multigrid or preconditioned conjugate gradient type wouid be
advantageous for large three-dimensional problems and for very fine dis
tizations in two dimentions. Let us r
valid at least on well-structured problems w1th coefficients that are not varying
too much and using e g quasi-uniform finite element meshes. For problems
with highly variabie coefficients and very complicated solutions it may be
difficuit to find iterative methods with good convergence propemes and in

h cases Gai

lower mangular part of A ordered row by row, together with a vector
ac=(ac(i)), with ac(i) the number of the column in A containing the element
a(i), and the vector ad=(ad(j)), with ad(j)=i where a(i)=ajj. As an example,

r
1

[an ]

| apz  ap sym l
A= I 0 ap azp | ,

a0 a3 ag I
= 0 as3 0 ass )
men we have

a=(ay;, 212, 222, 232, 233, 241, 843, Gdds 851, 853, as3),
ac=(1,1,2,2,3,1,3,4,1,3.5).,
ad=(1, 3, 5, 8, 11). O

Problem

7.3 Determine the asymptotic work estimates corresponding to Fig 7.3 for
a fourth order elliptic problem.

7.7 The condition number of the stiffness matrix

If A is the stiff s matrix related to an elliptic probie f order Zm, then
the condition number »{A) is under suitable conditions estimated by
(7.43) #n(A)=0(h"2m).

Let us prove this result in the standard case m=1, A=(ajj), aij=a(@i, ¢j),

a(v, w)=JVv- Vw dx,
Q

with @y, . . ., @M, the usual basis for Vh={veH}(Q): v|kePi(K), KeTy},
where Q<R?. This is the case studled in Section 1.4.

fi llUWllls conditions:

1 N
of h=max hg such that for all KeTy, The{Th}.
KeT,

(7.44a)  hg=Psh,

PN OK _ ~
(7.44b) ==,
K
where hg and gk are defined as in Section 4.2. The condition (7.44a) states
that all elements K of Ty, are of roughly the same size. Such triangulations

are said to be quasi-uniform. . 7 )
We recall that the bilinear form a(. , .) is Hy(€2) — elliptic, ie, there 1s a
positive constant o such that

(7.45)  a(v, v=alvllfiq VveH{(Q).

The estimate (7.43) with m=1 will easily follow from the following result:

Lemma 7.3 There are constants ¢ and C only depending on the constants f;
in (7.44), such that forall v=i1 ngieV
(7.46) Chn<|v|[>< ChZn},
(7.47) a(v, v)= [| Vv|[2dx < Ch~2||v|[%,
Q

where ||v||=]

Remark The estimate (7.47) is a so-called inverse estimate; here we estimate

the Lo-norm of the gradient of v in terms of the Lr-norm of v itself. This is
141



not possible for a general function v, but it is possible for the functions v in
V. at the price o rh-1 0O

Vh at tqae price ¢ -

"h

the facto
the facto

We postpone the proof of Lemma 7.3 and show how to prove (7.43) using
M

the lemma. We recall that ifv=_§ Ni%i, then

a(v, v)=n-An,
so that by (7.46) and (7.47)
n-An_a(v,v) _ . vl
= L < =
P> P mf?
On the other hand, we have by (7.45) and (7.46) since trivially ||v||y;:

/

(7.48)

-An  a(v, v [Iv]I?
nl 17n = (l 12 ) 20’ ‘! |\L

m- mr mr
Together, (7.48) and (7.49) prove that there are constants ¢ and C such that
Amax<C, Amin=ch

(7.49) =Cah? VneRM,

which gives the desired resuit x(A)=

Remark 7.4 Note that it is natural to scale the matrix A, by multiplying with

a constant of order 0(h™2), so that Amax=0{(h"2) and Amin=0(1) (cf (i.25)).

WlIl‘l this scalmg A wili be a discrete coumerparl of the Laplace operator with
eigenvalues ranging from 0(1) to O(h~ 2\ (recall that the eicenvalues of the

alues ranging from (recall the eigenvaiues of the

Laplace operator on a bounded domam lle in the unbounded interval (A, =)
for some positive A. O

Let us give

Proof of Lemma 7.3 1t is sufficient to show that for each triangle Ke Ty, with
vertices ai and veP(K), we have

o~

0

=
o

M
=
P=§

w
-~
s

A
=
e

IV\

(o)

=

s

3
: 2 [v(ah)]?
(7.51) j| v|2dx < Chg [ |v[2dx,

K

with ¢ and C independent of K and v. From these estimates the desired
estimates (7.46) and (7.47) directly follow by summation over KeTh,.
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We first show that (7.50) and (7.51) hold when K=K where K is the reference
triangle with vertices at (0. 0). (1. 0) and (0. 1 in a (&:. &) - plane (see Fig
triangle with vertices at (0, 0), (1, 0) and (0, 1} in a (%X;, &;) — plane {(see Fig
721 nf’i. ha the uenal hacic functiong of P.(K) and dafina
7.3). Let A; be the usual basis functions of Pi(K) and define
£ AN _ (1T 01200
nm=Jvyv-ax,
K
£ /AN [aDaa
12\” = v ax,
3
K
A A
where f)=(1l1, 2, 13) and
3
AlD AR s r
V(X)= Z Niki(x) %eK
=1
We chserve that £ and §> are continuous functions of neR3. We now consider
We observe that fj and f; are continuous functions of 1eR°. We now consider
tho augtiont
the quotient

(752) B)<C, feR%, H#0;
i d

ie, the function f3 is homogeneous of degree zero. It is thus sufficient to prove
thot Far cnman nnmatant (O

that for somc constant C

(7.53) f()<C  eB,

fg(f]) 0 for nEB) and B is a closed and bounded set in R3, and thus f3 has
a maximu

n R AN £
. llllb plUVCb \I JJ} auu lllub \I JL} ana \I 21) I01IOW lll lIlC

e K=K. In the same way we can prove (7.50) in this case.

t now remains to prove (7 ﬁm and (7 ﬁﬂ for an arbltrary trlanu,e ,,ETh
For simplicity assume that K is a tnangle w1th vertices at (0, 0), (h, 0) and
(0, h) so that hg="V2h and let the mapping F: K— K be defined by (see
Fig 7.3)

x=F(%)=(h%y, h%), %eK.
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F (0,h) N

Fig 7.3

Given vePy(K) we now define
(7 SAN <
(7.54) v
Ciearly we then have ¥e€P1(K). By
v \ .
v _ v 9xg +ﬂl_ a)fz a_h i=1.2.
9% 0Ox; 0% Ox2 O%  OXi

and so V9=hVv. Since dx=h2dx, this gives

{1V v2dx= [h~2| V¥|2dx= [| V9[2d%

K K K

<C[¥2d&=C[v?h~2dx=Ch~2[v3dx,
& K K

hnally, 1t K is an artmrary triangie, then we intro
F- K 5K that maps K onto K:

S-S nat

where al are the vertices of . Arguing now as in the above special case and
] —~1 ~ PR ~ 2 T AAN e tOWwW

using the facts that |a'—a’ 1|<Chg, i=2, 3, and dx=ChgdR by (7.44), we now
i case (cf Problem 7.4) and the proof

Remark The technique of working with a reference element K and linear
mappings F: K— K that map K onto the triangies KeTy, is very important

also from a pracncal point 0fv1ew In this way itis often possibie to use asimpie
f a ceneral element K from the

i gene

transformation to obtain
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stiffness matrix of the reference element K. This is important since the direct
computation of a stiffness matrix may require a not-negligible amount of work
and the element stiffness matrices of all elements KeTy, have to be

determinad m
determined. O
Problems

7.4 Complete the proof of Lemma 7.3.

7.5 The condition (7.44a) stating that all elements have the same size can
be relaxed. Prove without using (7.44a) that the estimate %(A)=0(h"2)
may be replaced by

%(A)=0(h,2) where hpi;=min h.
KeT,

(up, v)=(u, v)  VYveVy.

In matrix form with the basis {¢y, . . ., @m} for Vy, this problem takes
the for

o h o
the form BE=b, where B={by)), b bij= (@i, ¥j), b=(by), bi=(u, @;). Prove
that B is positive definite. When Vy, is piecewise polynomial on a

quasi-uniform triangulation in R2, show that %(B)=0(1). The matrix

B is called the mass matrix and will occur in Chapters 8 and 9.

—
-
wn



8.1 Introduction

In this chapter we give an introduction to finite element methods for linear
parabolic problems. A typical such problem, modelling heat conduction in an
1s0trop1c body with heat capacity A and conductivity p and occupying a region
QcRY, reads as foliows:

ya—div(pVu)=f in @x1,
(8.1) u=0 on I'1XI,
a_=0 on X1,
uSn
alx. 0)=ul(x) xeQ
u\a, vy oy

Here u(x, t) is the temperature at xeQ at time teI=(0, T), where T is a given
time, u0 is a given initial temperature, f is a given heat productlon Ty and

we

PO T e T2
T, is a subdivision of the boundary T of € and u=3u/3t. For sim pm.. , ¢
shail consider the following special case of (8.1) with r=u=1, QcR? an
1‘1=F:
(8.2a) u— Au=f n X1,
/Q MY =0 XI
\0.4V) u vo
{8.2¢c) uf -, 0)=u
Essential parts of the presentation based on (8.2) that follows, m\ay directly
o AN Xait ~1. 7 7
be extended to the more general probiem (8.1), (cf Exar lplCIL.ﬁlg .
~£ 7O where we
We will first consider a so-called semi-discreie analogue of (8.2) wnere
atized oo ucing the finite element method. To obtain a fully

have discretized in space using the finite element meth
discrete problem we will then discretize time also. We shall see that the
s ete problem is an initial value problem for a system of ordinary

differential equations. This will be a stiff system which will pose ?)ftia
requirements on the stability of the methods to be used for the time-discre-

146

tization (the notion of an initial value problem for a stiff system of ordinary
differentiai equations wiil be expiained in Section 8.3 below). For the
time-discretization we shail first consider two classical methods for stiff

= Ao ot o d AT
problems: the backward Euler method and the Crank-Nicolson method. We

shall then consider a recent method, the so-called discontinuous Galerkin
method, based on using a finite element formulation in time with piecewise
polynomials of degree q. In simple cases (eg A=p=1 and f=0 in (8.1)) the
dlscontmuous Ualerkm method gives time-discretization methods which

varlable coefficients and non-zero right hand sides (and even non- lmeantles)
present no complications in principle. Further, the fact that the method has
a variational formulation is very useful in the ana[ysis of the time discretization

PO, £

Of.

particular 1mportance for stlff problems. We comment brleﬂy on this topic
in Section 8.4. The new pOSSlbllltleS offered by the dnscontmuous Galerkm

1], [JNT], {EJL]. For more information on finite elemcm

roblems, see

Before going into the discussion of the numerical methods for (8.2) we shall
riefly indicate some of the main properties of the exact solutlon u of (8.2).
T

licity we will then consider the following one-

2.
3
'(3

problem modelling heat conduction in a bar (cf (1.3)):

8.3a b 0<x<, t>0,
( ) 3t ax? :
(83b)  u(0,0)=u(m,tH=0 >0,

(8.3¢) u(x,0)=u’(x) 0<x<m.

In the case f=0, we have by separation of variables that the solution of (8.3)
is given by
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where

=V2/m [ul(x)sin (jx)dx, i=1,2,...,
0

no jx in I n(() .m). By (8.4) we see that u(x,t) is a
lnear combmanon of sine waves sin (jx) with frequencies j and amplitudes

9 i exp(— j*t). We may say that each component sin (]x) lives on a time scale
ot order 0(j~ ‘) since exp(— j‘[) is very smaii for ]'I moderately large. In
particular we have that high frequency components quickiy get damped. Thus,
the solution u(x,t) will become smoother as t increases. This of course fits with
the intuitive idea of the nature of a diffusion process such as heat conduction.
However, in general u(x,t) will not be smooth for t small, and we may have
that ||u(t)||=||u(- ,t)||— = as t— 0, where || - || denotes the L(0, x)-norm.
More precisely, the size ot the derlvates ofu (thh respect to t or x) for t smau

J For c)\amplc, if ul (7\) =
[la@®)|l~Ct=* with a= 3/4 as t—>0 and 1f uo(x) is the “hat functlon
U(x) min(x,n—x) for 0<x<, then u! = C/j2 in which case ||u(t)||~Ct™*
with o.=1/4 as t— 0 (cf Problem 8.1). If u" decays faster than j=2-% as j— %,
then ||u(t)|| will be bounded as t—0, but higher derivatives may still be
unbounded. In principie, the “smoother” the initial function u’ is, the mor
rapidly no decays as j— . Note that here a “smooth” initial function has to

satisfy in partwular the boundary conditions (8.3b).

An initial phase for t small where certain derivatives of u are large, is called
an initial transient. Thus the exact solution of a parabollc problem in gencral
wiil have an initial transient where certain deri
solution will become smoother as t increases. This fact is of importa
solving a parabolic problem numerically, since it is advantageous to vary the

sclving 2 1
mesh size (in time and space) according to the smoothness of the exactsolution
u and thus use a fine mesh where u is non-smooth and increase the mesh size
as u becomes smoother. Note that transients may also occur for t>0 if for

s 4N 7o AN

example the right hand side f (or the boundary conditions) in (8.1)—(8.3) vary

abruptly in timc.
The basic stability cstimates in our context for the problems (8.2) and (8.3)
are in the case f=0:
®5  lol<lol e
5 <Cho tel
(8.6) lla(oll <=Hiull, el
148

For the problem (8.3) these estimates follow directly from (8.4) using
Parseval’s formula together with the facts that 0<e S<1 and 0<se~S<C for
s=0. It is also possible to prove (8.5) and (8.6) using “energy methods”
without relying on an explicit solution based on separation of variables (cf
Problem 8.6 below). Note that (8.6) states that if uw0el(Q), then
[la(t)]|=0(t=1) as t—0.

Let us now turn to the discussion of numerical methods for (8.2).

8.3 Semi-discretization in space

The semi-discrete

discrete analogue of (8.2) will be based on iati walati
of (8.2) which we now describe. Letting V= Hn(Q N multlplvmg (8. 2a) for a
giventbyveV, integrating over Q and using in the usual way Green’sformula,

we get with the notation of Section 1.4:

(a(t),v)+a(u(t).v)=(f(),v).

(8.76)  u(0)=u’.

Now, let V}, be a finite-dimensional subspace of V with basis {¢y, . . ., OM} -
For definiteness we shall assume that Q is a polygonal convex domain and

that Vi, consists of piecewise linear functions on a quasi-uniform triangulation

of Q with mesh h and satisfuing

with mesh size h and aauolyuls the minimum an g condition \4 1)

le
Replacing V by the finite-dimensional subspace V), we get the following
semi-discrete analogue of (8.7): Find un(t)eVy, tel, such that

(883) (e () vi+aluc(t) vI=(f(t) v) YueV., t-T1
ARGV TAMEL Y =ELY) VVEWVh, t€1,

(8 9K\ (i, (0 =10 o (VRN 4

\©-0v) (Uhlv),v)=u-,v) VVE Vh

Let us rewrite (8.8) using the representation
M

(8.9) un(t.0)= 2 () @i(x), tel,

with the time-dependent coefficients Ej(t)eR. Using (8.9) and taking v= Djs

j=1.. ... M, in (8.8), we get



250 @ qaj>+E}zio)a(cpi,cp,-):(f(t),cpj), =1 M, tel.

(8.10b)  BE(®)=U?,
=(by),

bii=(q3i,CPj)=£(Pi(dex-,

ai=a(gi.¢j)=[Voi- Vi dx,

Recall that both the mass matrix B and the stiffness matrix A are symmcmc
(B)=0(1) and »(A)=0(h~2) as h—0 (see
ecomnosition B=ETE and the new

ccom postion £ and the

the slightly simnler form

K€s the siaghtt y simpler Torm

@1y NO+AN©O=g@), tel,

n(0)=n",
where A=E-TAE-! is a positive definite symmetric matrix with
%#(A)=0(h=2), g=E~TF, n®=E~TU" and E-T=(E~!)T=(ET)~. The solution
of (8.11) is given by the foliowing formuia (see any book on ordinary
differential equations):

_ o
(8.12) n(t)=e~An0+ fe~Alt=s)g(s)ds, tel.
0

The problem (8.11) (and (8.10)) is an example of a stiff initial value problem,
the stiffness being related to the fact that the elgenvalues of A are positive

. o correcnonding to A\ boing larce
and vary considerably in size corresponding to ®{A) being large.
<o discrete problem in the formulation (8.8)
Let us now return to our semi-discrete Prooicim in uic 1o0rimiiauon NN

A basic stability inequality for this problem, with for simplicity f=0, is

obtained as follows. Taking v=up(t) in (8.8a), we get

(o (6Y (N Laln (0 0 (=0 tel
LUp(l), Uh{l)) T aiunit), Upit))—v, =&
TORTERTENTI
or with as above || - |[=]| " ||LyQ),
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1 d
1 G

¢ 1n()I*+a(un(®), un(1)=0,
so that recailing aiso (8.8b),

t
Huh(t)l|2+2ga(uh(5), un(s))ds=|[un(0)|2<[ul[,

and thus in particular,

(8.13) [lun(®)l|<lun(O)||<[lu?l], tel.
This estimate is clearly analogous to the esti

at€ is Cicariy amaiogous to tne estimate \0 3) for the continuous
problem. Note that (8.5) may also be proved in the same way as (8.13).

For the semi-discrete problem (8.8) one can prove the following almost
optimal error estimate. Recall that we are assuming, for simplicity, that Q
is a convex polygonal domain and that Vy, consists of piecewise linear functions
on a quasi-uniform trianguiation of & with mesh size h.

Theorem 8 1 There i
fheorem o4 nere

up, satisfies (8.8), then

o ; . [ . T\
®14)  max|ju()—up®)|<C [ 1+] log | | max h/Ju(®)[li(@)-
tel \ n® ; iel

Proof The proof is based on a duality argument involving the following
auxiliary problem: Given tel let gp: (0, t)— Vj, satisfy

(8.15a) —(Pn(s),v)+a(@n(s),v) =0 VveVy, se(0, t),
(8.15b) u(t) = ex(t),

where ep(s)=up(s)—Un(s) and Gy(s) €V}, satisfies
(8.16) a(u(s)—1un(s),v)=0 VveVy, se(0, T).

Now, taking v=en(s) in (8.15a), using (8.7), (8.8), (8.16), writing
6(s)=u(s)—1n(s), and integrating by parts in time we have

=g:‘ [(én, @n)+a(en, @n)]ds+(@n(0), en(0))
=j[(9, @n)+a(0, @n)]ds+(0(0), @n(0))
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Lo
‘—J](O, Pn)ds+(6(t), @n(1)).
Thus, we have the foliowing simple error representation formula
t
(8.17) llen(t)]2=— 5(9(8), Pn(s))ds+(6(1), @n(t)).

Now, (8.15) is equivalent to the ordinary differential equation (cf (8.10))
—B(s)+AL(s) =0, se(0, 1),

Frey — #0
Sy =56

Using the explicit solution of this problem corresponding to (8.12) (or (8.20)
below) and using also Lemma 7.3, we easily find that there is a constant C
independent of ep(t) and t, such that (cf Problem 8.2)

(8.18) llen@s)lI<llen()l],  O0ss<t,
% 10 | I t
(8.19) (J]H%(S)Hdss C(1+|log Hz—l)fleh(t)l\,

which combined with (8.17) proves that

t
llen(t)l| < C(1+(log =) max [|6(s)|.
n“  se(0,t)

Note that the estimates (8.18) and (8.19) correspond to the estimates (8.5)
and (8.6) for the continuous problem. To complete the proof we now just note
that u—up=u—Gp+iy—up=6—ep, and we then obtain the desired estimate
(8.14) using the L — estimate for 8(s)=u(s)—iiy(s) of Theorem 4.3, [

Remark Note that the constant C in (8.14) is in particular independent of
T. O

-onsider some methods for time-discretization of the semi-
ting in fuily discrete anaiogues of (8. 7). Let usthen
oblem (8.11). The gualitative behaviour of the

S22 b= e

3 E_
=

€s
first consider the relat d
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where !yl‘;r‘f' are the orthonormal (in RM) eigenvectors of A with corre-
sponding elgenvalues W<, . .<py satisfying u=0(1) and uy=0(h~2). Here
the large eigenvalues y; correspond to rapidly “oscillating” eigenvectors ¥
while smaller eigenvalues correspond to ’smoother” eigenvectors (cf Problem
8.1). By (8.20) we see that (i) has components that live on time scales in the
wide range from 0(h~2) to 0(1), that high frequency components of n(t) are

vide range Ir nir

quickly damped and that n(t) in general will have an initial transient. Note
that the stiffness of (8.11) is reﬂected by the fact that the solution n(t) contains
components with vastly different time scales.

As indicated, stiff probiems like (8.11) put speciai demands on the methods
to be used for time discretization. First, for stability reasons one has, in order
to avoid excessively small time steps, to use so called 1mn_]1ag‘ methods, ie,
methods requiring the solution of a system equations at each time step.
Secondly, one would like to use methods which automatically adapt the size
of the time steps according to the smoothness of n(t) and thus automatically

take smaller time steps in a transient and larger steps when n(t) becomes

of (8 8) or equ1valentlv (8.10) and then thc more recent discontinuous
Galerkin method together with methods for automatic time step control. Let
0=to<t;<. . .<ty=T denote a subdivision of I and write I,=(t,_1, t,) and
let k,=t,—t,—1 be the local time step.

8.4.2 The backward Euler and Crank-Nicolson methods

In the classical backward Euler method for the semi-discrete problem (8.8)

we seek approximations upeVy of u(. , ty), n=0, . . ., N, satisfying
{v)—ufl \ L o I o -
(8.21a) [ b h )+a(u;;,v) = (f(ta), v) YveVy,n=1,2,...,N,
kn
(8.21b) (upv) = (u,v) YveVy.
Clearly, (8.21a) has been obtai fi replacing the derivative

ne
15(t) by the difference quotient (u

thitag VY

ed from (8.8a) by replacing the a
b—up~1/k, with discretization error O(ky).



A basic stability estimate for (8.21), with f=0 for simplicity, is obtained by
taking v=uj, in (8.21a) to yield

[Jupl = (uf,up =) +a(up, upkn=

Using here the fact that

P T PR
(uui= D= Sllufli+ g,

(8.23) llupl|<lupl[<[lu®l]  for n=1, ... N,

which is clearly analogous to (8.13).
The other classical time-discretization method for (8.8) is the Crank-Nicol-

son method: Find upeVy, n=0, . . ., N such that
n_.n-1 n n—1
8.24a) (MU gy ya Ut ) o (Y )
kn 2 2 ’
VveVy, n=1,..., N,
(8.24b) (U v)=(u"v) VveVy.

Here, the difference quouent (uh up” l)/k replaces (u(t,)+u(ty,—1))/2 and

the corresponding discretization error is -2 < +
the corresponding discretization crror is O(k;). This time we obtain the

following system of equations on each time level:

8.25) B+ 22A|g=[B- A1tk (F(tn) +F(ta-1))2.
\ < / \ < /
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By taking v—(uﬂ+uﬂ'1)/2 in (8.24a) we casily obtain again the stability

£Q AN o oo

inequality {8.23) in case f=0.
For the problem (8.11) in matrix form the backward Euler and
Crank-Nicolson method read: Find n"eRM, n=1, 2, . . ., N such that for
n=1,...,N
Tin
(8.26) —k—+An"—g(tn)

n—1 1 1
(8.27) '—'——+§A(n"+n"*‘)=é(g(tn)+g(tnv1))-

In the case g=0, (8.26) leads to the following matrix equation for n™:
(8.28) (I+kaA)m=n"-1L

With the notation of Chapter 7, we have

7Q 70\
10.27)

that

==}
~z

which is another way of stating (8.23). Similarly we have

Nicolson method

®31)  (1+LkA) p=- L A)

and
ll_% anj'
|(I+ knA)~1(I- —k nA)|= max—‘i‘—< 1,
- 11'5 Knp.j
which again implies (8.30).

Not all time-discretization methods for (8.11) (or (8.10)) satisfy stability
estimates of the form (8.30) (or (8.23)) regardless of the size of the time steps
kn. As an example, let us consider the so-called forward Euler method for
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or, with g=0,
(833)  m=(I-k, AL
Here

only if kaum=2, or, ky;<2/up=0(h?) since ny=0(h~2). This means

the forward Euler method (8.32) we can only guarantee the stability inequality
[n"*i<[n"| if the time step k,, is sufficiently small, or more precisely if

(8.34)  k,<Ch2.

In other words, the forward Euler methed (8.32) is conditionally stable under
the condition (8.34). If |[I-k,Al>a>1 with ¢ independent of n, then the

forward Euler will be unstable and useless for computational purposes and
thus the method can only be used under the condition (8.34). This condition
is very restrictive requiring very small time steps ky, if h is only moderately
smaii.

One way of phra

the stability condition

34) fo
1€ § iof o1

1 (8.34) for the Euler forward
method for (8.32) is to say that k, has always to be chosen so small that the
fastest time scale is resolved. Of course this is a natural condition in the initial

phase of a transient where the “fastest” solution components play a role, but
not so outside this phase. In contrast to the forward Euler method, the

=3

o
asing

backward Euler and Crank-Nicolson methods are both stabie regardiess of
the size of the timc steps ky, i e, these methods are unconditionaily stable. This
is a very desirable property of a time- d scretization method for a parabolic
problem.

In the backward Euler and Crank-Nicolson method we need to solve a
system of equations at each time step (see (8.22), (8.25), (8.28), (8.31)), ie,

these methods are implicit, whereas for the forward Euler method the solution

n"*1is directly given by n" without solving any system, (see (8.33)), ie. this
method is explicit. Clearly an implicit mgth(_\d requires more work per time

step as compared with an CXPI]C][ method. Thus, on the one hand we have
uncondmonally stable implicit methods and on the other hand conditionally
stable expiicit methods. The more efficient methods for parabolic problems

belong to the first class; the extra cost involved at each step for an implicit
method is more than com

t that larger time steps may

b
be taken (outside very fast transients, where accuracy requires very small time
steps).
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8.4.3 The discontinuous Galerkin method

We shall now consider the discontinuous Galerkin method for (8.8) which is
based on using a finite element formulation to discretize in the time variable.
To formulate this method we introduce for a given non-negative integer q the

space
Whk={v: I> Vp: V| €Py(In), n=1, . . ., N},
where .
Py(In)={v: In> Vp: v(t)= X viti with vie Vy},
ie, Wik is the space of functions on I with values in Vj, that on each time
s

interval I, vary as polynomials of degree at most q. Notice that the functions
v in Wi may be discontinuous in time at the discrete time levels t,. To account
for this we introduce the notation

= 11m v(tn+s) v2= lim v(ty+s),
s—0

s
[vi]=vi-v",

where [v"] is the jump of v at t,.
The discontinuous Galerkin method for (8.8) can now be formulated as
follows: Find Ue Wy such that

(8.35) A(U, v)=L(v) Vve W,

0,
vi),

L(v)= [ (f, v)dt+(u®, v9
I

Since ve Wy varies independently on each subinterval I,, we may alterna-
tively formulate (8.35) as follows: For n=1, . . ., N, given U" "1, find

UH ePy(Iy) such that

(8.36) [ (U, v)+a(U, v))dt+(Un ! vih=

iy

where U =0,
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For q=0, using the notation U"=U"=U""1, (8.36) reduces to the
following problem: For n=1, . . ., N, find U"e V}, such that

(8.37) (Ur—U~L v)+kpa(Un, v)= [ (f, v)dt ~ VveVp, n=1,.. ., N,
i,

. This is a simple modification of the backward Euier scheme
here the right hand side involves an average of f over I, rather than
~Ff

g=1 we have that (8.36) is equivalent to the following system with

with U(t)=Ug + =21 Uy, tel,, UieV,

‘\n
(Uo,v)+kna(Upav) +(Upv)+ 5 kna(Uy,v)

=(U""Lv)+ [ (f(s),v)ds, VveVy,
i,

—_
o
j95)
Q0

N2

%kna(Uo,v)Jr é (Up,v)+ % kna(Up,v)

=L [(s=tar) (s)¥)ds, VeV,

Kni,

O T Caloclin oonth o
i the discontinuous Galerkin method (0

the case q=0, ie, the backward Euler scheme (8.37) with, as above, Vy
p1ecew1se linear on a quasiuniform triangulation satisfying (4.1). The proof
is given in Remark 8.1 below.

uppose there is a constant y such that the time steps k;, satisf y
N and let UM be the solution of (8.37). Then there

: depemjmg onlv on v and the constant R in (4 H su

nly on y and the co

(840 lut)~ U] < C(1-+iog™ )3 max f [[a(9)]ds
ky m<n|
1+ max h2laoi o 50
Fmax hju(thigQ)
t<t,
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Absorbing the “almost bounded” logarithmic quantity in the constant C, and
using the trivial fact that

Iflh'x(S)HdssanﬁHw.;",

where |[v{|, j=sup ||v(s)||, we can write (8.41) aiternatively as foiiows
sel

(8.42) max [Ju(t)—U(t)]|<C (max kp|[t]]=, 1, + max hZ|[u(t)[[x(q))-
tel n<N tel
Here of course the d
discretization error and the second term the space discretization error.
Suppose now 8>0 is a given tolerance and that we want the time
discretization error in (8.37) to be bounded by d for all tel (cf Problem 8.7).
By (8.42) we see that this will be the case if

S - toarm on the ri
irst term on t T

(8.43) k_n_nuum,l"sg, n=1,....N,

with C the constant in (8.42). This gives a rule for choosing the local time step
kn according to the size of |[]|=, . Of course, ||ul=, 1, is not known in
advance, but it seems piausibie that one would have

(8.44)  kal[tl[, 1, ~[[UN=U],

ven, a

and a correspondmg U" is computed If [[Ur—Un—1]| is suff1c1ent1y dlose to
8/C, then U™ is accepted and otherwise k, is decreased or increased to make
||Un Un—1||=§/C. Variants of this procedure are possible. For example, as

puaalulv for a few initial st
ally verifiable criterion (8.

in (8.37) will be bounded by 5. A typical behav10ur of Hu(t)H for t moderately
small, is given by ||u(t)||~Ct~*, where 0<a<1 (cf Section 8.2). In such a case
the method based on (8.45) will thus automatically choose the correct time

step sequence kp,=0t5/C (cf Exampie 8.1 below).
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Returning to the space discretization error in (8.42) let us notice that in
{8.37) it is possible to use different spaces V], for ihe space discretization on
different time intervals I,. The error estimate (8.42) also hoids in this case,
if for example Vi< V2~! with now the space discretization error bounded by
(8.46) C max h2 max [[u(s)||i(@),

n<N sel,

where hy, is the mesh size in Vj.. The condition Vi< V™! may naturally be
satisfied in the usual situation when u becomes smoother as t increases.
For simplicity assume now that f=0 in (8.2). By our assumption that Q is
convex, we then hdve by (8. 2a) and (4.27) that ||u(t)HH (g)$CHu(t)H To also
the

el tha cmonn dicaodio bl oo o PR S DR,

control the spac discretization error to the tolerance U we are therefore ied

e d
to choose h, depending on n so that

N
200~ )

I

Again we may estimate the unknown quantity

For the method (8.38) onc may, under the assumptions o
prove an error estimate of the form
2 |],(2 2 Y

®48)  max [[u®=U!<C max (3 [u®]].., 1, +3 max |lu(s) 1),
tel n sel,
dzu . I

where u(z’—F and where C contains a logarithmic factor as above. We also

t

have the estimate

(8.49) max [[u(ty)—U"[| < C max (k3|| Au®||o 1,
n n

Relying on (8.49), we are led to control the time discretization error in
(8.38) as follows:

350 KA., =2

Again the unknown quantity || Au®)||« | may be estimated using the com-
puted solution U. The method (8 38) w1th time step control (8.50) will
umc ble controi

in general (8.38)

In this section we have briefly indicated some important aspects of the

i iscretization of parabolic probiems. Of particuiar interest
s Galerkin method for which aimost optimal error
tained. These may be used as a basis for the design of
rational methods for automatic time step control. With classical methods and
techniques this was not achieved. For more information on this topic, see [J3],

[EJ1], [INT], [JEL].

estimates can be ob

Remark 8.1 The proof of the error estimate (8.41) for the backward Euler
method (8.37), ie, the discontinuous Galerkin method (8.36) with q=0, is

analogous to the proof of Theorem 8.1 and is again based on a duality
argument. First, we introduce the interpolant UeWyy defined by

(8.51) [ a(U—u, v)ds=0 YveWy, n ,N,
ie,
On=0; =
where Gn(s)€ Vp is given by (8.16). Now, let Ze Wy satisfy
(8.52) A(w, Z)=(wN, UN-UN) Ywe Wy,
ie, Zis a backward Euler approximation of the solution z of the problem
—z—Az=0 in QxI,
z(T)=UN-UN,

Now, taking w=U—UeWpy in (8.52) and using the fact that
Ay, v)=L{v) VveWn,

we get, writing 8=u—U and recalling (8.51),
[[UN-UN||2=A(U-U, 2)=A@u-U, 2)

J (6, Z)+a(u—0U, Z))ds+
17,

Il Mz

n
n

6 -0 N-1 NN
+(01, Z)=— Z (02, [Z])+(6T, ZT).
n=1
This gives the error representation formula
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Now, corresponding to (8.18) and (8.19), we have the following stability
estimates for (8.52) (cf Problem 8.6):

(8.54) llz2]|<[[UN=-0N|l,  n=1,... N,
N_l o AT R T
(8.55) 2 izl < ca+iog —) [[UN-ONJl.
Taoathar with (Q §2) thoco actimateg nrove that
Together with (8.53) these estimates prove that
T i2
[lu(tn)—UN|| < C (1+log k_’ maxl\u(t) o,
N
which proves (8.41) for n=N. Since N may be replaced by n for n=1, s
AT ISR N PAN PPN | NPANI & 70N | NURESIDS RORPUIPRPIY Y .Lo o) RPN,
Ny we lllub Ootain \O.‘fl} Uy cSuInatt lg ”ukl} U\l)“ as i1 uc lJlUUl O1 1 1ncoiIcin
8.1. O

Remark 8.2 The stability estimates (8.54) and (8.55) for the discrete auxiliary
problem (8.52) used in the above proof, correspond to the estimates (8.5) and
(8.6) for the continuous problem (8.7). In particular, the near optimality of
the error estimate (8.41) is a resuit of the use of the strong stability estimate
tes for (8.37) only use the

1) error e

Remark 8.3 Note that the constant C in (8.41) in particular is independent
of t,. This means that we may compute over very long time intervals essentially
without growth of the global error. This reflects the parabolic nature of our

Remark 8.4 If we apply the backward Euler (i=1), the Crank-Nicolson
method (i=2) and the discontinuous Galerkin method with q=1 (i=3) to the
scalar problem

N+An=0, t>0,

n(0)=n",

where A>0, we get the following time stepping methods

/n:\
(0.90)

N—r(L 2)EN—1 i
TI\Rn'v) S ’ 1

(8 87\ £
\O.37) S

where for x>0,

rl(x)— l% rz(x)= _, l'3(X)=

The relations (8.57) should be compared with the following relation satisfied
t solution of (8.56):

n(tn)=e ™5 n(ta—1).

Here of course the rj(x) are rational approximations of the exponential e %;
we have that

cr

y the exac

e *—ri(x)=0(x'*1) as x— 0,
corresponding to the fact that the order of the method i is i, i=1,2, 3. We
also have
Iri(x)|<1 for x=0, i=1, 2, 3,
and
ri(x)— 0 as x— « for i=1 and 3,
but
{(8.58) r(x)— —1 as Xx— o,

By (8.58) we have that the rational function r(x) associated with the

Crank-Nicolson method does not behave like the exponential e for x large.

This means that the Crank-Nicolson method is not suitable for use in time

intervals where the exact solution is non-smooth, tor example in initial
2

transients. where components corresp g
transients, waere components correspondain,

Example 8.1 In Fig 8.1 we give results obtained by applying (8.38) with
variable spaces Vj to the problem (8.3) with f=0 and ug(x)=1, 0<x<u in
which case [[u(t)|| ~Ct=¢ as t — 0 with a=%, cf Section 8.2. The space and
4
time step control was monitored by computational forms of (8.47) and (8.50).
The number of space steps was restricted to be of the form 2m, m=0_1,... .
We see that the error ||e(t)||L,0, ») is, up to a factor 2, constant in time and
of the order 0.26=0.001. Also notice that the time and space steps vary

FIEI., PR an

time and that the total number of steps N ~30. This example
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Fig 8.1 Fully discrete approximation of parabolic problem with automatic time and
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Problems

8.1

8.2

oo
w

8.4

8.5

Consider the one-dimensional parabolic problem (8.3) with f=0.

(a) Prove using (8.4) that if u%(x)=n—x, 0<x<m, then

3
[la(p)]]sCt 4 ast—0.

(b) Discretize in space using piecewise linear functions on a uniform
partition with space step h and determine the corresponding
ordinary differential equation (8.8). Determine the constant C in
the stability requirement (8.34) for the forward Euler method with

e et cie T o..TL e et e

ullllUl m1 Siep blLC l\ hllll 1ne ClgCllVCLlUl& Ul ll]C IIldll'lLC\ D dllu

A in this case are given by vi=(v}, vl!vi) with
ijm 1

vi=sin M =), M= - -1
V1T L 1n

Also determine the condition numbers of the matrices B and A.

Let n be the solution of (8.11) with g=0 given by (8.20).

(a) Prove that
(a) Prove that

Cln |

[n(t)]+|An(t)| < t>0.

(b) Using (a) and the fact that |AE[<Ch~2|E| prove that

RS T a1 £ (Q AN e ol
SUPPUSC th UIe SIEps Kp 101 (0.57) dI€ Cnoscr acc

with a non-smooth solution u satisfying | [u(t)||~Ct =1+ for some s>0
Compute the number of steps required if T=1 and compare with the
number of steps required in the case of a smooth solution satisfying

lla()l|~C.

Propose an efficient method for solving the problem (8.22) related to
the backward Euler method (8.21).

Compare computationally the methods (8.37) and (8.38) for the
problem considered in Problem 8.1 with varying degree of smoothness
of the initial data ug. Use (8.45) for the time step control for (8.37)
and (8.50) for the method (8.38). Compare with results obtained using

a constant time step.



8.6

8.7

8.8

S
=N

Prove for the method (8.37) with f=0 and under the assumption
kn=<Ckp-1, that

(@ |l [,n=1,.. ., N,
N n n—-1 2 12
PIIRY Pt I U _U " ETRRN — A~ 0
(0) ( 21t [ Kn) =Ujur,
n=1 kn
N un=U ~ 2, o
() 21 [l kn=C(1+log —) ||u”]
n=1 kn
Alsc extend {a) tc {8.35).

Hint: For (b) choose v=t,(U"~U""1) in (8.37). For (c) use (b) and
Cauchy’s inequality.

Using the error representation formula (8.17) prove the following
variant of the estimate (8.14) for the semi-discrete problem (8.8) with
f=0:

12
C t
la(t)—u == —
(-]l < S Tl0@)lds + 1+ fog L 1) max [0(s)]
to h* 7 Lo
2
t 0
<C(1+]log —|) = [[u’l]
h t
This estimate shows that the error has optimal order for t bounded
away from zero even for non-smooth initial data. In other words, to

have a small error for t away from zero it is (for linear problems) not
necessary to resolve an initial transient completely. Simllar results hold
for (8.30) and (8.38) (cf [Th]).

Consider the following time-dependent variant of the convection-
diffusion problem (2.23):

du Au ..
;—p./Au+|31 ;+|52 =t 1n QXI,
ot aXZ

u=0on I'xI,

u(x,0)=u’, xeQ.

Extend the methods (8.8), (8.21), (8.24), (8.35) to this problem and
prove in the case f=0 a stabxh ty inequality analogous to (8.23).

9. Hyperbolic problems

> Y e

9.1 Introduction

2
linear elliptic and par hnlm nmblemq produces numerical methods with very
satisfactory properties. We now turn to problems with mainly hyperbolic
character, such as e g convection-diffusion problems with small or vanishing
diffusion. Probiems of this form typicaily occur in fiuid mechanics, gas
dynamics or wave propagation.

1t was observed early on that, in contrast to what is the case for elliptic and
parabolic problems, standard applications of the finite element method to
hyperbolic problems lead to numerical schemes which frequently do not give
reasonable results. More precisely, it was observed that standard finite

element methods for hyperbolic problems do not work weii in cases where

@

tha avant caluition 1 ™ m

the exact solution is not smooth Y has eg a jump
Adiconntinnity than o finita aloam H

discontinuity, then the finite element solution v general exhibit large

e r
spurious oscillations even far from the jump and will then not be close to the
exact solution anywhere. This is of particular concern since in many interesting
hyperbolic equations, the exact solution is not smooth. Only recently has it
been possible to overcome these difficulties and construct modified non-

zam £ b~ ~ 1gfan '
methods for hyperbolic pnub!umo with satisfactory

bldlludlu llllllC cu:meﬁt
convergence properties. In this chapter we will present these new finite
element methods, the streamline diffusion (cf Remark 9.9) and discontinuous
Galerkin methods, and compare them with standard methods. These new
methods apply to first order hyperbolic problems such as eg convection-

RN Ys . N

diffusion probiems with smalil diffusion. We will also briefly discuss standar

finite element methods for a second order nypcr() lic ‘probie n, the wave
equation for the Laplace operator. In thi
methods are still to be discovered.
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9.2 A convection-diffusion problem
A

_tvne eguation lot s congider Lo
-type cquation lct us consider the

\ u 2 N o A Oy T
) o Taiviup)j+ou—eAu=u m $2X1.

Here u is a scalar unknown representing a concentration for example,
B=(B1, - - -, Ba) is a given velocity field, o an absorption coefficient, e=0 a
diffusion coefficient, Q<RY and I=(0, T) is a given time interval. The
equation (9.1) is of mixed hyperbolic-parabolic type with more or less
hyperbolic or parabolic character depending on the size of € and . We assume
here that € is small, which means that (9.1) has mainly hyperbolic nature (if
€ is not small then the material in Chapter 8 applies, cf Problem 8.8). In

particular, with =0 we have the following purely hyperbolic equation:

9.2) U | div(uB)+ou=0 in QxI
(9.2) =, +div(up)

or equivalently
©9.3) Su.g
ot

where y=0+div B. Let us briefly study this purely hyperbolic equation and
first consider a stationary situation with u and B independent of time t, ie,

........ £t

let us consider the lullUWlng cquauon

9.4) B- Vu+yu=0 in Q,

where B=P(x) and y=y(x) are given coefficients. The streamlines correspond-
ing to the given velocity field B=(fy, . . ., Bq) are given by the curves x(s),

X=(X1, . . ., X), Where x(s) is a solution of the following system of ordinary
differentiai equations:

~7
ristic curves (or characteristics) of the problem (9.4). Assuming that B is
Lipschitz-continupus (i e |B(x) ~B(y)|<Clx—y| Vx, ye Q, for some constant C),
there is for a given point X Q exactly one characteristic x(s) passing through
%, ie, there exists a unique function x(s) such that (cf Fig 9.1)

These curves, parametrized by the parameter s, are also ¢

(9.5) X _gix), i=1,...,d,
ds
x(0)=x.
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We now observe that if x(s) is a characteristic, then by the chain-rule we have

=2 20 B 5 g pgy

. - ~ v -~ M1 9

ds i=19x; ds 171 x;
so that by (9.4)
SN d ... PR
(%.0) - u(X(s))+yulx(s))=v

ds
Thue alano sach charactarictic the nartial differential eaunation (Q 4) ig
Thus, along each characteristic the partial differential equation (9.4)
raduocad 0 an ardinary di Fn.—anfiql nnnar;nn If the concentration u ic known
reduced to an ordinary differential equation. If the concentration u is known
at one point on a given chaacteristic x(s) then u can be determined at other

points on x(s) by integration of (9.6). As an example let us assume that u is
given on the inflow boundary I~ defined by

where I is the boundary of € and n(x) is the outward unit normal to I" at xeT’
(cf Fig 9.1). The concentration u at an arbitrary point X in €2 can then be
Aataseioa d intagration I\v\r' tha charactarictic nagging throuoh ¥ ¢
UCI.CIIKIIIICU Uy llllbsl ation aior 1E LIV LHIaiaviviioul passiliy Uilvugil A S
on ['_. In particular this means that in the problem (9.4), effects are
propagated precisely along the characteristics.

It is important to notice that a solution u of (9.4) may be discontinuous
across a characterlstlc For instance, if the given concentration u on I'— has

- an tlha oaliaelaas <1

polnt xe€1, wcn e S01Uton u win oc

discontinuous across the entire characteristic passing through X. As a simple
example let us consider the following problem in R%:
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Q
=

Il
=

in {xeR%0<x;<1},

(03]

1 1
u(0, xp)=1 f0r0<xz<é, u(0, x2)=0 foré<x2<l,

corresponding to taking $1=1, $,=0 and y=0 in (9.4). Clearly the solution
to this problem is given by (cf Fig 9.2).

u(xg, x2)=1 for 0<x2<%, 0<x;<i,
1
u(xi, x2)=0 for §<x2<1., 0<x;<1.
*2
Q
0

Fig 9.2

Let us now ret

9.7) ): Bi —+Yu 0.

y

4) ©. u
characteristics of (9. 7) are the curves (x(t), t) in space-time, where x(t) satsifies

dx;

B,y i=1,....d,

(here the parameter s is chosen to be equal to t=xq corresponding to the

Remark 9.1 Another r equation of the same

since here the velocity is

of conservation of mass) in gas dynamlcs
Se +div (pv)=0,
ot

170

where o is a density and v a velocity. This equation, and additional equations

expressing conservation of momentum and energy and a constitutive relation
constitutes

,
system of noniinear hyperboiic equations which are the basic

©8 M. ,EAAJ- Su

where the Aj and B are mXm matrices depending on x and t, the A; being

symmetrlc and u is an m- vector We say that (9. 3) is a linear Symmemc
e

stein W eg
and initial conditions, satisfying a posmvlty condition. A 51mpl exampl
one space dimension of a system of the form (9.8) is given by

du |r ()«-118_u=0‘ u=|rui|,
at -1 0 ]ox us |
ch is another way of writing the wave equation
w32
— =0
Y Qv
3t

P s ow
using the notation uy ==, up= =

In the case of one space dimension (ie with d=1), a system of the form (9.8)
together with appropriate boundary and initial conditions can be solved using
the method of char;

t) i=1, . . ., m, through each
dx .
=\i(x1, t) i=1,...,m,
where the Xi(x, t), i=1I, . . ., m, are the eigenvaiues of the matrix Aj(x, t).

9.3 General remarks on numerical methods for
hyperbolic equations

Common methods for the numericai soiution of hyperboiic equations are of
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iems in one Space dimension. In

solving first the equations for the
characteristics and then integrating along the characteristics, in both
using some numerical method for mtegratmg ordinary dlfferentlal equations.
In principle this is a very good method but it may not be so easy to use in
practice, particularly not for a system. Further, for a mixed hyperbolic —
parabolic equation like (9.1), this method cannot easily be used For these
more general problems one i

1eral proble

cases

methods based on a fived me

Dased on a fixed

? a ite e
that is not adapted to fit the c aracterlstlcs of the particular problem to be
solved. The use of a fixed mesh gives methods which are easy to program but
1t also may cause numerical difficulties if the exact solution is non-smooth with
eg a jump discontinuity across a characteristic. In such a case conventional

finite difference or finite element methods will srodt P PR TSN
nte element methods will produce approximate solutions

which either oscillate (as standard Galerkin or centered finite difference
methods) or excessively smear out a sharp front (as do classical artificial
diffusion methods), see Fig 9.3.

>
>
-

- =
~#-
A
.

A}
\
AL \
| AN . [\ .
v \VI \VA v
Exact solution ———  Streamline diffusion (without
——— Standard Galerkin shock-capturing)
Centered finite difference scheme ——— Discontinuous Galerkin

——— Classical artificial
diffusion

e

Thus, conventional methods are lackin

S TR R PRPR T :
W€ snaii preésent ine lcu:uuy o

tro
discontinuous Galerkin method which
accuracy and good stability properties and which perform con51derabl better
than the conventional methods (cf Fig 9.3 and Examples 9.2, 9.5 and 9.6

below).

9.4 QOutl
We will
c;l:+d1v(3u)-+—0u eAu=f  (x,t)eQxI,
0 0O\
&2

u(x, 0)=up(x) xeQ,
with the stationary anaiogue
(9.10) div(Bu)+ou—eAu=fin Q,

together with boundary conditions, where Q is a bounded domain in R4,
1=(0,T) is a time interval, and the coefficients o, €20 and B=(fy, . . ., Bq)
depend smoothly on (x,t) or x. We assume that

(9.11)
\Zeri)

where a=0 is a constant with a>0 in the stationary case. This condition will
ensure the stability of the problems (9.9) and (9.10) for all €20 (for & small
(9 11) can be relaxed, see eg [Na]). The boundary conditions may be of
UlllLl]lCl Neumann or Robin (thii‘u) type. For Simp‘lwuy we will consider two
model problems with constant coefficients and Dirichlet boundary conditions,
one stationary and one time-dependent. We leave the straight forward
extension to variable coefficients and other boundary conditions to the
problem section.

7 3

we Sﬂdll LOHSIGCI [ﬂe IOllUWIHg llllllC Cl ment iietllUdSZ

Standard Galerkin
Classncal artificial diffusion

n: o
Discontinuous Galerkin

Time discontinuous streamline diffusion.

mUO® >
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in 1Y

hod D lb UCblgIlCU 1Urpurt:1y

The methods A, B and C apply to stationary mixed elliptic hyperbolic
)

u'ypcl bolic problen

To conclude the chapter we shall dlscuss the apphcatlon of the above
methods to the case of Friedrichs’ system and also consider some methods for
second order hyperbolic equations, such as the wave equation.

‘We now state the two model probiems to be discussed below. Let then Q
be a bounded convex nnl\/onnal domain in R2 with boundarv T and let

9
w
=
‘*’_
o)
]
=3
4]
(=%
(4]
I
o
oo i
&)

B=(B1,B8) be a constant vector with lRI

Pl bt it et 1l
stationary boundary value problem:

P —eAu+ug+u=fin Q,
9.12 o v !
G-19) u=gonT,

where ¢ is a positive constant, and vg=f- Vv denotes the derivative in th

n iv e
B-direction. The corresponding reduced problem obtained by setting £=0
reads:

ug+u=fin Q,
u=gonI_,

where n(x) is the outward unit normal to I' at the point xel'. The

characteristics of the reduced problem (9.13) are straight lines parallel to B

(AF Do 0 AN Wa natina that sn tha ecadiiand
(81 rig 7.4). v nouc uat in ¢ reaucea

prescribed only on the inflow part I'_.

r o

RN

/
é\\X\\\\\\\W
A AT

)\W\\\\\\ o ///
] (@7

N e

\_6_/

Fig 9.4
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Let us briefly recall some basic facts concerning the reguiarity of the exact
solutions u of (9.12) and (9.13). As already noted, the solution of the reduced
problem (9.13) may be discontinuous with a jump across a characteristic if

{
the boundary data g is discontinuous, for example. In the full problem (9.12)
with >0, the solution is continuous in Q, and such a jump will be ”spread
out” on a region of width 0(V ¢ ) around the characteristic. Such a narrow
region (for € small) where u (or some derivative of u) rapidly changes, is called
a layer. If the values attained by the solution u of the reduced problem on
the outflow boundary T+=I\T_ do not coincide with the boundary value g
specified in the full problem, then the solution of the latter problem will have
a boundary layer at I'y. The thickness of this layer will be 0(¢), cf Fig 9.4.
LetJ=(0, 1) be a space interval, I=(0, T) a time interval, and Q=J XI. Then
the time-dependent modei probiem is as foliows:

Ug+ux—eugy=f in Q,
(9.14) u(x,0)=ug(x) xeJ,
u(x,ty=gx,t) x=0,1, tel,

with the corresponding reduced problem:

ugt+uy=f in Q,
(9.15) u(x,0)=ug(x) xel,
u(0,t)=g(t) tel.

Clearly the problem (9.15) has (except for the u-term) the same form as (9.13).
The characteristics of (9.15) are straight lines in the (x, t)-plane with direction
(1, 1) and the inflow boundary is given by the points (x, t) with x=0 or t=0

(cf T 0 &)
(CI rig 5.5).

/Q
7'//

Fig 9.5

We use the following notation when discussing the methods A-D for the
stationary problems (9.12) and (9.13):

(v, w)=Jvw dx, (Vv,Vw)=[Vv- Vw dx,
Q Q
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[IVI[=11VILy@)s [IVIs=]v][(e),

<v,w>=[vwn-f ds,
T

<v,w>_=[vwn-fds, <v, w>,=[vwn-f ds,
r r

(
Further let {1} be a family of, for simplicity, quasi-uniform triangulations

ith mesh size h which satisfy as usual the minimum angie
t

e finite element space

Vh—-{VEH (82): V|KEI’Y(K) VKeTh},

ie, Vp is the space of continuous piecewise polynomial functions of degree
r. From the approximation theory of Chapter 4, we have that for any
s an interpolant G"eV}, such that

uel™ Q) there exi

(9.16a)  [ju—ah||<Ch ™ [ufr+y.
(9.16b)  |lu—dh|[;<Ch"|[ul[;+1.

Moreover, if the derivatives of u of order r+1 are bounded on Q then
and with somewhat less stringent regularity requirements (see [Ci])
(916¢)  |u—ah|<Ch™*12{[ul|s.

In the proofs below we will often use the ineguality

for a, b real numbers and £>0.

9.5 Standard Galerkin

Tl

g is zero. This problem can be given the following variational
ind ueHy{) such that

ata
EI 53
ri

(9.17) e(Vu,Vv)+(upt+u,v)=(fv)  VveH)(Q).
Let now the finite element space

°
Via={veVy: v=00n T}

be given. The standard Galerkin method for (9.17) reads: Find uhe Vh such
that

9.18 &(Vuh, Vv)+(ul+ub, v)=(f,v Yve Vi
(]

This method will perform well if e=h, but if e<<h then this method may
produce an oscillating solution which is not close to the exact solution. To get
an idea of what may happen, let us consider the following simple one-
di

! example:

1sional

Example 9.1 Consider the boundary value problem

(9.19) RS
u(0)=1, u(1)=0,
with 0<e<<1. The solution of this probiem is given by

-1
&)L

_1-x
u(x)=a(l-e ¢ ),a=(l-e

is ciose to 1 except in a layer at x=1 of width 0(e) where u
decays from 1 to 0, see Fig 9.6.

If we apply the standard Galerkin method with piecewise linear functions
on a uniform mesh with mesh length h to (9.19), we obtain the following
system of equations for the values Uj of the finite element approximation uy
at the gridpoints x;=ih, i=0, 1, , N, where xn=1:

€ 1 .
- W[UlYi_zJi-'LJl*l}-*- %[U1+17Ui—1}=0, i=1, , N—1i,
{5.20)
Up=1, Unx=0

We notice that (9.20) may also be viewed as a difference scheme with a central
dltterence approximation (Uj;+1—Uj-1)/2h for the convective term uy. Now,
€ is very small, then the solution Uj of (9.20) is approximately

=8
Z

o
3

o

equal to 1 fori even and equal to 0 fori odd, and we get a solution that oscillates
in the whole region and that is not close to the exact solution (cfFig9.6). O



fl
.|
[

Fig 9.6 Exact solution and approximate solution by the standard Galerkin method
(solid lines) for (9.19) with £=0.01, h=1/11, (cf also Problem 9.5)

e standard Ga erkm method (9.18) may produce an osmllatmg

solutlon happens to be smooth then the standard Galerkin method will
produce good results even if e<h (cf Problem 9. 2).

Let us now turn to the reduced probiem (9.13) with e=
two variants of the standard Galerkin method.

Standard Galerkin with strongly imposed boundary conditions:
Find uPeVy, with uh=g at the nodes on I'_ such that

S 7

(9.21) (1 !\;+1|h7 v)=(f, v) VveVy with v=0on I'_.

Standard Galerkin with weakly imposed boundary conditions:
Find uleVy, such that
(9.22) (uf+uh, v)—<uh, v>_=(f,v)-<gv>-  VVeVh

Let us analyze the method (9.22) (we leave the method (9.21) to Problem
9

w
~

Introducing the notation
b(w, v)=(wg+w, v)—<w, v>_,

Iv)=(fy)-<gv>_,

this methods reads: Find upe Vi such that
(9.23) b(uh, v)=I(v) VVEVh.
Since the exact solution u satisfies (9.13), we clearly also have
b(u, vY=I(v) YveV.
b(u, v)=I(v) YveVy
POy I3 FOTR I RIS DU PP S S NP N | PR P S gy o oo o
dand tus vy suvtlracion we got uic I llUWlllg cquauuu lUl I CITor €=u—up

(9.24) b(e, v)=0 VveVp.
The stability of the method (9.22) is a consequence of the following property
of the bilinear form b:

| JPUTY, U B -SRI & § Ve 3 Y RN
Leimma ¥.14 rof any veri (&) we nave

b(v.v)=|V[2+2 v

Proof By Green’s formula

(vI V) :—(v,v3)+<v V>,
so that
_1 _1 1
(Vg,v)= =<v,v>= = <v,v>, + —<v,v>_,
' Z 2 Z
Hence
MVSEERTIRTT I SN S
bv,v)=[v[P+ = <v v 4+ o<v v — <y y>_=
2 2
NIRRT
=|jvi[? + 3 <V, V>4 = o<V v = (V]IS SIS,
sincen-p=Conyandn-P<Conl_. O

i
N e I I T zn ~lae Aman alon aclcbamnn AF o
UILIRIIUWIDD ad cquauu 15, C VU ]ll ulu\iucuc:: alia 1ciec dl)U C)\lbt(,ll\/(, Uf a
,\I. VS Ppy E_A.._Y PSR ¢ I TR PP PR L NP U R PPy IV P APRS PP Oen DRt |
TULION 1T LCIHId 7. 1. LCL US HUW pIove all CITOT CSUINALC 10T UIC Stanuara
Galerkm method (9.22)



Theorem 9.1 There is a constant C such that if u satisfies (9.13) and uPeVy,

is the solution of {9.22), then
925 [lu—ul[+u—uP| < Chlfull+1
Proof Let theV; be the interpolant of u satisfying (9.16) and write nh=u—gh
and eh=uh—gh so that eh=nP—e, where e=u—uP. By Lemma 9.1 and (9.24)
with v=elle V,, we have

1 hl12_, 1Lh\27|‘/»h hy v/ h _hy L/ _hy

e TEW [7=bLes, ©)=birs, €))7, ©7),

=b(n", eh)=(nd, eM+(n", eM—<nh, &>

nij2 2,1 b2y Ll
<|ngliP+ {2+ [*+Jle
2 4

Recalling {(9.16) we have that

L .

(gl +[n"[+n*<Chjullr+1,
and thus

[le[+]eM| <Chrfulfr+1
Qinon ~a—n~h__ s thin Aacivad dmaciialiss vz FaTla fo o gbo gl
DIILC C=C |h, UX UUD‘ICU lllLl‘lualll nuw  10HOUWS 11l e llldllg

y
inequality and the proof is complete. O

The estimate (9.25) proves that if the exact solution u of the reduced
problem (9.13) happens to be smoothso that | [ul| ;1 is finite, then the standard

Galerkin method (9.22) will converge at the rate O(h"). Although this rate is
one power of h from being optimal, it shows that the standard Galerkin
method will perform rather satisfactorily in this case. However, in general u
will not be smooth and in this case the standard Galerkm method glves poor

results (the error esti

since then ||ul|;=).

Pri

9.1  For r=1, 2, estimate the norm |lu|]|, of the solution u of the

one-dimensional problem (9.19) in terms of e.
9.2 Prove an error estimate for the standard Galerkin method (9.18)
t i this m

9.3

180

9.4  Consider for >0 the problem

s Ao A SO\ O S
—rTaAauTaivipu)Tou=i1 1 82,
u=0 inT,
with variable coefficients BR(x) and ofx) satisfvine the condition /9 11)
with variable coefficients B(x) and o(x) satisfying the condition (9.11)
with o>0. Formulate the standard Galerkin method for this oroblem
WAL U~ VUL A ViuIdLL LIL Sualiualu JailCinig invuivu 1urn uin })lUUlC I
and prove a stability estimate.

9.6 Classical artificial diffusion

The simnplest wa y to hand!
Pics nai

i0e smmy U wa

Galerkin method (9 18) with e<h and (9 21) (9 is to avoid these situations
completely. This can be done either by decreaslng h until e>h, which may
impractical if € is very small, or simply by solving, instead of the original
problem w1th diffusion term —gAu, a modlfled problem with diffusion term

o
o
L

S=h—e. This is the idea
class i iffusi /iSCOS ty) method. To be precise, this
. . O,
method for solving (9.12) with e<h eads Find uPe Vy, such that
(9.26) (Vuh Vo +ulh+tuh i=(£v) Yve Vv,
(9.26) h(Val, Vv)+{ug+ul v)=(fv) Yve Vi

Thls method produces non-oscillating solutions but has the drawback of
introducing a considerabie amount of extra diffusion. In particuiar, this

—hu,,. acting in the direction n

method introduces a diffusion term —huy, acting in the 11 p

=3
2
=
=1
-
[}
=
=
o
I
a
=
o
»
.3_
. 5
5]
n
o
o
=3
[}
@?
&»
- £
3
&
o i
=
2.
=]
=]
~—

,and a sh

added term —& Au such a method is at most first order accurate, and the error
is at best O(h) even for smooth solutions.

O~y e 4 e a0 00 3 an h ]
7./ 11N€ streamime aimusion meinoa
It turns out that to considerably reduce the oscillations in the standard

Galerkin method (9.18) in the case e<h, it is sufficient to add a term —8ugg
where d=h—¢, ie, a diffusion term acting only in the direction of the
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streamlines. Such a modified artificial diffusion method would read: Find
uhe V}, such that

9.27) e(Vuh, Vv)+8(ufl, vp)+(uf+up, v)=(fv) VveVy,

where 8=h—¢. This method introduces less crosswind diffusion than the

classical artificial diffusion method (0 ’)A\ but still corres

0(h)-perturbation of the solution of the ongmal problem.

However, it is possible to introduce the magic term ﬁ(u'é, vp) appearing in
(9.27) without such a perturbation. Let us first see how this may be done in
the case £=0.

9.7.1 The streamline diffusion method with ¢=0

Let us start from the standard Galerkin method (9.22) with weakly imposed
boundary conditions. If, in the terms (. , .), we replace the test function ve Vy,
by v+hvg, we get the streamline diffusion method: Find uPeVy, such that

(9.28) (u+ub, v+hvg)—(1+h) <ub, v>_

where for convenience we have also mulitiplied the boundary terms by the
factor (1 +h\ Wen

that the relation (9‘28; v f we replace ub by :
ie, the method (9.28) is consistent with (9.13) and doe:
O(h)-perturbation as do (9.26) and (9.27).

Let us now analyze the method (9.28) and introduce the following notation

ce of the term h(n v,

':r‘“

u of (9 1’%\

o1 \U.12),

not introduce an

1C

B(w,v)=(wp+w,v+hvg)—(1+h) <w,v>_,
L(v)=(f,v+hvp)—(1+h) <g,v>_.

The method (9.28) can then be formulated as follows: Find uPeVy, such that

B(u,v)=L(v)  VveH{(Q),

and by subtraction we thus have the following error equation:

We will prove an error estimate in the following norm

This choice of norm is related to the following stability property of the bilinear
form B(. , .)

Lemma 9.2 For any veH!(Q) we have

(vpv)=2 <v.v>,
2
and thus
B(v, v)——- <v,v>—(1+h) <v,v>_+ ||v|>+ h]|vg|[?
=l+h (<v,v>4 — <v,v>_)+]||v||2+h]|vg|[?
1+h T ST
== VI*HIvI[=+hilvg[|*

Theorem 9.2 There is a constant C such that if u® satisfies (9.28) and u satisfies
(9.13), then
930 |ju—ub|lg=<Ch+2{[ul|r+1.

Prooj Let a"eVy, be an mterpolant of u satisfying (9.16). Writing as before

=u—ih and el=ul'—ah, and using Lemma 9.2 with v=e and (9.29) with
;=uh—gh. wi

=uTu, W

J

ot
(31

[
o

112 _ s N_ T hy_ms. Jhy_mso hy
|e||B b€, €)=Db(€, 1)~ DbI(E, €7)=DIE, 1)

=(ep, N")+h(ep, nf)+(e, "M +h(e, n)—(1+h) <e, nt>_

< Mleai2an-1mhl24 Blealizanlinbi2+ Lilel2+|Inh]2
\4II"PJ| R L B I 4H"PH g 4|1 i e i
eizen2inalze CED 2y g iny (o2
'4H"|| HEpn 4 i~ Y 7
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Recalling the approximation result (9.16), we thus have

llel[ =< Ch2r*1|[uli2,,,

which proves the desired estimate. O

Remark 9.2 Notice that it is the presence of the term hleg||? in the quantity
|lel|§ dominated by B(e, e) that makes it possible to split the critical term

(ep, n%) into one term h\|eﬁ]|‘/4 that can be "hrdden in }|e||6, and one term
h- lllnhIIZ that eventually will produ or h™ 12 Thus

ce

............... Yy Wil proguce
o n
a

st c il as Compar ed
wrth the standard Galerkm method where the form b(v,v) dominates only the
Lp-norms ||v||? and |v|? and where the quantity HnBH appears in the proof of
the error estimate (cf the proof of Theorem 9.1). O

The error estimate (9.30) for the streamline diffusion method (9.28) states
that

Thus, the Ly-error is half a power of h from being optimal (cf (9.16a)), while
the Ly-error of the derivative in the streamline direction is in fact optimal.
These estimates indicate that the streamline diffusion method (9.28) should

" 0 A

tha céaemdood M1 1
i the standard Galerkin method (¥.22) if the exact

soluti e - O
t E: ne

olu dramatic improvement one
actually fmds when the exact solution is non-smooth. The fact that the
streamline diffusion method also performs well in this latter more difficult case
is related to the fact that in this method effects are propagated approximately
as in the continuous problem ie essentially along the characteristics One

a source at a certain point PeQ decays at least as rapidly as ex

1n pot at least

bt
where d is the distance to P in directions nPrnpndu‘n]nr

ne ce to n dairections perpengicuiar {

“crosswind” directions), and like exp (—d/Ch) in the direction opposite to
the characteristics (“‘upwind” direction). In particular, this means that the
effect of e g a jump in the exact solution across a characteristic will be limited
to a narrow region around the characteristic of width at most 0(Vh) (in certain

cases the w is impnroved to nn.3/4\ soo [TSWN On the other hand in tha
=3 1L IPAVY U WU U SUL IO YT [ UL uaL Uulll nanyg, i l IC

standard Galerkin method effects may propagate in the crosswind and even
in the upwind direction with little damping (see the discussion for the
one-dimensional problem (9.19) in Example 9.1).

to the ch

184

Remark 9.3 Note that for the continuous problem (9.13) with g=0 for
simplicity, we have the foiiowing stabiiity estimate:

[l +{[ul[+ | ol | <CIIf]].

This estimate follows by multiplying (9.13) by u which gives control of |u| and
||ul|, and the control of ug then follows through the equation ug=f—u. In the
streamline diffusion method (9.28) the corresponding stability estimate,
obtained by taking v=uh and using Lemma 9.2, reads |ju®{|g=<Ciif|| or

Jubl+[lub|+ VA [[ufl] < ClIf]]

This estimate is a weaker variant of the above estimate for the continuous
problem with less control of the streamline derivative. In the discrete case we
have no equation analogous to ug=f—u and hence control of /juflji does not
follow from control of |[uh||. Instead, in the streamline diffusion method

1 r mliaitle 'S T L o¢hn e~ AIfind bagt Franmntinna

pdr[ldl control ot \|u[5|| is expiciuy uulu in uirougn ui moainica s iunction
v+hvg. Noti u‘e also that in the standard Galerkin method the stability estimate

guarantee I|uBH<Ch 1||uh|\<Ch"!|fH through an inverse estimate, cf
(1.47). O

9.7.2 The streamline diffusion method with ¢>0

T r L1 /O 1) sk 5N ond B oSN
Let us start from the bldllUIldIy provi€m (Y.14) Wil g=v ana n~&~uv.
Multiplying the emlarmn —eAu+ug+u=f by the test function v+d6vg, where

where the term —e( Au, v) has been integrated by parts. Here 6 is a positive
parameter to be Spegif:gd below. To formulate a discrete analogue of this
° .
relation bv replacine u by u r:V.. and rest rlr‘tino vto Vi, we have tO give a
relation by replacing u by a g g

well-defined for uh, ve Vy,. The correct defmmon turns out to be simply the
following in this case:

(9.31) (Aub, vp)= = [Aubvgdx,
KeT, K

- - 5 . + s . . r PR FPN 1 h
1e, we just sum the integrals over the interior of each triangie K where Au?
and vg are well-defined. We now formuiate the foilowing streamiine diffusion
methed for (9.12): Find nhcv. such that
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(9.32) e(Vuh, Vv)—ed(Auf, vg)+(uf+ul v+8vg)=(£,v+dvp)

..here 8=Ch if e<h with emar

e=h. Clearly, this is a consisten formulatlon since (9 32) is satlsfled with
up replaeed by u as we noted above. The error estimate (9.30) and the
localization results for (9.28) can be extended to the method (9.32) with e<h.

To sum up, the method (9 2) is an answer to the problem of constructlng
A /n \ P

Remark 9.4 Let us give a proof of the basic stability estimate for (9.32) in
the case e<h, which proves in particular that the presence of the term
—&ed(AuP, vg) does not degrade the extra stability introduced by the term

&1 P NP O P
S{ug, vp) if the constant C is smail enough. By the inverse estimate (7.51) we

have for ve Vh
[ed(Av, vﬁ)|s§s;|vVHZ+ %séCzh‘ZEHVI;HZ,

so that with Be(. , .) denoting the bilinear form associated with (9.32).

7

1 I S
Be(v, v;;ien V|24V P+ (1- %eﬁCzh*Z) 8l|vgl[2,  for veVy.

o
>
Q
NS
II
a
Y
@]
I
=
:“
Iy
(@]
)
(@]
A

then

which proves the desired stability result. [

h if c\umm, where hk is the diameter of K, and

Remark 9.6 As noted above the streamline diffusion method will capture a
]ump discontinuity of the exact solution in a thin numerical layer. However,
he approximate soiution may exhibit over- and

HMZ], a modified

186

duced over- and under-shoots) was introduced. In this method the test
functions are modified as follows:

v+0B- Vv+SB~ Vv,
where

ie B is the projection of f onto Vub. Since p depends on the unknown discrete
solution ub, this leads to a non-linear method even though the underiying

problem is linear. Further, as above d=0(h/|B|) and aiso 6= O(/|B). For

numericai results see Examples 9.2, 9.6 and 13.9. The problem or 1y

roved shock»capturing of the modified method is con-

explaining the imp

plain h D
sidered in [Sz]. O
The streamline diffusion method for (9.12)
obtained by multiplication with test functions of the form v+hvB where
veVy. This

from the space of trial functzons Vi where the discrete solution u is sought.
Such a method, where the test functions are different from the trial functions,

is sometimes called a Petrov-Galerkin method. Note that in a standard
Galerkin method the spaces of trial and test functions are the same (modulo
boundary conditions). O

Example 9.2. Consider the convection-diffusion problem

—eAu+f- Vu=0in Q,
u=goniy,

)

i(

“—0on Iy,

1

=10-3, 8 R=(cos 10°, sin 10°), Q= {XER2 0<x;<1} is the unit square,
Fz {xel: x,=1} and ['1=T\I'; where T is the boundary of Q. Further, g=1
for 12<xy<1, x1=0, and g=0 if x,<1/2 or x1=1. In Fig 9.7a we give the
approximate solution of this problem obtamed using the streamline ditfusion

=

(03]

method on the indicated mesh with 6=h and using piecewise lincar basis
functions. In Fig 9.7b we give the corresponding result using a small amount
of shock-capturing (8=0.15h). O

Problems

9.5 Formulate the streamline diffusion method for the one dimensionai

problem (9. 19) w1th e>0as well as €= Determme the corresponumg

difference schemes in the

c‘



a. Without shock-capturing 9.8 The discontinuous Galerkin method

Galerkin methods using continuous trial functions will lead to globally coupled

7 systems of linear equations, ie, systems where a change in data at one node
f;m’m will (at least in principle) affect the solution at all nodes. This is natural in

MR ) the clipti problem (9.12) wilh £>0, but not so for he pucly hyperboli

{ probiem (9.13) with £=0. In this iatter case it would be more natural to be

i/l X\W\ ///J : able to solve the linear system by successive elimination starting at the inflow
INVINRY AN = boundary I

I m N\\ = We will now consider a finite element method for the reduced problem

(9.13) which permits such a solution procedure and which has stability and

convergence properties similar to that of the streamiine diffusion method. This

method, the discontinuous Galerkin method, may be viewed as a general-

n using
1 using

Qs
Q o

<y
ization of the method with the same name in Chanter 8 It ig base
1zation of the method with the same name 1n Chapter &. It 1s dase

the following finite element space:
Wy={vel,(Q): v|[geP(K) VKeTy},

that is, the space of piecewise polyomials of degree r=0 with no continuity

rairame andéo aarsoo te taralamant hanndariag
requirements across mnerdiCmeit oounaarics.

/! To define this method let us first introduce some notation. For KeTy we
/ ”H”m split the boundary 3K of the triangle K into an inflow part 3K and an outflow

AW NINMY/M //////J/} part 3K defined by

|
|

TN IN N e 3K _= {xe3K: n(x)-B<0},
| /IIXI/I/N AW = Y

M/II/WM/S%@ where n(x) ii;:;);tej;d i:::i}t ‘r::);nlrl\)a,l to oK at xeK, (cf Fig 9.8).

curves for sireamiine diffusion method for problem /
)
/7

with shock-capturing

hock-capturing
/I/K \3K+ /

ig 9.7 c
in Example 9.2 (a) without and (b

a uniform partition. Make a com

D I
a 1putational com
e

method (9.20) (cf Fig 9.6 where the thin curv

ZU) (et |

utational

curve g s .
diffusion solution in the case £=0.01, h=1/11 and 5=2h/3). 01 Fg o8
9.6 Prove the error estimate (9.30) for the method (9.32) with e<h. 0O
9.7 Generalize the streamline diffusion method (9.32) to the variable
coefficient problem of Problem 9.4. Hint: Usc cg the test function
v+adiv(Bv). O
188 189
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v_(x)= linaiv(x-fsﬁ),

seekmg a funcnon uheWh according to the following rule: For KeTy, given
u® on 8K_ find uP=uP|geP,(K) such that

9.33)

—~
%)
—
S
+
=
<
2
»~
|
—
<
=1
=
=%
@
Il
—~
=

VveP(K),
where

(w,v)k=fwv dx, ul=gon T_.
K

To see that this problem admits a unique solution, note that (9.33) is nothing
but the standard Galerkin method (9.22) with weakly imposed boundary
conditions in the case of just one element. Thus, if u” is given on 3K_ we
know that u®[k is uniquely determined by (9 33). Now, we can start to deter-
mine ub on the triangles K with 3K_<T'_ sinc

then define uP on the triangles K next to I'_, and we may continue this process
until uP has been determined in the whole domain (cf Fig 9.9 where the order

in which uP may be calculated is indicated).

ce then uM =g is given. This will

SN LN A
LN\ ]\
YRR AT :
(\%—/H/
AN /”\'V,Q\“/
\ N

— <\ /12\\/
% \LA/V/

To write (9.33) in more compact form suitable for analysis, note that (9.33)

can bo writtan
can be written

Bk (uh,v)=(f,v)x VveP(K),
where

Bk(w,v)=(wg+w,v)k— | [w]ven-f ds.

) -

The discontinuous Gaierkin method can now be formulated: Find u?e W such
that
(9.34) B(uh,v)=(f,v) VveWy,
where

B(w,v)= X Bg(w,v),

KeT,

and u"=g on T'_. Clearly the exact solution u satisfies the equation
B(u,v)=(f,v), YveW,; (note that [uln-B=0), and thus we have the error
B(u,v)=(f,v), YveW,; (note that [u]r 0),
eauation
equation
s Ay 7 h . \_n [N Y7
(9.35) B{u—u®,v)=0 VveWh

Before analyzing the method (9.34) in some detail let us consider the following
examples.

Example 9.3 Let us consider the one-dimensional analogue of (9.13), ie, the
problem

r .o - T T T—/n 1\ i
Let U=X9<X1 . . . <XN=1 D€ a subdivision of 1—\\1, 1) if
I

y— 0=
hie Siaoawion constant we cet the followine method: Find U.=ub(x.)_ such
U is picCCWisC Constant, we gt tng iculwing me hod: Find Ui=uiy;) - su
that

Ui Ui g= Ljrax j=0,.. . N-1

i[5 Sl B s 5
h; hj 1,
Jo=g
Up=g,
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where hj=xj+1—xj, which is a simple finite difference method for (9.36),
namely the upwind or backward Euler method. O

Let us consider the method (9.33) in the case r=0 and to simplify
further, let us assume that f=0 and also that the u-term is not present so that
we simply have the problem ug=0 in Q, u=g on I'_. The discontinuous
Galerkin method then reads: For KeTy, given u® on 3K_ find the constant

Ug=ul| such that

— [ Ugn-Bds=~—
3K
. 1
ic '
9.37) Uk= fu’n-Bds/ jn-pds.
3K 3K
In other words. for eac h K tha nnlnc. IT., Cn nkin;nnA as a weichtad averace
In other words, for each K the val obtained weighted average
of the values of u" on adjoining elements with sides on 3K_. As an example,
using quadratic elements in the following configuration
K K3
X _—
2 /'B'
and assuming that $;>0, we find that
Us= B U + o Uy
)
Bi+B2 Bi1+B2
where U;=Uyg . Again this corresponds to a simple difference scheme for the

equatlon up=0 (in fact this is a usual upwind difference scheme for this
equation if we relate the value Uj to the midpoint of each K;). O

Let us now prove a stability inequality for the discontinuous Galerkin
-|p defined by

S ) 1. 5
|v|ﬁ—|\v|\‘+ Z | [v)*n-Blds+ EIJ vin-Bds.

1
2 K K

192

Lemma 9.3 For any piecewise smooth function v we have

ol a1
-Bl ds.

and thao
and thus

2B(v,v)= 2{ JvZn-Bds— [ v2|n-p|ds

3K, aK_
19 [ (v, —v Yy, ln.Rld 19ll]12
F2 [ (ve—vo)veln- Blds)42lv]]2
aK_

Since every side of 3K, coincides with a side of 3K'_ for an adjoining element

K’, except if 8K+gF+, nd similarly with + and — reversed, we have

S [ ¢2n.R0de=% [ v2l~.0l
2 jvin-Bds=Z2Z jvim-p

K 3K, K 3K_
+ [v2n-Bds— [ vZ|n-p|ds,
r, I
and consequently

2B(v,v) = { f (v2=2v_vi+v2)[n-Blds}+

+ fv n-Bds— fv2|n Blds+2(|v|[?,

[+9
=t
[}

From Lemma 9.3 we obtain in the usual way existence and uniqueness of
a soiution to the discominuous Galerkin scheme (9 34), and it is aiso possibie

for som: suxtable constant C, then for veW;1

vZ|n-Blds),

(9.38) B(v,v+8vg)=C(|vI3— [ vZIn-B|ds),
r_

[IVIE =Ivig+h = livell %, lIwll&=(w.w).
: K
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Using this improved stability, it is possible to prove the following error
estimate

(9.39) [lu—ub]lg < Chr*"2{[uf|r+1.
In the case r=0 we have ||v||g=|v|g for ve Wp since here vg= 0oneach K. Thus,
for r=0 the stability of Lemma 9 3 should be sufficient to obtain 0(h!2)

Theorem 9.3 There is a constant C such that if u® satisfies {2.34) with r=0
and u satisfies (9.13), then
1
|u—uh|g < Ch?||ulf;.
= s h! 1 2 o am
Proof Let G"e W}, be the interpolant of u de nne(l by letting %k be the mean
ver K for anch KT and le as usnal nh=u—ih. Applving
value of u over K for each Kc'Th, and let v ) bplying
Lemma 9.3 with v=e=u—u" and noting that e_=0 on I'—, we get, using also

the error equation (9.35) with v=up—lp

e)=B(e, u—iih)+B(e, ih—uh)

Nn“r en
INOW, €3

i

T
i
%
=

a=ug on each K since u® is piecewise constant, and thus by

= B8

Cauchy’s 1nequallty
o4

_ u .
It is easy to realize that if ue C}(Q) so that i, i=1, 2, is bounded on €2, then
1

Max Inh(x)|<Ch,

L i 2 langth oFf AKX ic (h) and the number of elements
and lﬂclcxulc since the le igin Of o~ IS Ui andG e DUumoch O o2
is 0(h~2), we have
S [ Iph2ln.Blds< = Ch3<Ch.
JoMmRTpiss s =
K 3K_ K

Thus from (9.40) we conclude, hiding terms as usual on the left hand side,
that

le|3 < C||up||h+Ch2+Ch=<Ch,
or ' '

le|g=< Chl?2,

-
\o
S~

where the constant C depends on max {|D%u(x)|: ja|=1, xeQ}. This proves
the desired error estimate. modulo the fact that we have us ed 5 comewhat
il O 11 TG L, HIVUUUIVU UIC 1all uiat wi riavle udCu d Somcwiiat
stronger norm on the exact solution u than stated in the theorem. It is in fact
easy to see that the norm ||ul|; is sufficient and this is left to the interested
reader. O

Remark 9.8 Suppose we stop the calculation of ud when uP has been
determined on a subset Ty of Ty, e g on the triangles Ky, . . ., Kyq in Fi
and let Q' be the union of the triangles in Ty;. Then clearly the

(9.39) holds with Q replaced by Q’. In particular this means f_hat we obtai
error estimates in the weighted Ly-norm

fvZn-pds,
.

extended over the outflow boundary I'; of each subdomain Q’, e g along the
line ABCD of Fig 9.10. O

Fig 9.10

We now turn to the time-denendent maodel nroblem (0 15) with e=0 ia
mn to the time-dependent model problem (9.15) with £=0, ie,
the problem
e O T T 1N i 0 T
U+ ux=1 m Q=jxi=(0, 1)x{0, T),
(9.41) u(x,0)=ug(x) for xel,
u(0,t)=g(t) for tel.
As alreadv ngoted thi rohlem hag the game form oo . U S 1
4£3a5 aiivay’ i1 Cu o 1UUICHI 1as lllC Salic 11Ul ad uic >uativll y moacit

0. Thus, we can apply the discontinuous Galerkin
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method using a triangulation of Q=JxI, ie, a triangulation in space-time. It
is natural to consider a triangulation where the elements are organized in time
as in the following example (note that trianguiations in adjoining strips do not

cueabc’iril_y have

t

AN AN 4
N N1
}12 /9\\13//10\ 14 4

NANE 6 7
VNSNS N

Fig 9.11

It is then possible to compute the discrete solution uP successively on one strip
after another starting for each strip on the left and moving triangle by triangie
to the right (the order in which u" may be computed is indicated in Fig9.11).

Conventional schemes for (9.41) are based on using separate discretizations
in space and time. First a semidiscrete problem (an initial value problem for

a linear system of ordinary differential equations) is obtained by discretizing
the space variable using finite elements or finite differences, and then a
difference method is used to discretize in time. However, for the problem
L T T oy + and it ™o

(9.41) there is reaily no reason to distinguish between x and t it scems

most natural to use space-time elements.

To sum up, the discontinuous Galerkin method has theoretical stability and
convergence properties s similar to those of the streamline diffusion method.
In practice it turns out that when applied to eg (9.41) the discontinuous
Galerkin method performs somewhat better than the streamline diffusion
method In fact, already for k=1 the dlscontmuous Gaierkin for (9.41)
nce method

Problems
9.8  Determine the difference scheme corresponding to the discontinuous
Galerkin method with k=1 for the one-dimensional probiem of

Example 9.1.

)
K

9.9

9.10

Evaluate Uk in (9.37) in the case of triangular elements in a general
configuration. Distinguish between the cases when 3K _ consists of one
and two sides.

Let u be the solution of the discontinous Galerkin method with k=1

11

for the problem

P A4 AN
(0,2 ©0 *1 2,0
Supposc that u® on 83K 1U3K? is given by
h . ey ~
uZ(xy, 0)=oy+pBix - 0
(9.42) ».( 15 M) 1 lfl 1, z<xl<l‘h
uZ(xy, U)=az+p2x1, U<x1<2

Determine u® on 3K 4%, i e, assuming that u® (x1,1)=084+P4x; for

1vio1 A . .
—1<x;<1, determine ay and B4 in terms of oy, B1, ap and $,. Hint:

A
ou*

Prove first tha

— and K? and then prove that

1

I h . PN N s ~ 3 P 1

Jul(x v dx = JIUE(XI,U)V dx; for v=1, x1,
ie prove thatu h (x1,1), —=1<x,<1, is the Ly-projection onto the space
of linear functions on (—1, 1) of the piecewise linear function
u”(x1, 0) given by (9.42) for —1<x;<1.

Extend the analysis of the previous problem to the more general
equation ug=0 with  chosen so that the inflow boundary
I'_=0K L U3K “. Based on this analysis make an interpretation of the
discontinuous Galerkin method for the prob]em ug= =0 as a method

R Ry
u)mpuacu 01 tWO SLEps. exact lf“")[)(l'l dllu [1"([]6(.”(1"
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9.12 Consider the discontinuous Galerkin method with k=1 for the

problem

A AT
/ /) /
S S S
S VA VAV V4
[_” 1-1 X4

Fig 9.12

where x;=ih, t,=nh, i=0,

Paen

we l'bprebbﬂl tne UISLI ete soiu

as

ul(x, ty)= U"* (x=x;) V§, xe(xi-1, Xi),

=)
—
(%)

.._
\O
3

-

he result of Problem 9.11, that

1 r .
ur-1|
a2 | | vl_l—l|
rrLvYiol
1r 11
n—
v oo
I yn-l | ’
L Vi-id
b (TT A VA NP POt S RN N
velwor \U, V} db\U\.ld Wil e

9.9 The streamline diffusion method for time-
denendent convection-diffusion nrnhlpmc

SO vAAlAT ALY LUAIVISAVRS aiiusion URSATRARS

Let us now consider the time-dependent model problem (9.14) with e>0, ie
the problem
Ugt iy By =1 in Q=JXI,
(9.43) u(x, 0)=uq(x) xel,
u(x, t)=0 x=0, 1, tel,
where for (imn!igitv we consider the case of zero boundary data, With £>0

we cannot apply the discontinuous Galerkin method of the previous section
to this problem; to handle the diffusion term —eguyy, the trial functions should
be continuous in the space variable. On the other hand, to be able to compute
the discrete solution successively on one time level atter the other, it isnatural,

if wa in
I We ir

discontinuous in time. Thus, we are led to consider a method where the trial
functions are continuous in space and discontinuous in time based on a
triangulation of space-time with the elements organized in strips in time e g
as in Fig 9.11 or 9.13.

igt ing space-time elements, to use trial functions which are
ST ng space-time &:éments, 1o use ina: runchions wnicn are

e AP D NP T TP MRS N B | T —t o —T ha o cclhdiciolae ~fehn
10 4l sudil a mcuou ICL V=111 SSINT 1 UC a Suvulvidbiul Ul uic
PO-SNSRU Spapp T RN 7o Nile o) WP N-SUPINpAPs NEDAPUIPS IRy DS e of A2 1 L.
ume 1Iervdl 1=V, 1) dnd murouucc uic SUips Sp uclicu vy
Sn={(x, t): 0<x<1, ty—1<t<tp},
for n=1, , N. Further, for each n let V" be a finite element subspace of

H‘(Sn) based on a triangulation of the strip S, with elements of size h>e,

(VE \ V(X I) 0 for x= U 1} ( O[lCe that it lS not necessary that
s of different s n s “fit” across the discrete time levels, cf F!g

7‘ tn+1
TN N
N\ A\ "

N NS N\ S

AV N

AN ™~

SN N\ O

/. AV »x

199



If we now apply the streamline diffusion method (9.32) successively on each
strip Sy, to the problem (9.43), imposing the initial value at t=t,_ weakly and
the boundary conditions strongiy, we obtain the foliowing method: For n=1,

N. find u"e VP such that

.y i, NG W such that

/- N
X

n n
(9.44) +e(uf, vt —ed(uyy, Vit+vy)"
_ o
=(f, v+8(vi+vy)) +<ul ! vy>n-l YveVn,
where 8=Ch with C sufficiently small for e<h, =0 for e=h,
1
(w, v)"= [wv dxdt, <w, v>"= [w(x, th)V(X, tp)dx,
S, 1]
vi(x, t)= lim v(x, t+s), v_(x,t)= lim v(x, t+s),
s— 0+ s—0- 0 1¢
J.10
and 19 —us=initial data and e8(u"  v.4+v. 0 ig defined in a wav analooous
and u_ =ug=initial data, and e8(u} , x)" is defined in a way analogous
to (0.31)
to (9.31).

For each n (9.44) is equivalent to a linear system of equations and thus we
have an implicit scheme (cf Problem 9.14). Further, since the space Vv is
independently defined on each strip with no continuity requirements from one
strip to the other, the solution u” will in general have jumps across the discrete

430 lawale T ¢hn nncn o and o qs ahlu chAacan triananlatinn A
time levels t,. In the case £=h and a suitably chosen triangulation of (0, 1) X(0,

T) the method (9.44) would coincide with the discontinuous Galerkin method
for parabolic problems presented in Section 8.4.

Problems
9.14 Consider the streamline diffusion method (9.44) with €=0 and
J=(—o, ®) on a regular space-time triangulation of the type

AN AN
AN \

AN AN
N N

ct

M ——
3
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Show that the method in this case is equivalent to the ditterence
scheme:

{ +Z k+4k2\|Uj +“k"‘—-§ l_—(),l)»—ig)»Z)U?ﬂ

\4 3 9 ) o\ 18 36 36 )
+(Z;;1+9¢@,1+§;_2‘I J.Hu{l_x_l 55733 AZ\U"“

\3 471872777 e 6 36 36 ) it
+(l+2x+l)_2 \U““=(lr'+2+ Lyloe .

\9 9 9 ]! \6 9 36 | '

(2,.4.3, lx\nnL(lx—l,l_L \n _(1¢L1 .
"r\é‘l\. TZTEI\.}\J] T\6l\. 12'&)U]+1 \36 T 36", Vj+£

Compare computationally the discontinuous Galerkin and the stream-
line diffusion method for the problem (9.41) with the uniform

triangulation of Problem 9.14. Consider the following cases for
example:

(i) u is smooth,

(ii) u is piecewise smooth with a jump discontinuity,

(iii) ug is a delta function, g=0.

In the same cases also make a computational comparison with the
following ditference methods:

Ultl=(1-M)UT+AUT (upwind
’ method)
rn+l {}» .}»z\nn +/}_}\Z\U?7/A—)i2\ un (Lax-
T UTEIEI A2 2) Tt wendroff)

(1= UM+A+0) U =(1+M) Ul +(1-1) U} (box scheme)
I U U G A -

P § B ey b § L

Vi- 2Ul‘2+{6 2 2 3) -l |

O A T T WA LI G R | Sh

+|\ 5—)» +7)Uj+l\5_5+7_zll Uty l) (Shasta)

U}”'=VJ’* —(Vj+1—2Vj+Vj_1) ]

UJ!H'I I;‘ -\un -g-_),UJ!Li (leap-frog)

where Uf approximates u(jAx, nAt) and }»:—ﬁ—;.



Example 9.5 In Fig 9.14 below we give the results after 49 time steps obtained
by applying the discontinuous Gaierkin method of Probiem 9.i2 and the
dmerence methods of Probiem 9.15 to (9.41) with A=0.56 and a step function

‘\\ \ \

\ A
N\ \

A

>
>

A
4
]
-
-

<
<

Lex-Wendroff Disc. 6alerkin Leap frog
N . VAN
< \\ | VYV

i \ STEP 49

A\ \ \

v

Fig 9.14 Comparison of the discontinuous Galerkin method and some difference
schemes for a convection problem

Example 9.6 Consider the convection problem in two space dimensions

du . oo . o e

—+p- V=0 for xeQ, >0,

ot

u(x,0)=ug(x) for xeQ,
where ={(—1,1)x{—1,1) and P is the velocity field

B(x)=r(—sin0, cosB),  x=r(cosH, sinB),

corresponding to a clockwise rotation around the origin. In Fig 9.15a, b we
give the initial condition ug and the corresponding approximate solution

Azno

u \ ,I) after rotaiion 360° obtained D)’ the direct exiension of the sireamiine

the streamline diffusion method with a certain amount of shock-capturing.
Note that in this experiment the space-time finite element mesh was adaptively
modified automaticaily in each time step using the technique indicated in
Section 4.6. The time step was chosen to be qual to the minimal space step

on each comnutational ‘slab’ Sa —()xL T =(t__. t) O
............ putational ‘slab Ly Li=(th-1, ). U

= 7\
(@ oM
W) W)

N — =7/

'L_]\—/ ~N—_——

SV A A AN A A A

/ ANNNNIN

(WL F / ya'yi
./ /
0 VAL Z: B
/ o N %
% A %
4 y AKX X
%
¥
AAAAA AAAAANANANN
g
Y
a. Graph and level curves for initial condi- b. Same as in a. for finite element solution

tion togeiner with initiai mesh. after rotation 360°

Fig 9.15 Streamline diffusion method without shock-capturing for convection problem

ith £, th initial condition
with fairly smooth initial




asecs

we wiii briefly indicate how to extend the sireamiine diffusion
i s n

yalerkin methods to the case of linear first order

e uo
olic systems thhe orm (9.8) anrledrl(‘h\ systems (cf[l e]). We then

m! form (7.8), Or rr

d

(9.45a) Lu= ZAj——-+Ku=Fin Q
i=i i

{(9.45b) (M—=D)u=0 onf,
«

Here the A;, K and M are given mXm matrices depending on X, u is an
m-vector and

d
D=2 ngAg.
i=1

where (nj, . . ., ng) is the outward unit normal to I'. We assume that the
matrices A; are symmetric (with real elements) and that

(9.46a) M+M*=0 onT,

daA
1]8x,

GI
—
-~
[

(9.46b)  K+K*—

(9.406c) Ker (D—M)+Ker (D+M)=R™ onT,

at c—r is pUblllVC semi-de
the conditions (9.46) (with 6>0) and some smoothness assumptions one can
((((((((( »W prove that if Fe[Lz(Q)]‘“, then (9.45) admits a unique solution, (see [F]).

\

N\ Many problems in mechanics and physics can be written in the form (9.45).
S Let us here mention only two special cases.

1

a. Graph of initial condition and initial mesh.  b. Graph and level curves of finite element solu- Example 9.8 The initial-boundary value problem for the wave equation
tion together with mesh after rotation 90°.
o 3w w - ; ;
Fig 9.16 Streamline diffusion method with shock-capturing for convection problem (8.47a) F - ?:t U<xi<l, Ixzl<l,
with non-smooth initial conition X X2
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9.47b)  w(xy, —1)=w(x1, 1)=0 0<xi<1,
(9.47¢)  w(0, xz)=§ (0,x)=0  [xf<1,
1

where x; is a time variable, can be written in the form (9.45) with

Q=(0.1)x(=1, 1), u=(up, w), u=¥, ;=% F=(f, 0) and
(U, Dx{ ) ( B %
a1 0] A= O 1) k=[O0
Tloo1) [-1 0] 0 0]
M=[1 o] for x;=0 or x;=1
Lo 1] ’
M—[ 2 1] for xp=—1, M—r2 -1 for xp=1
B [t of Pr=Th
Note that the boundary conditions (9.47b) translate into the conditions

QW oo M PR FYPRT.
u= =0 for |xp|=1, 0<x1<1, which correspond to the condiions
8x1
a-Dyju=| 2 O 9] Z0 for =z, 0exi<t. O
- = = 2=%1,
| +2 o] | wl
L 1 L 4
T ot now generalize the standard Galerkin method, the streamline
Let us now generalize the standard Gale
Friedrichs’

diffusion method and the discontinuous Galerkin method to the
system (9.45). We will use the following notation

::r‘

<v, w>=[v-wds, [v[=<v, v>12.
r

By Green’s formula we have

(Lv, w)=<Dv, w>+(v, L*W),

where
« d ) A N
L¥*=— 3 A ——- 2 + K*,
1=1 oxj i=10Xj
so that in particular
/0 AQ\ (T o .,\=1IIT 2T ¥\ ow) L l cNuv v>
(7.40) v, V) 2\\..4.._, JV, V) 2 <DV, V=,

206

where by (9.46b),
L+L* = oL

We also introduce the spaces Vi=[Vy]™ and Wy=[Wy]™ with V}, and Wy
defined in Sections 9.4 and 9 8 above We can now formulate our methods

\> 2%

=V
VveV

h-
Choosing here v=ul and using Green’s formula (9.48) we obtain (with 5>0)
the stability estimate ||u"||+|uh|<C||F||, from which error estimates of the
form |Ju—uP|[<Ch'||u|;+1 can be derived in the usual way.

Find uPe V), such that

(9.49)  (Luh, v+thv)+% <(M-D)uh, v>=(F, v+hLgv)  VveVs,

where

Again choosing v=u", we obtain (for h sufficiently small) the stability estimate
(with again 6>0)

=
£
T
5
s
£.
Iz
jot
v

9.10.4 The discontinuous Galerkin method

To formulate this method we need additional notation. For KeTy, we write

(v. Wl — s dx
Vs YK

GX,

v

[
Jv
K

=




[W] =Winl_wexl'

winl(x)=lim w(y), we'=lim w(y), xe3K,
y—x y—X

yeK y¢K

d
no— v A=K
D= z Ay,

where nK=(n§() is the outward unit normal to K, and where we set we*(x)=0
for xeI". Further, for each KeTy,, we introduce matrices Mk defined on 3K
and satisfying, for K, K' €Ty,

Mg=Mg' on 9KN3K’,
Mg+Mg=0  on 3K, Mg=M on I

Here a possible choice on interior edges is Mg=Al with A>0.

The discontinuous Galerkin method for (9.45) can now be formulated: Find
uhe W, such that
i N 4
(9.50) ) {(Luh,v)K+;<(MK—DK)[uh], v>g}=(F,v), VveWy.
X
T al®e mabl ol e o onfae arent actitmatac ~Ff tha fas
ror uis meuoa we dgdlll Ild CI101 COUIatcd Ul uc vt
1
I+5
[lu—ubl|<C 2
llu—uhll<Ch
Note that in the scalar case with m=1, »hﬁosmg Mk=|B - nX|in (9.50), where
n_/0N 0O A S T | Py 42amesmoza ey e s i ntblad (O AN
[J-\l)l), (J, Aj, glvcb lllC UlbLUllLllluUub UdlCll\lll meuou (7.0%).

The formulation (9.45) also includes time-dependent problems if we
consider x; to be a time variable and choose e g Aj=1, Q=(0, T) X Q' and M=I
for xy=0, T. In this case we should modify the streamline diffusion method
(9.49) following the pattern of Section 9.9. On the other hand, the discon-
tinuous Gaierkin (9.50) directiy applies aiso to the time-dependent case, cf
the fn]lnwmw example:

Example 9.9 Let us again consider the one-dimensional wave equation (9.47)
written on system form according to Example 9.8, with now f=0 and non-zero
initial conditions for x;=0:

(©.512) U a8 hal<1, 0<x;<1,
3x1 Xp

(9.51b)  (M—=D)u=0 xo=+1, 0<x<l1,

©510) a0, x)=u0(0, x;) bxal<1,

where

A=' 0o -1l M_[ 2 :ﬂf
-1 Oj’ —[ +1 OJ or x;==%1.
Changing dependent variables through the orthogonal transformation
P 1
1 1 =1
e
v Ll 1 IJ
u=S*g
V=S,
we can write (9.51) as
©.52) S22 A%0_
axl axz
(9.52b)  (M-D)g=0 x=%1, 0<x;<1,
(9:52¢) (0, x2)=0%0, x,) [xl<1,
where
r 1
A=SAS*= ,1, 0| ’
LV —1]

Note that (9.52a) is an uncoupled system of two scalar advection equations,
and that the coupling in (9.52) only occurs through the boundary conditions.
Suppose we now apply the discontinuous Galekin method to (9.52) with

Mg=Mk given, on interior edges, by
r 5
9.53) N l “1+“2| o ] _[mf o 1
'n1 ﬂz” Lo mj |
We then obtain a discrete analogue of (9.52) consisting of two discontinuous
Galerkin discretizations of scalar advection problems which are coupled only
through the boundary conditions (9.52b). Alternatively we may consider a

)

direct application of the discontinuous Galerkin method to th
Ppiication of the 1UnuUUs SarlCikiil meuiod to tne Louplcu
problem (9.51) with the My given by
| K K K1
o m;+my  my-mj
Mg=S*MgS=| . ol
[m3-m7 m3+mf|
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with the notation of (9.53). In fact these two approaches are equivalent and
would produce the same numerical results since if v=S*y, we have

(Au, V)k=(AS*q, S*P)k=(SAS* ¢, Wk=(A®, V).
and corresponding relations hold for the remaining terms. Thus, we conclude
that the discontinuous Galerkin method applied to the coupled problem (9.51)
with proper choice of the M ‘‘automatically diagonalizes™ the system (9.51a).

e AEL L o osl o Thio of
1e diffusion method. This is of interest Cg

The same holds for ihe stre
when analyzing the nature of propagation of effects in the discrete analogues

pled problem (9.51). [

he streamline diffusion method for stationary problems was
uced in [HB1], [HB2]. The mathematical analysis of the method was
started in [IN] and was continued, with extensions to time-dependent
problems in [J2], [Na], [JNP] The method has also recently been extended
with good results to incompressible and compr6551ble flow problems see
[BH], [HFM], (HMM], {HM1], [HM2], [JSa], {J4], [3Szl], [3Sz2], {Sz], and
Chapter 13. For combinations of finite eilement methods and methods of
cteristics, see [DR], [M], [BPHLY]. The discontinuous Galerkin method

CIeristics, se

irst analyzed in [LRa] see also [JP2] 0

o
=
0
13
0

£
o
17
g

Problems
or (9.52) to

53
3
@
&

T
[}
A
o
S

o~
=)
(I\
=

9.16 Apply the 1) 72
compute approximate SO]UI!OHS of the wave equatxon (9.47). Test the
performance of the method with different degrees of regularity of
initial data as e g in Problem 9.15. Also compare with the results of
other methods for the wave equation such as e g those presented in

Qurtime O .
Sccuon ¥. ll UTJIUW

9.17 Prove error estimates for the standard Galerkin and the streamline

= MIME=aT a0
=

O AN el o) o
diffusion methods for {(7.40) will G~V ana viTivi C1, C~u

PRPRpIN Lesnnhalia menkhl

9.11 Second order NypPervonc prooicins

Previously we have considered first order hyperbolic problems. We now turn
to second order problems. A typical example is the wave equation:

(9.542)  ii— Au=t in QxI,
(9.54b) u=0 on I'xI,
10 €A~ iy M=% (x MN=u:lx) or xeQ
(7.04C) (X, Uj=up(X), X, vj=uiX;, for xefl2,

o
where Q is a bounded domain in R? with boundary ['=(0, T), ii= % and

u= % . This equation modeis e g a vibrating membrane with given defiection
up and initial velocity u;. Following Example 9.8 it is possible to rewrite (9.54)
as a first order hyperboiic system and in principie we may then apply the
methods of the previous section. However, with this approach we introduce
new unknowns which result in an increase in the number of variables in the
discrete problems. Thus, there are good reasons to try to keep the formulation
(9.54) involving second derivatives and a scalar unknown. However, with this
formulation it does not seem to be known how to construct methods combining

good stability with high accuracy. In particular, we cannot extend the

streamline diffusion and discontinuons Galerkin methads tg the wave
stréamune GHiusion anG qiseénunudus Ua:lrkin meindas 1o tne wave
eguation (0 SA) hacance ofthoe nragence of second order diffarantial anoratore
Squausn (7.4 oCaust O1 il prosenit 01 seCOnG GGt GiniCitintia: Operatdis.

Anyway let us here describe some methods for (9.54) that are currently used.
The wave equation (9.54) can be given the following variational formulation
using the notation of Section 8.2: Find u(t)e V=H}(Q), such that for tel,

(9.55a) (t(t), v)+ a(u(t), v)=(f(t), v) VveV,
(9.55b) u(0)=ug, u(0)=u;.

The basic energy estimate for (9.55) is obtained by choosing v=1 in (9.55a)

which cives with =0 for simplicity
which gives with f=0 for simplicity,
i d. ,, 1 d 2
5 —la®IP+5 = [Vu@®)|?=0,  tel,
2 di 2 dt
so that
(9.56) [[a(t)|?+]| Vu(t)|[>=constant=||u||2+|| Vuo||? tel
Thig eguation exnresses the fact that the fotal enerey of the gugtem (0 S4) ig
This equation expresses the fact that the total energy of the system (9.54) is
conserved if the applied force f=0

For the numerical solution of (9.55) suppose the finite element space
VihcHY(Q) is given, and let us first formulate the following semi discrete
analogue: Find uP(t)eV such that for te(0, T)

(ih(t), v)+a(ul(t), v)=(f(t), v)  VveVy,

(9.57)
ub(0)=ugy, 0(0)=uyp,
where ua . 1. eV, are annroximations of the initial data u- and u. i
here ug,, uipeVy are approximations of the initial data ug and u;. This
nroblem is eguivalent to the following sustem of ordinarv differential
roblem is equivalent to the following system of ordinary differential
equations (using the notation of Section 8.2): Find E(t)eR™ such that
211



BE+AE=F,
E(0)=60, E(0)=61,

where 09 and 6, are the coordinates of ugn and ui, with respect to the basis
{@1, . . ., oM} of V. Clearly (9.57) satisfies an energy conservation relation
analogous to (9.56).

It now remains to discretize the second order system of ordinary differential

I SN

equations (9.58) with respect to the time variabie. To this end it is convenient

tel,
(9.58)

A 2/

to rewrite this

s system as follows:

+AE=F, tel,
(9.59) E-n=0, tel,
E(0)=6g, n(0)=61.
Now, let 0<tg<t;, . . ., <ty=T be a subdivision of I with time steps

We may consider the following class of time discretization
n")eRMxRM, n=0,

kn=th—tp-1.
methods for (9.59) (with F=0 for simplicity): Find (",
, such that forn=1,2, ... N,

where 0 <a, ‘Y<l are parameters. This method is unconamonauy stabie for

1 . (1
a, yB;and second order accurate if (a, y)=l 7 , for example. With (a, y)

=(0, 1) and a uniform subdivision in time, the scheme coincides with a
well-known explicit second order centered scheme with no artificial viscosity.
This particular scheme performs very well if the exact solution is smooth but

not so if, for example, the initial data ug has a jump discontinuity, in which

With (~ A —

—(1 1) we got a first order
With (a, y)=(1, 1) we ge

o aqeillatinane acer
t @ 1irst OrGey

cas vere Sp"niu‘do OsCinations oCcur.

casc se
accurate implicit method with better stability properties but with heavy
artificial viscosity. For a scheme similar to (9.60) which has been used
extensively in applications, see Problem 9.19.
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Problems

O

=
O

9.20

9.21

~

o
[

~

- . 1 1

Prove a stability estimate for (9.60) in the case 5 < <oa<l, 5 sy<l1
Hint: Multinly the eguations by (En1—E0) and B(nd+1—nM) resnec-
Hint: Multiply the equations by (& EM and B(y n"), respec
tively.

A class of time discretization methods for (9.59) well-known in the
engineering literature is given by the so-called Newmark method (with
F=0),

BE" 1 =BE" +k,Br'—k (BAE™ 1+ (1 -B) AE"),

L
- P . - Lo o 1
this method 1s unconditionally stable tor p 5

nd v=

a and a
angy ang

1
5 an
obtained by taking (a, y)=(0, 1) in (9.60).
Write the wave equation (9.54) as a first order Friedrichs’ systems (cf
Example 9.8).
Consider the method (9.60) with (a, v)=(0, 1) and k,=k, n=1, 2,

, N, or equivalently the following centered scheme for (9.57): Find

u", n=0, 1, 2, , N such that for n=1, , N—-1,
_1 (1m+1_21mirm-1 N afTTD o\ (¢ ) ) e~
A 2Un+ UL vi+a(Un, vi={{(ty), v) YveVh,
Ul=uyg, U'=U%k
Dencn PN Y P T (T T U PPN PSRN | PN N DTS OIS R s LSy
L10VC widl uIns > luomc IS unuiuvlidily Stabi© unuci e tonaiuon
k=<Ch with Csufficiently small. Hint: Rewrite (9.61) using the notation

Wn=(Ur—U""1y/k and take v= (W"“+W“)/k to give
[Wn+'l’ Wn+i]+%” VU“+I||2=[W", Wn]+%|l VU"HZ,
where

k2
[W, W]=(W, W)——4—3(W, W)’ (W, w)=HW||2=”WH12‘z(Q)

5]
S}
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Int

In this chapter we consider finite element methods or BEM, boundary element
methods, for some integrai equations arising in connection with certain elliptic
bour ndary value problems in mechanics and phvcmq (the presentation is based

e

..... problems in mechanics nysics preser n

[=% {
@

-

- x
=

on [N}, cf also [W]). As an example of such a problem let us consi

following exterior Dmchlet problem:

(10.1a) Au=0 in Q',

(10.1b)  u=ugon I, u(x)— 0 as [x|— o,

where Q is a bounded simply connected open set in R3 with smooth boundary

T, Q'=R*\Qis the complement of Q=QUT (see Fig 10.1). Furthergdenotes

n, where n=n(x) is the outward unit normal

differentiation in the direction n,
to I at xeI'. This notation will be kept throughout this chapter.
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Probiems of this type occur in fiuid mechanics and acoustic scattering, for
instance. In !he latter case the eqwﬁnn Au=0 is replaced by Au+w?u=0

giver quency. Instead of (10.12) one may also consider

homogeneous, constant coefficient elasticity or Maxwell equations corre-
sponding to elastic or electromagnetic scattering.

Since the domain 2’ is unbounded, we cannot triangulate Q' using a finite
number of triangles, and thus we cannot apply the finite element method

Airantly: 4 thic nenhlam Ta oa finita numhar Af alamante tha fircet idan ic
directly to this problem. To get a finite number of elements the first idea is
simply to replace Q' by the bounded domain Qi={xeQ’: |x|<b} for some

suitably large b and use the approximate boundary condition u(x)=0 for
[x|=b. To get reasonable accuracy one may have to choose b quite large, and
then this procedure may be too costly.
nce the differential equation (10.1a) is homogeneous

it is possible to 1 3. an integral egi on the
closed and bounded surface I'. Applying a standard Galerkin or finite element
method to solve this integral equation numerically, we obtain a boundary
element method.

We will meet below integral equations of the following types (named after
the Swedish mathematician Ivar Fredhoim 1866-1927).
Fredholm equation of the first kind: Given f: I'— R and the kernel k: 'XI'— R
find q: I'— R such that

(10.2) Jk(xy)a(y)dv(y)=t(x),  xel.

Cquuuuu Oii tne

Fredholm equation of the second kind: Given f: ' - R and k: I'XI'— R find
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with respect to the variable y. The kernels k(x.y) that we will meet, will be

weakly singular; more precisely we will have

(10.4)  k(oy)=S2 xay

IyI
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If we introduce the notation

(10.5) Kq(x)=[k(x,y)a(y)dv(y), xel.
r

then we may say that K is an integral operator; given a function q defined on
£ : s~ i

i
T, a new function Kq is defined on I' by (10.5). With this notation the problems
(10.2) and (10.3) can be formulated as
(10.6) Kq=f (Fredholm first kind),
(10.7) (I+K)q=f (Fredholm second kind),

where 1 is the identity. In the applications below, the kernel k in (10.6) will
be symmetric, ie, k(x,y)=k(y,x), x, yeI', while the kernel k in (10.7) will be
non-symmetric.

10.2 Som
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integral equations
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he Laplace
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three dimensions is given by the function

Ex)=——.
@) 4|x|
By this we mean that

[ B0 Aq0x)dx=5(0),

for all smooth functions @ in R3 vanishing outside a bounded set. In other
words,

AE=8
AE=9,
s the deita function at § {cf Probiem 10.2). In particuiar, we have

=0 for x#0. Next, et us recaii the following representation

Theorem 10.1 If u is smooth in Q and Q' and
(10.8a) Au=0 in Q and Q’,

216

(10.8b)  u(x)=0(x|"1), | Vu(x)|=0(x|~2) as [x| > e,

then
3] L gy fru) o[ ) dyy))
4nl v 1 onl [x—y| r any\ [x—y|/ )
(10.9) J/ u(x) if xeT,
=) ui(x) +ue(x .
'\ 5 if xeT,

where for xel" (i=interior, e=exterior),

o[ du]_au _au

—yi— ou
[ul=u “lanl on on’

ui(x)= lim u(y), u¢(x)= lim u(y),
yox yox
yeQ yeQ

dui . u(xtsn)—u(x) Su® . u(x+sn)—u(x)
o (x)= lim ,— (x)= lim N
3n 50 s an i s

s— 0
-
and f— indicates differentiation in the direction n(y).
on
y

Proof First let x be a given fixed point in Q and define (cf Fig 10.2)

QO —[(ycO-ly—
Le=1yeld:|

Se={yeR?®: |y—x|=¢},

where € is so small that S;c Q.

e N\
(2 )
" O /

Fig 10.2
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. 1
Applying Green’s formuia on £ to the two functions u(y) and v(y)=

4nt|x—y|
which satisfy Au=Av=0 in Q¢, we get
. i
(10.10) 0= fuAvdy- [vAudy= [uday- [ v ay
Q, Q. r on r om

- J u—dY+ J vy,
$, on
where on S, the normal n is directed outwards (see Fig 10.2). Since u is smooth
s S e g OU ) o . o e s '
in  so that = is bounded close to xe2, and since the area of S is equal to
n

47e?, we have

POV du , ~c d ~
(10.11) i fv—uyi <Cf v(y) =Ce—0ase—0
S, on s, 4mlx—yl
Further, for yeS;
v i
P == Arle_ul2
on AMX—Y|
and thus
fu dy:—L fudy— —ux) ase—0
S, on 4ne? 3,

Hence, letting ¢— 0 in (10.10) we find, using similar arguments for xeI" and
xeQ’, that

l‘u(x) xel2,

(10.12) if;r_“ dyy)—fui 2 [ XV dyy) L =1 Luice) xer
4\t on |x—y| r ony\ [x—y|/ J |2

lo xeQ'.

A corresponding result can be obtained by applying Green’s formula on the
exterior truncated domain Qp={yeQ’: |y|<b} and then letting b— = using
(10.8b). Together with (10.12) this yields the desired representation. [

Remark The kernel I . I is said to be a single layer potential and 3
X—v an..

[N A LT

a double layer potential. [
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10.2.1 An integral equation for an exterior Dirichlet problem

using a singie layer potential

Let us consider the following exterior Dirichlet problem:

Au=0 in Q’,
(10.13) u=ug onT,

u(x)=0(x|7), [Vu@@)=0(Ix|~?), as [x| > =.
One can show that if ug is sufficiently regular (more precisely, if ug is the
restriction to I of some function weH'(R?)), then this problem has a uniquc

R Tossioo 1o andd

solution u. We can extend this solution to the interior of & by letting u satisfy
Au=0 in Q,
u=uy onTl.

We know that under the condition on ug just stated, this problem also admits
ue solution.
he representation formula (10.9) we now have since [u]=0 on I':

_,.4::

T
i

YL xd
) AFLS

—dy(y),  xel.

3?
g(.

integral equation: Given ug find q such that

xell
X€x.

Im integral equation of the first kind with weakly singular
kernel. Clearly the kernel is symmetric. One can show that for a large class
of functions ug, (10.17) admits a unique solution q. More precisely one can
show that if uge HS(T'), then there exists a unique qe Hs~1(I') satisfying (10.17).

Here and below HS(T') denotes the Soboiev space of functions defined on I'

o

ra;l
with derivatives of order sin Ly(I'). With q=| == | determined from (10.17),
L

Ofl I

e obtain the solution u of (10.13) (and (10.14)) by the formula (10.15).
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Another way of obtaining the integral equation (10.17) is to start out by
M Prs } san e

xierior Dirichiet probiem (10.13) of the form

1
(10.18)  u(= 790 gy ceQ.

4nt [x—y]|
Since A —1 ) 26 for x4
Since Bx| | l ) =0 for x4y, where Ay indicates that the derivatives are

x-y

taken with respect to the variable x, it is clear that a function u given by (10.18)
satisfies Au=01in Q'. Now letting x— I' and using the fact that the right hand
side of (10.18) is a continuous function of x, we obtain the integral equation
(10.17) for the unknown density q

Remark The function u defined by (10.18) for xeR3 may be interpreted for
instance as the electric potential given by a distribution of electric charges on
T with density q, or the temperature given by heat sources on T with intensity
q. O

10.2.2 An exterior Dirichlet problem ith double layer potential
0

When consxdermg the exterior Dirichlet problem (10.

Au=0 inQ,
(10.19)
u i
du _ a_u:g onT,
dn  on
h out H that a necessary comdition for (10 10% 1 1
waere 3787. & reCan inat a nccessary condition for (1U.1Y) 10 nave a
n

soiution is that

(1020)  fgdy= [ ay=0,
i ron

.

and further, a solution of (10.19) is unique only up to a constant (fuisa

solution of (10.19), so is u+c for any constant c). Since I | =0 in this case,
4

l3n

the representation formula (10.9) gives

Lol 1[1—(

xel,

220

so that

e(y)=— W)U | u(x)+ui(x)

ut(x)=— 3 + >
© 1 . Q/ 1 \

=— Y _ 2 L4 , xerl,
274 Jrcp(y)anyhx_y') Y(y)

where

@=[u]=ui—ue.
Thus, since u®(x)=ug(x) for xeT", we are led to the following Fredholm integral
equation of the second kind:

w(x) 1. .. 3/ \
(10.21) Ll = — dy(y)=—ug(x), xel.
( ) 2 4n{~ *y) ny( [x— y\}
By the representation (10.9) we also have for x¢T,

0.2 ue=- L1 e (L) a.

Note mat the right hand side of (10.22) is not a continuous function of x; this
as a iump egual to o=lul across T
function has a jump equal to @=[u] across I'.

To see that (10.21) is an integral equation with a weakly singular kernel of
the form (10.4), we observe that for x, yel', x#y,

a / 1 \ _ ﬂ(v\-(x—y\

A - 3
an\ Byl = ey
Now, if T" is smooth, then n{y) is almost orthogonal to (x—y) for x close to
y (see Fig 10.3). More precisely, since I is smooth it is easy to show that

//j%\\



One can show that if again ug is the restriction to I' of some function we H'(R3)

and (10.20) hoids, then (10.21) admits a soiution ¢ which is unique up to a
constant.

Problems
10.1  Prove that

What can be said about the uniqueness of a solution of (10.21)? O
10.2 Prove using the technique of the proof of Theorem 10.1 that

E(x)= —ﬁj is a fundamental solution for the Laplace operator in R3.
214D.¢

1N A2 A
1V.4.0 A
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=

Let us now consider the exterior Neumann problem

(10.23a)  Au=0 in Q',
du
10.23b) —= onT,
( ) 38
(10 23c) n(x =0(lx=1\ | 7uxM=00IxI2\ ac Ixl -5 o
\AVeady YA VA Jo |V B\A) TN J s A
One can show that if g is sufficiently smooth (more precisely, if g=?— for
on
some function weH!(R3)), then (10.23) admits a unique solution (note that
for this exterior problem to have a solution it is not necessary that g satisfies
(10.20)). With (10.23) we associate the interior Dirichlet problem:
Au=0 in Q,
(10.24)
u=u® onT

Since then [u]=0, we have by the representation formula (10.9)

)

dv(v) XeR3,

(10.25)  u(x)= InJr x‘

‘<

222

where q= [ au] Now, it can be shown that if u is given by (10.25), then for

L on]

xel,
Ay =—9) rq(y) ( \dv(y)
3n 2 oy \ [x—y|/

and using (10.23b) we are thus led to the integral equation

PO DI (Y SPRNE- T B B DA
(1v.20) 5 49X)— —Jqly) \ }Uka)——g\X), Xel
2 dnrt 3ny \ [x—yl)
This is asain a Fredholm eauation of the second kind with non-symmetric

th
This is again a Fredholm equation 1e second kind with non-symn
f

weakly singular kernel satisfying (10.4). One can show that
there exists a unique solution qeL,(T') of (10.26).

10.2.4 Alternative integral equation formulations

It is also possible to use a double layer potential for the exterior Neumann
problem. Further, if in the representation formula (10.9) we take u=0 in Q,
then

1027y we=L{ -1 L g a2 (L Vayw) for xeo
4n| T on [x—y]| r ony\ [x—y|/ )
where u=u® on I', and
10.28) 1ux_l{ < du g - B A N DA
(10.28) (x) 4171 {ra " ,! y(y)+ }_ anl,!Y ,!) Y(Y)[
for xeT.
Equation (10.28) gives an integral equation of the second kind for ulr f;—u}r
n
is known. and an eauation of the first kind for a_u |~ if ul+ is known. Thus
, eq of the or It if ulp is known. Thus

the exterior probiems (10.13) and (10.23) can be soived by first soiving for

ujr or E—lr in (10.28) and then using the representation (10.27).
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10.3 Finite element methods where

We chall n,
Sfaix n

wWe

o numarical anbasian oF b(q p)"L [ _fqiﬂm—)dv(v)dv(x\,
iC numicriCal SO1ution o1 dnr IX—yI TRYJUETRA S

ot
et
6) that is, the equations

ow congider fint
OW COnSIGer iini

quations (10.17) and (10.2

the inte ) ( )
; 1(p)= Juo(x)p(x)dy(x).
1 . q( r
1029) L ayg)mu,  xer, This leads matueatte oo ot
Antlx—yl 11is ieads naturaily to the foliowing Galerkin method for (10.29): Find qheWh
i i 3 such that
1030)  Sa(0- - Jay T —y] JdY(Y)"g(x) xel (10.32)  b(gh, phy=/(ph) —
For simplicity we consider only the case of piecewise constant finite element Using the basis {1, . . ., Y} this relation can be formulated equivalently
approximations. Let Th={Xj, . . ., Km} be a subdivision of T into “‘elements™ as the linear system of equations
K; (eg “curved” tri , cf Fig 10.4) of diameter at most h.
ileg & / (10.33) BE=/
We introduce the >
W o— el f A where E=(Ey, . . ., Em)eRM,
WhT\VELU1 j: v”‘ is constariit, l-—~1, ey IVIgL
M
We wiil use the basis {1, . . ., Ym} for Wy, where each v is equal to one =3 gjwj,
on K;j and vanishes on K for j#i. =1
and R=(h..\ J_/1\ .«
Gul D=0, ¢=¢) Wil

TR0\ ' kK eyl
i= i, j=1,..., M.
K.

b(“ p)=0 with equality oruy if p=0). 1nus we may

\\ /M (10.35)  {|pllw=b(p, p)2.

Fig 10.4 To see that b is positive definite we recall from Section 10.2 that if

(10.36) v(x)=iipw dy(y), xeRS,

then
(10.37a) Av=0in Q and Q'
as yet unspecified, and integrating over I', we are led to a variational (10.37b) [ a_"] —n and [v1=0 an T
J * & =4 A 7 laﬂj p anG [vj=vu oii 1,

formulation of (10.29) of the following form (cf [NP]): Find qeW such that
(10.37¢)  v(x)=0(|x|1),

Vv(x)|=0(|x]=2) as x| - o
)I=U0x%7%) as [xj—s o,

wn

N

0

KN
™
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Using Green’s formula it follows that

[ 1Vv|2dx= [ Vv- Vvdx+ [ Vv- Vvdx
R3 %

have

1 n(v)n
b(p, p)=—J J = dY(X)dY(Y)_ J IVVI‘dx
4aT T XY
Hence b(p, p)=0, and if b(p, p)=0, then Vv=0 so that v is constant in R*
and hence by (10.37b) it follows that p=0. Thus, b is positive definite.
It now follows immediately that (10.32) admits a unigue solution nthL
Hlows immediately that (10.32) admits a uniq
and by our general theory for finite element methods for elliptic problems

.......

Remark 10.2 One can show that the condition number of the linear system
(10.33) is O(h~1) if the triangulation Ty is quasi-uniform (this is of course

related to the fact that Hn” 2 <b(p, p)< Cllnl2
related to the fact that |[pj| y=b( )“"HP’IILZ(I)’

is easily proved). Thus, for reahstlc choices of h the system (10.33) is quite
well-conditioned. This is in contrast to some other Fredholm integral
equations of the first kind having smooth kernels which may be very
ill-conditioned and thus difficult to solve numerically. [J

where the last inequality

Remark 10.3 A large part of the computationa be
on computing the coefficients b;; defined by the double 1nte£rals (10.34). If
the elements K; and Kj are not very close, then simple one-point quadrature
for each integral in (10.34) may be used. If K; and K are very close, then one
has to be more careful and use special quadrature rules (cf [JS1] and Problem

10.5). O

nt

1 wonel wsll hao to ha gnan
1 i spent

1ior
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Remark 10.4 Note that the matrix B in (10.33) is dense; we have b;;#0

Vi, j. Thus, to soive (10.33) by Gaussian elimination requires O(M3)
operations. O

Problem
10.3  Estimate the number of operations needed to solve (10.33) by the
conjugate gradient method.

10.3.2 FEM for a Fredholm equation of the second kind

Let us now consider the equation (10.30) which we write as

hoara Fo Vo T i ébhn fdacelen. ~oo a1 IS.T /TN T sy
WHCIC 1= —2g, 1 1S U1 iacntity operator ana K:Lp(l j— La(l ) is the mtegral
operator defined by

One can prove that given fely(T) this probiem admits a unique soiution
2(T), and for some constant C independent of f

(10.41) llall<Cllfl[=Cl|a-K)ql|,

[-

where || - || denotes the Ly(I')-norm, ie
llpll=([pZdy)"2.
r

Let us now consider the following Galerkin method for (10.39): Find q"e W},
such that

(10.42) (g, pM—(Kq", ph)=(f, p")  Vp"eWy,
where
(9, p)=Jagp
r
The relation (10.42) is equivalent to the following system of linear equations

(10.43) (D-B)E=],

““““ =TS

.......

WIcic

M
¢'= Z &by E=(En . . Bw)eRM,



B=(bj;;), D=(d;) is a diagonal matrix and /=(};) with

L..=1 rri( 1 \AI\AI\ d— ra.
Y1 ]J(iéa \‘X yll TAY)UYRA), Ui éUY’

n 1
li= ff dy.
K;
Again, the matrix B is dense but this time non-symmetric. For the computation
of the bjj Remark 10.3 again applies.
alyze (10.42) and then reformulate this pqnnhnn usin

(10.42) and then reformulate this eguation
followine notation. Let P.: T (l"\_\ W. be the I, 0' i

iollowing he L2t Vi o€ 1he Lo

Problem 4.8).
(Pna, p")=(q. p") Vp"eWn, geLy(I).

Let us a

—\

(Pnq.p)=(Pnq,Prp)=(q,Prp) vp, qelo(T).
Since (10.42) can be written as

(a",Pup)—(Kq"Prp)=(f,Pp)  VpeLa(D),
we conclude that

(q",p) = (PnKq",p)=(Puf,p) VpeLy(I),
or equivalently,

(I-Kn)q"=Pnf,

where Kp: 1,(Q)— Wy, is defined by Ky=P;K. To sum up, the continuous

problem and its dlscrete analogue can be formulated as the following
equations in L(R2):

(10.44)  (1-K)q=f,

We now want to prove a stability estimate for (10.45). Once this has been
, we obtain uniqueness and hence also existence of a solution to (10.45 ”)
and we can directly obtain an error estimate. To prove the stability of (10.4
we shall use the stability (10.41) of the continuous problem

following crucial property of the integral operator K:

cu
S»
@

Here H!(T') denotes the space of functions defined on I with first derivatives
in L(T). This result says that if peLy(T), then KpeH'(T), and thus by
applying the integral operator K, we increase the regularity by one derivative.
Such a smoothing opcrator is also said to be compaci.

We will also use the following error estimate for the projection operator

Py, cf Problem 4.8,

EI I, 10 AT PO T T

47) we find that for peLy(T)

[|(K—Kn)pl|=|[(1-Pn)Kp||<Ch|[Kp||s,r)<Chl[p||,

Thus,

(10.48)  [|(K—Kpn)pll<Chllpll, VpeLa(I),

which may also be written as |[K—Ky||<Ch where ||A|| denotes the operator

norm of an operator A: Ly(T)— Ly(T), ie, ||Al|=sup {/|Ap|/llpll: peLa(D)}.
We can now prove the desired stability estimate:

Lemma 10.1 There are constants C and hg such that for h=<h and peL,(T)
lIpll<CllI-Kn)pll.

Proof Combining (10.41) and (10.48), we have
|Ipll<C||I-K)pl|=C||(I-Kp)p—(K—Ky)p||

so that
(1=Cih)|lpl|<Cl|(I-Kn)p||,
and the lemma follows by choosing, for instance, C1h0=%. O

Using this stability estimate we easily obtain the following error estimate.

o
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o
o
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(10.49)  ||g—qM|<Ch.

Proof Substracting (10.45) from (10.44) we get
(I-Ks) (q—q")=(K-Kp)q+(I-Pn)f,
so that by Lemma 10.1

N o d F10 AQY m
) ana {(iv.4o0). U

Remark 10.5 By Lemma 10.1 it easily follows that the condition number of
the matrix (D—B)T(D—B) is bounded independently of h and thus (10.43)
can be solved efficiently by, for example, the conjugate gradient method
applied to the least squares form of (10.43): (D—B)T(D-B)E=(1-B)T.. O

Remark 10.6 Inc
element method anrj the un 1S 1S
instance, if (10.1a) is replaced by the non homogenous equatlon Au fin Q
where we assume that the support of f is bounded so that for some b>0, f(x)—O
for [x|{=b. We aiso assume that Q< {x:|x{<b}. The resuiting probiem may be
discretized using a standard finite element method on the bounded domain

Qf={xeQ’": |x|<b}, together with an integral equation on the surface

S,
3
)
=g
[=}
=
3
=
7
[o]
2
=
5
e’}
=
l'e']
wn
2
=]
(e}
=]
3
g
3
(e}
3
e

T'y={x: [x|=b} which connects the unknown values of u and the normal

: du
derivative n on ['p. In this method finite clements are thus used to discretize
n
the bounded domain L {, where t=0, and a boundary integral method is used
to handle the unbounded region {xeQ': |x|>b} where f=0. For more
information on this topic, see [JN]. O
Problems

10.4  Consider the integral operator K:Ly(I)— Ly(I), I=(0, 1), defined by
Kq()=Jk(x. y)aty)dy, xel,
where k(x,y)=1 if yex and k(x,y)=0 if y>x. Prove that
[IKqllrny=CllgllL,q, geLa(]).
10.5 Consider the following integral with weakly singular integrand:

of v
(10.50) [ 5)
K \I +

230

This integral has a smooth integrand and may be computed using
standard numericai quadrature with few quadrature points, whereas
the same nnnrnm‘h for the weakly singular integral (10 im mv S

boor

e

results. Thm “trick” may be used to compute the elements h:: ineg

ults. This “trick at bjjmeg
(10.34) when K and K are close (in fact here the integrals with respect
to x may be replaced by numerical quadrature with quadrature points
at the nodes of the triangulation which leads to integrais of the form

(10.50) to be caicuiated, cf [JS1]).



11. Mixed finite element methods

11.1 Introduction

In this chapter we briefly discuss so called mixed finite element methods which
generalize the basic finite element method for elliptic problems described in
Chapters 1-5. As an important example we shall focus on a mixed finite
element method for the followmg Stokes problem in two dimensions (cf

PR

\u], uz) ana ineé pres: ch that

in Q,
(11.1b) divu=0 in Q,
(11.1¢) u=0 onT,
‘‘‘‘‘‘‘ (@ I T 00 10 P U [ I .11 1 - Py 7s Py .
where £ is a bounded domain in R? with boundary I and 1=(1y, 1) 1s given
(here of course (11.1a) is a vector eq ). th

p is only determined up to a (‘nnstan
also solves (11.1) for any constant ¢
for example impose the extra condition

(11.1d)  [pdx=0.
Q

Let us now give a variational formulation of (11.1) which generalizes the

previous formulation (5. 7). We shall seek u and p in the spaces V and H
ucuucu l)y

V=[H)(Q)]? = {v=(v1,v2): vieH}(Q), i=1, 2},
H={qeLy(Q): qux 0}.

Notice that the velocity space V is here not restricted to divergence-free
velocities as was the case in (5.7). Now multiplying (11.1a) by veV and
integrating by parts, and multiplying (11.1b) by qeH, we are led to the
following variational formulation of (11.1): Find (u, p)e VxH such that

(11.2a) (Vu,Vv)=(p,div v)=(f,v) VveV,
(11.2b) (q,div u)=0 VqeH,

where (., .) denotes Ly-inner products, so that in particular

2
(Vw,Vv)= 32 [ Vwi- Vvidx, (f,v)= Z [ fividx.
=18 =%

A natural idea to get a discrete analogue of (11.2) is now io replace V and
i i ces Vy and Hy. This gives the following

H by finite-dimensional subspa g
method: Find (uy, py)e Vi XHy, such that

/11 22N (T TN a N_rf (W

(11.3a) (Vup, VV)—{(pn, aiv v)=(1, V) VVE Vh,

(11.3b) (q, div up)=0 VqeHh.

A method for (11.1) of the form (11.3) is called a mixed (finite element)
method, the term mixed refers to the fact that in (11.3) we seek independent
approximations of both the velocity u and the pressure p. With the formuiation
(11.3) we do not have to expiicitly construct a finite eilement space of
rhvprgpnf‘P free velocities as in fﬁ 7\ g()met_hmo which is difficult to do us;ng
low order polynomials (cf Sectlon 5.2). Thus, the formulation (11.3) opens
the possibility of working with velocities that only satisfy the zero divergence
condition approximately through the discrete zero divergence condition

(11.3b). However, we have to pay for this added freedom in the choice of Vi,

by introducine the pressure space H. (of Remark 11.1 below)

Oy mmtroguding tn€ pressure space I (O nfémarx 11.1 0Ci0w).
Tnorder for {11.2) to be a reasonable discrete analocue of (11.2) . the spaces
1 OrGer 10T (11.5) 10 OC a réastnac:C GisCreid uuujusuv Oiiz. a}, me uyu\,v

work. Loosely speaking, we want to choose Vh and Hy so that the resulting
method is both stable and accurate. These demands are in some sense
conﬂicting and one has to find a reasonable compr()mise Below we will

consider in detail one "p"\.im choice of V| Vh and H Il for which ombuuy is caauy
proved but which is not optimally accurate. We will also briefly give some
methods with improved accuracy but omit the more elaborate proofs needed
to prove the stability in these cases. Recently, modifications of (11.3) with
addmonal stablhty have been introduced, see Problem 11.3. In these methods

be the followmg There is a constant such that 1f (uh, pn) € Vi X Hy, satisfies
(11.3), then

(11.4) [lunlli+Ipnllo=<CIIf| 1.

[}
'
w



where, (cf Remark 4.3)

and ||q/lo=||qllL,(@). The velocity estimate in (11.4) is obtained easily as
follows. Taking v=uy, in (11.3a) and q=py, in (11.3b) and adding the resulting
equations, we get

[lunl[i=(t, un)<|[t]| 1] unl|1,

11 §
(S SN

A
Q
=

Next, we want to use the relation (11.3a), ie
(11.6) (pn, div v)=(Vup, Vv)—(f, v) VveVy,

to conclude that

to conclude (11.7) from (11.6). we need the following estimate: There ic o
0 CONCIUGe (11./) Irom (11.9), W neea in Ioudwing Cstimatc: 1neic is a
nositive constant ¢ such that for all geH.

positive constant € suchn tiat I0r au ey

(q, div v)
5
8 sup GV ogq,
YEVR VIl

Itis clear that by using (11.8) we obtain the pressure control (11.7) from (11.5)
and (11.6). The inequality (11.8) is called the Babuska-Brezzi condition (for
the method (11.3)) and is the crucial inequality that will guarantee stability
of the mixed method (11.3). Once (11.8) is established one can easily prove

Howing optimal error estimate for (11.3) (cf Problem 11.1 and IBrl):
the following optimal error estimate for (11.3) (cf Problem 11.1 and [Br])
PRI 0" 0o T P " o "

(11.9) tu=unfli+{Ip=pnllosC( b flu=vij;+ 1t {[p=qfjo)
ve ae
veV, qeH;,

o o
[}
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Q
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=
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=
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=
T
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o
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exar lpic we will have a situation where in fact the Space vh is “‘too u|5 .
o e . sl S el oociiin o sbhot O e o caniare wi

Xa upleS below assume that Qisa squaic with

mto squares K with 51de length h. The
methods to be presented can
cf Chapter 12.

Exampie ii.1 Let
(11.10a)  Vp={veV: v|ke|Q2(K)]?, VKeTn},
(11.10b) Hp={qeH: qlkeQo(K), VKeTp}.

In other words, Vy, consists of continuous piecewise quadratic velocities and
Hy, of piecewise constants. We will subsequently verify that (11.8) holds in
this case and thus we have by the error estimate (11.9):

Ilu—uhl|1+Hp—ph||o<Ch(h|IU\|2+Hp|h)-

Ta nrove (11 Q) with the choice (11.10). we recall (see [GR1) that there is
To prove (11.8) with the choice (11.10), we recall (see (GR])

» oonatant O cuch that for all acH there exists ve[HY Q)2 such t that

a constant C such that for all qed there exusts veHg(82)]° such tha

(ii.ila) divv=q,

(11.11b)  [iv[li=Cliqflo-

Note that this result proves the validity of the following analogue of (11.8)
for the continuous Stokes problem:

(q,dlvv) cllall WaeH.

I“lI\U M

cun

ieV [Ivih

Now, for a given qeHy, let veV satisfy (11.11) and define vyeVy as the
following interpolant of v:

(11.13a)  vp(P)=V(P) for P a corner of KeTh,
(11.13b)  [vyds=[vds for all sides S of Th,

S S
(11.13¢c)  fvpdx=Jv dx for all KeTy,

K K
where Ve Vy is defined by (V(v—¥), Vw)=0 Ywe V}. It is then easy to see that
1 1" —a 7 n 11 41 AN TT_C oy O 1 /11 11\ L £
11vh[1=<C]j|v||1 (see Probiem 1i.4). Using Green’s iormula, (11.11aj, in€ ract
that geHy, is constant on each KeTy and (11.13b), we now have
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llall§ = (q, divv) = = [qdiv v dx

=3 [ qv-ngds=2 | qvp-ng ds
3K K 8K

)
K
= [qdiv vy dx = (q, div vy),
K K

with ng denoting the outward unit normal to 3K, KeT}. But, recalling
(11.11b), we have

[Ivelly=ClIvlly=Cllqllo.

and thus

lqflg= -0 ) - (g, div )

lallo [Ival[1

which proves that the stability estimate (11.8) is satisfied in the case
0

Example 11.2 The s pl a

is probably given by the Q;—Qp method where
Vh:{VEVZ v [UI(K)], VKeTh}
Hp={qeH: qjkeQy(K), VKeTy}.

This method does not satisfy the stability inequality (11.8) since the pressure

space is “toorich”. Despite this fact it is possible to prove the velocity estimate

fo - Ty
(see [JP)),
llu—up|[i<C inf [Ju=v][;.
veVy,
Haowever L nnnnnnnnn PO

OWEVET, i Pressuies pp may not conv verge to P To obtain convergence one
has to filter out some unstable components of the pressure by local smoothing
(e g averages over groups of four neighbouring squares K

ghbou

Vh={veV: vlge[Qx(K)]?, VKeTy},
Hp={qeH: glxeP1(K), VKeTh}

method suffers from pressure instabilities similar to those of the Q;-Qp
method discussed in the previous example. O

Remark 11.1 Introducing bases {gi, . . ., ¢n} and {¥1, . . ., Yym) for Vyand
Hy, respectively, the discrete p blem (11.3) can be written in matrix form
as

(11.14a) AE—BA=

AAAAAAAA AE-BO=F,

£11 1AL nTs _n

kl 1 L‘!U) D =y,

where A=(ajj), B=(bjj), F=(Fj), with
ajj=a(@i,9;), bij=(v;, div @), Fj=[fe;dx,
Q

and &€ and 0 are the coordinates of uy and pp.
In order for 6 to be uniquely determined from (1i.i4a), we ciearly need

dim Vi, =dim H.. The same demand comes from (11 1Ah\ since we

1 =dim . 10C sal

The system matrix in (11.14) is not positive definite and thus it is not so
clear how to solve (11 14) iteratively in an efficient way, neither is it clear that

11 14LY by tha o

is t 11.14b) by the pertur

C
=
o]
=
2
<}
a
—~

Te o
T

(11.15) eb+BE=0,
with & a small positive constant (cf Problem 11.3). After elimination of 6, this
leads to the following positive definite symmetric problem in the velocity
variabie & only

%BBT)?g:F.

(11.16) (A+
The condition number of this problem increases with decreasing € and may
require double precision in Gaussian elemination (for accuracy reasons we

RSN 11 1y

woulid like to choose e g e=0(h~) in the case of Example 11.1). ]

Mixed methods may be used for problems other than the Stokes equations,
e g for the elasticity equations, Maxwell’s equations and the plate equations.
In these cases the problem is formulated as a system of equations and the
different unknowns are independently approximated. For more information

on mixed methods we refer to [Br], [GR].



Problems

ii.d

—_
oy
(o8]
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Prove the error estimate (11.9) for the method (11.3) under the

assumption (11.8). Hint: Write (11.3) in the form: Find
®h=(un, pn) € Ph=VhxHy
such that

B(0, ¢)=(Vw, Vv)—(r, div v)+(q, div w),
Lw)=(f, v), 6=(w, 1), v=(v, q).

Next nrove that with ”‘|I|H=[Hv||g+Hn”gll/z
r iy QAN 1o bl
B(S, )
sup > ¥ >¢||0]], VOedy,
yedy, H‘r’”
by choosing for a given 6=(w, r), the function yp=(w+9z, r), with
zeV} chosen so that

7 oae \ o2 ot
—(aw z, r)=cfjr{fp, [|z[l1=]]r[lo,
and >0 conveniently chosen (sufficiently small).

Determine the matrix equations corresponding to Example 11.2 in
the case of a uniform subdivision of the unit square and interpret
the resulting method as a difference method. Verify that the space
{ €Hp: (q, div v) =0, Vvth} contains a pressure that a]ternatlvely

Consider the foliowing (cf (11.15)) perturbed variant of (11.3): Find
(- hoPh) )e VX Hj, such that

1h such that

(Vup, Vv)=(ph, div v)=(f,v) VVeVp,
h%(Vq, Vpn)+(q.div un)=0 YqeH,

where now H,cH!(Q). Prove without using the stability condition

1 using 1 1

(11.8) an error estimate for |ju—uy||; (cf [BP], [HFB])

Prove that there is a constant C such that if vy, e Vi is defined by (11.13),
then ||vp||1=<C||v||;. Note that ¥€Vy, is introduced because we cannot
guarantee that [v(P)|<C||v||a}(@)-

Curved elements and

AL VWA WAWAARAWAAWWD

numerical integration

12.1 Curved element

ARAT ARG

in our appliications of the finite element method so far we have used piecewise
s

iinear boundary approximations. For exampie, in the case of a iwo-
dimensional reo;on Qwe annrox!matﬁd the hnundarv T'of Qwitha nnlvgonal
line. The corresponding error is of the order O(hz) where h as usual is a
measure of the size of the finite elements. To achieve higher order of
approximation one may approximate the boundary with piecewise polyno-

miais OI degree k=2 and in this case the error aue to the Dounuary

Arrsead?) Alacaamé o ha ahtainad in mrinainla ae fallawe: Cuinnnca

A “curved” element may be obtained in principle as follows: Suppose
2’¢ SN e foten clement {cf Section 3.4). where W ic tha raforanca trinnola
B, K, «)i8 a finite element \CI OECTITH 5.4, WiiCiC A i8S tne reicrence tria igil
in the (%1, %2) — plane with vertices at 4'=(0,0), 42=(1,0) and 4°=(0,1). For
simplicity let us suppose that the degrees of freedom S are of Lagrange type,
ie, X is a set of function values at certain points d'eK, i=1 , m. Let now

F be a one-to-one mapping of K onto the “curved trlangle” K in the (x1, X2)

- pldne (\E,L l‘lg_‘ i0. L) Wllll ]liverie l" -1
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Fig i2.2
We now define

(12.1) Px={p: p(x)=p(F~!(x)), xeK, pePk},
(12.2) Sk={the values at al=F(4'), i=1, . . ., m}.

It is then easy to realize that (K, Pk, Zk) indeed is a finite element The

tunctlons pePK are defined through the inverse mapping F~: K— K and the

pePg. If the mapping F=(F,, F2) is of the

I Fi,
if F.eP%.i=1, 2, then the

B
same tvne th 8 ie c
t K, 1€, H Ierg, 1=1, 2, then

same type as ol

Px. k) is said to be of isoparametric type. In general the inverse mapping

F~lis not polynomial, unless K is a usual triangle in which case both F and

F~1 are linear, and thus the functions pePx are not polynomials in general.
We will now study a concrete example in more detail.

H

Example 12.1 Let K be the reference triangie with vertices at al,i=1,2,3
and let 4, i=4, 5, 9, denote the mid-points of the sides of K. Further, iet
P=Px(K) and let = be the values at the nodes &/, i=1, . . ., 6 (cf Example
3.2) and let ;e PZ(K) , ..., 6, be the corresponding basxs functions, so
that tp,(al) ;j. Suppose now al,i=1,. .., 6, are the points in the (x1, x2)-plane

given by Fig 12.3. In particular, a* and a® are the mid points of the straight
edges a'aZ and ala®, and a’ is slightly displaced from the straight line a%a’.
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Let us now define a transformation F by

Then we clearly have that F:K— K and F(al)=al, j=1, . . ., 6, ie, the points
ai in the %-plane are mapped onto the points al in the x- plane We will now

er the followine guestions:
owing questions:

(a) Under what conditions is the mapping F:K— K one-to-one?

(b) How can we compute the element stiffness matrix corresponding to the
curved element (K, Pk, Zk) where Pk and S are defined by (12.1) and
(12.2)?

(c) What is the interpolation error using the functions in Pg?

(d) How can we construct a finite element space Vy using the element

Space Vi using the element

(K, Py, k)? Is it true that V,cC%(Q)? What is the global error?

(a) When is F one-to-one?

Thg mapping F is locally one-to-one in small neighbourhood of each point
%eK if i
(12.3) det J(%)50, %eK,
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where
[oF; oF|
| 3%, ok
I=| |
| OF: 2E
l X1 dXz]

is the Jacobian of F and det] is the determinant of J. In general the condition
(12.3) does not guarantee that the mapping F:K—Kis globally one-to-one
(cf Problem 12.2). In our case, however, the sides of K are mapped in a

one-to-one fashion onto the sides of K and one can then show that {i2. 3)

imolies that F:K —s K is one-to-one, ie, for each xeK there is a unique %eK
implics that F:K— K is one-to-one, ie, n

such that F(2)=x. To check if det J(R)#0 for €K, we split the transformation
such that F(%) To check if det J(X)#0 for €K, D

F in two transformations F and F,

according to the following figure:

2o Y

W/ /W

RN 7 - B w6
3 ,_L VX200 | %,

)
__‘_;7__.11 x>

o BNl W % A N
¢ | Az |
TN oz v,

3! PAAC et B b‘ '

Fig 12.4

He ﬁ‘ is the affine ma

lere F is the affine m mapping that maps the vertices bi=al, j=1, 2, 3 on the
1 .

vertices al=(a1, alz), i=1,2,3,1ie,
/N T b
r\y)=byTuv,
where
[ 2.1 3_.1] 1]
B | ai—aj a—ay b—l aj |
|l adoal| " |al]
L < EEE | LoSd
249
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Since by assumption the points a!, aZ and a® are not situated on the same
atraicht lina wa hava that dat RN and B ic tharafara ane_fa_one
straight line, we have that det B#0 and F is therefore onc-to-onc.

Tt now remaing to analvze the manning B We cngily soe that

It now remains to analyze the mapping F. We casily sce that

[1+dik,  dixy

det J(R)=1+d;Ro+dagks,

and thus det] islinear in %. Therefore detJ is positive in K if det J is positive
at the vertices al, j=1, 2, 3. We have

J0,00=1, J(1.0)=1+dy,  J(0,1)=1+dy,
which proves that det >0 in K if d;>—1, i=1, 2, ie, if
pi>1 =12,
4
We thus conclude that F is one-to-one if b5 and a’ lie in the shaded areas in
Fig 12.4, and thus in particular if a°, the mid-point on the straight line a2a3,

is close enough to a’. Hence the original mapping F is one-to-one under the

same condition. In particular, if the element K with one curved edge is used
H 15 nill,.cr,.1'11

5 anproximate a smaoo sundary then the _

to approximate a smootn ooundaary, tnen tne ja’—a’| (o1 rig 1z.1,
12.4 and Problem 12.2) will be of the order Of 2V oo is th
ic.5 @nG rrooiem 14.4) Win o€ O1 i€ Oraer uingj, where hg as usual is the

diameter of K. Hence a’ will be close enough to &5 if hy is sufficiently small,
and thus we conclude that the mapping F will be one-to-one for sufficiently
fine triangulations.

(b) Computation of the element stiffness matrix

The local basis functions on K are given by

"

for exainpic ihe

O) . then we b

UlluCl’ly]Ilg llCl'Clllldl cquauon 1S

S
=
z
4
=]
=
a
<
=4
B
g
3
~

to compute the integrals

~ 4
F



(12.4) ai‘].‘=jKVq>,V<p,-dx, i,j=1,...,6.

To this end we note that by the chain ruie

a Ai axl &‘p, a)h
F1
3xj (CP( ()= 0% Ox;j oxz ox;’
so that
Vei=1"TV ¢,
where J-T is the transposed Jacobian of the mapping F~1,
I'a%; iﬁ_:i‘
| a.vq 8X1l
17T=] |
B
l X2 Ox2 2]

If we now transform the integral in (12.4) to an integral over K using the
mapping F:K— K, we get,

a}}='I(J-Tv¢i) -(I"TV ;) |det J|dg.

Further, by a simple calculation

J-T= (J l)T_ —— JO,
uctu
where
e
| o%3 Sﬁll
Jo= N
_3F;  9F||
| ot %)
so that finally
. Ay dR
(12.5)  al=[(0Vé)- G0V
{ ) ij R i i [det J|

al oo
10uUs ¢ mainix &:ément g;; tan

be ¢ e evaluating an i al o
the reference element K. We see that the integrand is a rational function r(%)
(ie, r(%)=p(%)/q(%X) with p and q polynomials), and thus in general it is difficult
to evaluate the integral (12.5) analytically. In practice this integral is most
conveniently evaluated approximately by some appropriate quadrature for-

JUU P
muia, as discussed below.
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(c) The interpolation error

Given a function v on K, we define the interpolant wvePx in the usual way
by requiring that ntv(al)=v(al), i=1, . . ., 6. If K is our usual triangle we have
from Chapter 4

(12.6) [lv—mv]|m k) < Ch O<ss<r<3.

The estimate also holds for a curved triangle K if K is not “too curved”; more
precisely if [a’—a%|=0(h%) with a5 and a5 the points of Fig 12.4. Thus ina
typical application where the curved elements approximate a smooth bound-
ary curve, then the estimate (12.6) will hold.

(d) The corresponding space V,
Let Ty={K) be atrian i

o
%7 deatnang

u ient \1\ P, K,AK} wuclc
the “triangles” K may have one or more curved edges. Let Qy, be the union
of the elements in Th. Then Qp is an approximation of Q with piecewise
quadratic boundary (see Fig 12.1). We now define in the usual way the finite
element space

Vh={veH'(Qn): v|xePx, KeTy}.
It is then easy to see that if v|gxePk for KeTy, and v is continuous at the node

points of T, then v is continuous across all element edges and thus veH!(Qy).
Thus, we may choose the values at the node points as global degrees of

(12.70)  fju—up|iL(@)<Ch¥|ullw@). O

12.2 Numerical integration (quadrature)

We have seen above that the elements in the element stiffness matrix for a
curved element contain integrals that may be difficult to evaluate exactly. We
meet the same difficulty in the case of nonlinear problems or differential
equations with variable coefficients. For example in the heat equation of

Exampie 2.7 the eiements of the eiement stiffness matrix are

2 A
2 3
(128) a¥=[ T kn(x) ¥ 2% gy
K m=1 OXm OXm
whiere km{x) is the heat conductivity in the xy-direction at the point x.



To evaluate such integrals in practice one would use a suitably chosen
numericai quadrature formuia of the form:

4q .
{ JEx)dx ~ X f(yhw;
K =1
where the wj, j=1, . . ., q, are certain weights and the yi are certain points

in the e[emem K.

To estimate the error committed in using the quadrature formula (12.9) we
check for which polynomials p the formula (1249) is exact, ie, for which

n . . . A .
(12.9) | [f(x)dx— = f(y))wj| < Chr*1 JiDef]dx.
K j=1
Let us now give some simple quadrature formulas. Here r indicates the
maximal degree of the polynomials for which the formula is exact. Further,
al (i=1, 2, 3) are the vertices of the triangle K, bl (j=1, 2, 3) denote the mid
points of the sides of K and a'2? the center of gravity of K. By Q we denote

a rectangle with sides parallel to the coordinate axis of lengths 2h; and 2h,
r for exampie, the following
jfdx~f(ai?%) area(K) f/\i r=1
K
n K A\
[tdx~ 3 f(bi) 2real) /N =2
K j=1 2 [ANSSNEEA ¥
Jrdew% () area(K)+ (b)) V2 area(K)1
K =1 20 15
(@) 9 area(K) /-.\ =3
20
[ b1 h h h, h; h
[ | £ 2L, 22 ) o DL D) (D1 B2
Q L\V3 V3 \V3 V3 \ V3 V3
of (__hL 2\] area(K)‘ .o | =3
\ V3 3]l 4
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auadratica Ona can chow that if tha intaoralg 2 AN are comnuted with a
quadratics. One can show that if the integrals {12.4) are computed with a
Anadratiiea farmnla W chish :n Avant Cn.- '\r\]‘yﬂl\m-i\ll‘ of deoree r=2 than Oho
quadrature formula which is cxact for polynomials of degree r=2, then th

error estimate (12.6) holds, that is |[u—us||u'(e,)=0(h?). Further, to compute

the integrals (12.8) using quadrature one should use quadrature formulas
which are exact for polynomials of degree 2r—2 when using piecewise
polynomials @;ePy(K). O

Problems

12.1  Consider the mapping F:K—K, where F(r,0)=(rsin 6,rcos ).
K={(r, 0): 1<r<2, 0<0<2n}, K= {xeR2 l<lx|<2} Show that the
Jacobian of F is different from zero in K and that F:K— K is not
one-to-one. This shows that the condition that the Jacobian is non-zero
is not sufficient to guarantee that a mapping is giobaily one-to-one.

122 Let T be a circle wnh dlametcr d and let Fh be a polygonal

—
%)
w

Prove that if K is a convex quadrllateral then we may define an
isoparametric finite element (K, Pg, Zk) by (12.1) and (12.2). This
finite element is frequently used in applications.
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13. Some non-linear problems

13.1 Introduction

In this chapter we consider some applications of finite element methods to
non-linear problems in continuum mechanics. We will just in d cate som
aspects of this extremely rich problem area. We first consider a class of convex
minimization problems generallzmg the quadratic minimization problems

ied in Lnapt . These pruulcmb correspond to non-linear elllpllc
partial differential equations and so called variational inequalities. We wili
then discuss a non-linear parabolic problem modelling e g heat conduction
with heat conduction coefficient and heat production term dependmg on the
temperature. The finite element methods of Chapters 1 to 8 may be directly
extended to these problems Finally we consider extensions of the streamline
dlffublul’l method of Chapter 9 to the Euier and Navier-Stokes equanons for

an incom, luid, and to a model problem for compre

)

In all cases thc discrete problems obtained after application of a finite
element method, consist of non-linear systems of equations to be solved. We
also comment on some iterative methods of Newton type for the numerical
solution of these systems.

13.2 Convex minimization problems

13.2.1 The continuous problem

‘We have seen th: ny linear stationary problems in mechanics and physics
may be formulated as minimization problems of the form

(13.1) Min F(v),

where V is a Hilbert space and F:V—R is a quadratxc functlonal We will
now briefly discuss generalizations of (13. é

=n
o

related to non-linear elliptic problems. To formulate these generaiization: we
need the following definitions (as before V is a Hilbert space with scalar
product (.,.)y and norm || - ||v). A set K<V is said to be convex if for all v

wekK and 0<oa=1, one has

(13.3) F(av+(1—a)w) < aF(v)+(1-a)F(w).

The functional F is said to be strictly convex if equality holds in (13.3) only
for a=0 or a=1.

aF (v) + (1-<1)F(>\\ _____ - 7

F(av+ (1-a)w) b — — S~ = —

v av+ (1-a)w w
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Example 13.1 A linear functional is evidently convex. The quadratic func-
. 102 P
tional F(v)=; |lv|]|yy, veV, is strictly convex (cf Problem 13.4). O

We further say that a set Ke'V is closed if xjeK and ||x;—x|lv— 0 as j—
imply that xeK. Finally we say that a functional F:K— R is continuous if xje K
and ||x;—x|lv—0 as j— o, where xeK, imply that F(xj)— F(x) as j— .

We consider minimization problems of the form

(13.4)  Min F(v),

where KcV is a closed convex set and F:K— R is convex and continuous.
TE W LY 4l P T T T T s U RS S P S Dy
11 D7 v, uicn \AJ ‘9) lb a comnstrain€a lllllllllllLdllUl] PIUUIC"I weE lllCll bCCK o
minimize F(v) under the side condition veK. If K=V we have an unconstrai-
ned minimization problem. Problems of the form (13.4) are related to
variational inequalities, see [DL], [GLT].

Let us now formulate a general result concerning existence and uniqueness
of solutions to probiems of the form (13.4).

F(u)=Min F(v).
veK

If F is strictly convex, then u is uniquely determined.

now give some examples of probl
formulated in the form (13.4).

Example 13.2 Our standard problem (2.4) from Chapter 2 has the form (13.4)
with K=V and

where a(.,.) and L(.) satisfy the conditions (i)—(iv) of Section 2.1. Here F
is strictly convex and continuous and by (2.2) and (2.3),

2 T o o \
VI\V—AIIVHV:HVIIVEIIVllv A)

250

~

13. 4 are satistied and

heore

as ||v|ly—> . Thus, the assumptlons of
exlb[el’lu: dnu umqucuc&

3

pamcundr that Theorem

Example 13.3 Let V=H(1)(Q) where Q is a bounded domain in R? with
boundary T. Let yeH!(Q) be a given function defined on Q such that y(x)<0
for xeI' and define

K={veH}(Q): v=v in Q}.

laarly ic o
wikany Kisc

and one can also show that K is closed. Further let F be
defined as in Example 13.2 with a and L given by Example 2.3. Then the
assumptions of Theorem 13.1 are satisfied. The unique solution ueK of (13.4)
in this case represents e g the deflection of a membrane fixed at its boundary

under the presence of an obstacle given by the function . The side condition

onvex
29

nve ne

. TS O oorres ~onds to the fact that the membrane cannot
uek, ie, u=y in Q, corresponds to the fact that the membrane cannot

penetrate the obstacle cf Fig 13.3. For more examples of similar nature, see
[DL], [GLT].

/
[\

Fig 13.3
Example 13.4 Consider the non-linear elliptic problem
: - .
9 -2 2] 2w vun2|-rine,
X1\ ox1) oXz)

u=0 onT,

where Q is a two-dimensional bounded domain with boundary I'and v:R— R
is a given positive function. This problem is obtained, for example, from the
following Maxweli’s equations modeiling a two-dimensional magnetic field
problem:

V xH=j,
(13.6) B=u(|BA)H,

div R=0,
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magnetic field, B=(By, B,, 0) is the magnetic

c _y, f is the magnetic permeability assumed to depend on [b[‘ and
j=(0,0, —f) is a given electric current density. The probiems (13. 5)and (13.6)
are connected through the magnetic vector potential A=(0, 0, u) related to
B by B=V XA, so that in particular [BIZ—IVUP and through the relation

Then (13.5) corresponds to the minimization problem

(13.8) Min F(v)

veV
where
(13 0 VRN W R NP
(13.%) V) ZJWUVH JOx— j1v ax,

Q Q
V=H\(Q).
ol>=)

To see thic formally naote that if PR TP, £ 120y it
2O SCC LS IoTmany, note inat it U is a sowtion of (13.9), then for any veV

g(0)=<g(e)=F(u+ev) VeeR,
so that g’(0)=0 which gives
KJ;CP'UVU]Z)VU' Vv=[fv dx VveV.
Q

But, using (13.7), this is a weak form
v is non- decreamnp

1] i W iav
o<v(E)<vy, E=0. Then ¢ is convex and it is easy to see that F given by (13.9)
is convex, continuous and that F(v)— » as [|v|]ly— «. 0O

<

Example 13.5 Consider the minimai surface problem

(13.10) Min F(v),

v=gon I’
whara
where

F(v)= [ (14]Vv]?)i"2dx,

Q

where Q is a bounded domain in el a1 . - .
where £2 is a bounded domain in the pmuc with boundary 1 and g 1s a smooth
function. Here F(v) represents the area of the surface given by the graph of
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the function v. The solution of (13.10) corresponds to a soap film spanned

by the graph of the boundary function g, cf Fig 13.4.

Fig 13.4

T ot us now check if Theorem 12.1 mav be used to nrove existence of a sglution
Letus now check if Theorem 13.1 may be used to prove existence cf a sclution
of (12.10). It is natural to start with V=HUIQ) and K={veHUQ): v=¢ on
of (13.10). It is natural o start with V=0'(8) and K= ver'(&): v=gon

£ o

I'}. We easily check that F: K— R is convex and continuous but we cannot,
however guarantee that F(v) — = if [|v||y— o, cf Problem 13.5. To be able
to prove existence of a solution of (13.10), using a variant of Theorem of 13.1,
the space V has to be chosen larger than Hl(Q) (basically, V would be the
‘‘‘‘‘‘‘‘‘‘ e Fiace Aollonsliinn s limbasen

Space of functions on £ whose first derivatives are llllCEldUlC Or moie
precisely, the functions on Q of bounded variation cf [T2]). O

Example 13.6 A problem similar to (13.10) occurs as a model for the
displacement of a body made of an elastic, perfectly plastic material under
a load f. In two dimensions this problem takes the form (13.4) with now

F()= [0 Tv0l)ds— 1 dx,
Q Q
[Le o<,
&
om={
[l ifr>1
\Z

Again we need to take V larger than H)(Q) to obtain existence in general (cf

4a &y

uxample 13.5). .“\ISO I ndb o UC smali CHUUgﬂ to dVUl(.l ndvmg

PRI VRN

I r(V)=—%x, which COrreSpOnGS to CUlldpSe of the elasto- pldb[](— DUU)’ and
non-existence of a solution, cf [T2], [IS2]. O

S bl [Sndnd &t



Example 13.7 An alternative formulation of the elasto-plastic problem of the

mreieiie awanele S , c

})lCVlUub w\aulp <, usi 1g stresses instead of lapldccmcmb as um(nowns is as

L1 i A 0Oy
10110OWS le rlUUlClIl <.9):

Hf={qeH: divq+{=0 in Q},
H={g=(q1,92): gieL2(Q)}=[L2(Q)P2,
P={qeH: |q(x)|<1, xeQ},

One can easily show that K is closed in H and the existence of a solution follows
from Theorem 13.4 if K is non-empty. The latter condition will be satisfied
if again the load f is below the collapse load. O

13.2.2 Discretizations

Suppose now we have a convex minimization problem of the form (13.4). A
discrete analogue of this problem is obtained by replacing K with Kp=KNVy,
where Vy, is a finite-dimensional subspace of V. This leads to the finite-
dimensionai minimization probiem:
(13.11) Min F(v).

veKy

In Example 13.3 above we may e g choose

Kp={veVp: v=y in Q},
where thH(l) is a standard finite element space of piecewise linear functions
on a triangulation Ty. Introducing as usual a basis {@, . . ., gum]} for Vy, the

problem (13.11) may be written as a convex minimization problem in RM of
the form

(13.12)  Min f(n)
neQ

mization problem in RM. We note that the typical problem (7.1) of Chapter
7 has the form (13.12) with Q=RM and f quadratic, f(n)=£n -An—=b-.
Z

13.2.3 Numerical methods for convex minimization problems

Let us very briefly indicate some methods for the numerical solution of convex

minimization problems of the form (13.12). We shall then use the notation

of Section 7.1 with in particular ' and f” the gradient and Hessian of f (which

we assume to exist). Let us then first consider the unconstrained case wiih
n

Q=RM, In this case it is easy to show that EcRM is a solution of (13.12), ie,
fHEY<f(n) YneRM_if and only if
f(E)<f(n) YneRY, if and only if

Further, if f is strictly convex, corresponding to f“(n) being positive definite
for all neRM, then the solution & is uniquely determined.

ical solution of {13.12) with Q= RM we shall consider, as in
solution of (13. we shall consider, as in

cal
Chapter 7, iterative methods of the form

In this method one chooses, of course,
dk=—1(EY), o=,
where

f(Ek+ PPt d¥)=min f(EX+ad¥).
a=0
As in the special case of a quadratic functional one can prove that the rate
of convergence of this method is inversely proportional to the condition

PYTZN

number of the Hessian £"(§).



(b) Newtons method

In this method we have

dk— —fr(eky—1¢7(gK)
- L A> 7 >/

5

4
ax=1.

Note that in this case one has to solve a linear system of equations with
coeffxcnem matrlx t"(EK) at each step. If t”( )1s non-singuiar (thus in particuiar
i n

neighbourhood of €. In this
if |Ek—E|<9, then

P PRENVIE SRS R
‘HC IIIdlll pruuicm Wllh Ncwuu 15 mcv

1

approximation. Once this is achieved one gets the solution with very fe

. To get such an initial approximation €K one may have to choose
ak<1 to start with. In this case the method is a damped Newton method.

hod is to get Hfiaiantly oood initial
a 3 to get a suinciciiuy gooa ifitiar

(¢) Quasi-Newton methods

These methods are variants of Newton’s method of the form
dk=—Hif (89), aie=ai”,

where Hy is an MXM matrix which may be viewed as an approximation of
£"(EX)~1. In the simplest case one may choose

H=f"(E0)~1, k=0, 1,
. . B
which corresponds to the classical modified Newton’s method, or one may take

where C=ETE is an approximation of e g {"(£%) with E sparse, in which case
we get preconditioned variants of the gradient method, ct Section 7.4. In a

true quasi-Newton method the matrices Hy arc successively updated in a
_ < L. SRSPUPS R P H ’ 4 - oivag informatin
i he fact that the diffi f (tk\*f (Ek 1) gives information

9] for
etter approximations of f"(§)~! as k

increases. The quasi-Newton methods are very efficient on large classes of
problems (see e g [MS]).
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(d) Generalized conjugate gradient (Fletcher-Reeves)
This method reads:

Bk,

Ek+1=gky g, gk
> -

k+1. ok+1
p=t_E
s
g gk
where Qk f (Pk\ and d0=—¢0 Ugsuallv a restart with d¥= — oK is made in thic
g". Usually a restart with d g~ is made in this

method at certain intervals, e g every Mth step.
Finally, let us just mention that to solve the problem (13.12) in the case
Q#RM, ie, the case of a constrained minimization problem, one may use

different metnoas from nonlmear programmmg such as, for example, penalty
methods, nro

anUb uuamy

13.3 A non-linear parabolic problem
Let us consider the following non-linear parabolic problem:

.4V (a(w) Vu)=t(w) in QxI,

on I'x1I,

-~
[
w
NN
)

-

Il
=

where a:R—R is a given function satisfying ap<a(r)<aj, reR for some
positive constants aj and f:R—R is given. This problem models heat

Pr IPEROE T T

condauction with heat conduction coefficient a and heat production tdepend-
ing on the unknown u. Svstems of equations of the form (13.12) also mode

y uations of the form (13.12) alsc model
e g chemical reactions.

A weak formulation of (13.12) reads as follows: Find u(t)e V= Hn( Q), tel,
such that

(a(t), v)+a(u(t); u(t), v)=(f(u(t)),

(13.13) (H(u(t)),

u(0)=ug,

v) YveV. tel
/ eV, tel,
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where

fa(u)VwVvdx, (v,w)=[vwdx.

Jayuws v J

Q Q

Discretizing (13.13) by extending the backward Euler method (8. 29) we get

the following discrete analogue of (13.13): Find U"eVy, n=1, 2, . ., N, such
that for n=1, . . ., N,

(13.14)  (UP—U"1, v)+kga(U; U, v)=kn(f(U"), V) VVEVh,

where U%=uy.
Under the assum

pti schi!z continuous (ie for
me constant C, !f(
e

tion tha g

T )—f(s)|<C|r—s| and similarly for a) the error estimate
.42) may be generalized to (13.14) (see [EJ1]). Also the discontinuous
Galerkin method (8.35) may directly be extended to (13.13) (cf Problem 13.2).

ncompressible Euler equations
13.4.1 The continuous problem

Let Q be a simply connected bounded domain in R? with boundary I'. Let

us recall the Euler equations for an incompressibie inviscid fluid enclosed in
Py s
Q: Given g and uy find the velocity u=(ui, uy) and the pressure p such that

9
13 15a) f_|i+u-Vu.;+—p=gi

in QxI, i=1, 2,

Xi
(13.15b)  div u=0 in QxI,
(13.15¢) u-n=0 on I'XI,
(15.15d) u=ug in Q for t=0,
where as usual n=n(x) is the outward unit normal to T at xel and i=(0, T).
It is known that (see eg [K]) if g, up and I are smoo and div 0 and

f1a gy oA mieria G

ug-n=0 on T, then UJ 1) adimits a uniquc smoo
problem (13.15) is an ple of a nonlinear hy perbohc problem Note that

prooiem (12.19) I

the boundary condition u - n=0 states that no fluid particles enter or leave the
domain Q.

In this section we will briefly consider two possible ways of di iscretizing
(13.15) using streamline diffusion finite element methods. The first method

[ ]
w
oo

[ 3y 3y Q
u=roty= , = in Q,
M {\axz axl,

¥
Alternatively ¢y may be specified as the unique solution of the Poisson
equation:

—AyY(.,t)=w(.,t) inQ, tel,

P(.,t)=0 onT, tel,
where
Jup ou
w=rot u= -
X1 X2
is the vorticity of the velocity field u. Applying now the operator rot just
defined tg (12 18a) we ghtain tha follawing raformulation of (12 15).
defined to (13.15a), we obtain the following reformulation of (13.15):
Find w: QXI— R such that
o+u(w) - Vo=f in QxI,
(13.16b)
w=wp in Q for t=0,

where f=rot g, wp=rot ug and u(w)=rot ¢, where  satisfies (13.16a). We
see that (13.16b) formaliy has the form (9.3) with a coefficient B=u(w)
depending on the unknown solution w. Notice that we do not have to specify
any boundary conditions for o in {13.16b) since by (13.15¢), u-n=C on I.

conditions for w in (13.16b) since 13.15¢), u-n=0on'

We shall now indicate how to extend the streamlme dlffusmn and the
discontinuous Galerkin method of Chapter 9 to the nonlinear hyperbolic
problem (13.16).

13.4.2 The streamline diffusion method in

(w, V)-formulation

h={1} be a quasn»umform finite elemen trlangulano of Q with lements
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also of size h, and introduce for a given integer r=1 and m=1, . . ., N the

(13.17)  Um={veH!(Sm): v|k€P:(t)XPy(Ipn), YK=1XIy, t€Tp},

ie, U™ consists of continuous functions defined on Sy, that are piecewise
polynomial in x and polynomial in t of degree at most r. We also introduce
the spaces

(13.18)  Wm={q@eH'(Sp): @|keP;+1(1)XPy(Im)

YK=1XIn, 1€Th, and =0 on I'xIn},
ie, W™ consists of continuous functions on Sy, that are piecewise polynomial
in x of degree r+1 and polynomial in t of degree r. We shall further use the
ollowine notation analocous to that of Section 9.0
following notation analogous to that of Section 9.9
(w, V)= | wy dxdt,
Sn
<w, v>T= | w(x, ty) v(X, ty) dx,
Q
va(x, t)= lim v(x,t+s), Vl=vi—v_
s— 0%
The streamline diffusion method for (13.16) can now be formulated as

+<{w™], v4>T1 = (f, v+h(v+uP(ym) - Vv))m  YveUm,
(13.19b)  (Vym, Ve)m=(om, )" Veewm,
where w‘l=wo for t=0 and u™(y™)=rot Y™. Here and below we also use the
convention that w™=w™""! for t=ty_1.

13.4.3 The discontinuous Galerkin method in (w, \y)-formulation

Let B:Q—R? be a direction field such that B-n is continuous across
interelement sides of the triangulation Ty, with normal directions n. We define
for each K=1XIy, t€T, with boundary 3K:

K- (B)={(x, t)edK: n(x, t)- B(x, t)+ny(x, t)<0},
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where (n(x, t), ni(x, t)) denotes the outward unit normal to 3K at (x, t)e3K.
Further iet us introduce for m=1, . . ., N, the space

M={veLy(Sm): V|[kE€P{(T)XPr(Im), VK=1XIy, 1€Th},

ie, W™ consists of possibly discontinuous functions on S, that are piecewise
polynomial in x and polynomial in t of degree at most r. Let us also for
(x, t)e3K_(B) introduce the notation

vi(x, t)= lim v(x+sn-B, t+s), [v]=vi—v_.
s> 02

We can now formulate the discontinuous Galerkin method for (13.16) as

foliows: Find (0™, y™)eWTX W™ m=1, ..., N, such that form=1, ..., N,
Z{[(o™+B- VoMvdxdt+ [ [w™]vi|n-B+ndds}=0
K K 3K ()
VveWm,
(13200 (Vy™, Vo) = (o™, @)™  Voe¥m,
where B=rot Y™, % =wy for t=0 and we sum over all K=tXI, with T€Th.
Jym

Note that since 1™ is continuous inx, - n=a is continuous across inter-
S

element boundaries S of Ty, where P denotes differentiation along S.
s

13.4.4 The streamline diffusion method in (u, p)-formuiation
For m=1, . . ., N, we introduce the velocity space

Vm={v: v=rot ¢, pe¥Ym},

and the pressure space O™=U™ where W™ and U™ are given by (13.18) and
(13.17). We observe that the functions v in V™ satisfy div v=0in Q, v-n=0
on I' and v - n is continuous across interelement boundaries.

We can now formulate the following streamline diffusion method for

_m\ —Ym ym

(13.15): Find (u™, p™)eV®XQ™, m=1, . . ., N, such that for m=1, . . ., N,

(1321) 2 { J(@™+B- Vum+Vp™, v+h(v+B - Vv+ Vg))dxdt

@
tal
-
=
%]



Toaloo f N Ao s ho conlon s ook b thot oleboo ol sha
rurinér, {.,.) Génoies iun€ scaiar proauct i INOTE tnat arnougn e
ettt ae < =M coaiofo 4l JURIPIPIS NS LYRIPRRRpE LYE SUSUpE LR 1 NIPS ROy
VEIOCItIES VE V™ satisly tne inCompressiviiity conaition aiv v=v, unc préssuic

z
)

is still present in the formulation (13.21), cf (5.7). also that choosing v=0
in (13.21) gives the following dlscrete Poisson equation, with Neumann

boundary condition, for the pressure p™ in terms of u™

(Vp™, Vq)= z (g—um=B-Vu™, Vq)  VqeQ™,

which corresponds to the following equation obtained by applying the
divergence operator to (13.15a)

— Ap=—div(g—u—u- Vu) in Q,
3p 2. . o -

= = 2 (g—uj—u- Vujn; onl.
an =1

For the methods (13.19)—(13.21) one can prove global error estimates of order

r+% R
0(h 2), see [JS].

13.5 The

=0

ncompressible Navier-Stokes equations

The extension of the Euler eguations (12.15) to the case of a viscous fluid wit
The extension of the Euler equations (13.15) to the case of a viscous fluid with
viceosity >0 ia tha Navier-Stokec eauations for an incomnressible fluid
viscosity >0, ie the Navier-Stokes equations for an incompressible fluid,
reads as follows: Given g and u find the velocity u and pressure p such that

. 3ap . .
(13.22a)  Gj+u- Vui+ == —pAui=g; in QxI, i=1, 2,

3%

(12 550y o ST
(i3.22b)  div u=0 in QxI,
(13.22c) u-n=u-s=0 on I'XI,
(13.22d) u=uy in Q for t=0,

where s is a tangential direction to I'. We note that the boundary condition

u-n=0 in (13.15) is here supplemented by the no-slip condition u-s=0 on

T requiring the tangential velocity to be zero on I'.

The Navier- Stokes equations (]3 22) are an example of a non-linear mixed
: I

ar ny|

LT I L
U+ VvV ujanad nnedar Ciipuc visc

in the case of small viscosity u
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numerlcal approximation discussed in Chapter 9. If w is not small, then (13.22)
inated by the linear viscous term and our eariier methods for Stokes
biem may be directly extended to (13.22), see [GR], [T1].

To extend the streamline diffusion method of the previous subsection to
the Navier-Stokes equation (13.22) with p small we shall introduce the
vorticity as an additional unknown. This is needed because the discrete
velocities in the velocity space V™ are not necessarily continuous in x (the

tangentiai veiocities may be discontinuous across inter-element boundaries)

and thus it is not clear how to handle the viscous term Au. We note that if
o=rot u then since div u=0. we have
w=rot u then since div u=0, we have

[ Bw dw

rot o= y — =—Au.
3%xn 3x;

\ oX2 1/
We now formulate the following streamline diffusion method for (13.22): Find
(1M M M) UMy My M o 1 N qiich thot foo o1
W, pr, w)ev AU RAY T, =1, .. ., 1y, Sucn tnat 1or m=1, . . ., 1‘4,

= [(g, v+8(V+B- Vv+Vq))dxdt  V(v, @) eVmxQ™m,

\&»

(13.23b) (rot 6, u™)m=(w™, 6)m  VOeQM,

where 8=Ch with C a sufficiently small positive constant and as above f=u™
and u®=uy for t=0. Note that (13.23b) gives a discrete formulation of the
relation w=rot u together with the no-slip boundary condition u-s=0on I

712 A2y

a (15.49) is ruoust accurate, umIormly stabie for U*[,LQII and

suitabie for L(Jmpll(.dlc(l flows. In x:xample 13.8 beiow we presem some resuits
obtained lmmg this method with r=1 ie, p!CCCW!SE linear vP]nmfv pressure

and vorticity. For an analysis of (13.23), see [JS]. Numerical results for (13.21)
and (13.23) are given in [Han], cf Example 13.8.

We conclude with an application of the streamline diffusion method to amodel
problem for compressible fluid flow, namely Burgers’ equation: Find u:



2.

(13.242)  i+u 28 —u Su_yg (x, H)eIxI,
X 3x

(13.24b)  u(0, t)=u(l, t)=0 tel,

(13.24c)  u(x, 0)=ug(x), xel,

where J=(0, 1), I=(0, T), u=0 and uy is a given initial function. If u=0 then
the boundary condition u(0, t)=0 is enforced only if u(0, t)=0 and u(1, t)=0
only if u(l t)<0 corresponding to inflow conditions Let us use the notation
define

U"'—{VEU"‘ v(x, t)=0 for x=0, 1}.

The streamline diffusion method for (13.24) with u=0 can now be formulated

as follows: Find ume U™, m=1, , N, such that for m=1, .. ., N,
(13.25) (l’l“‘*f—umSL v+h(v+umavhm+<{um], v, >m-l=( va\i'/m,
: ’ : x ax”

where u’=uy for t=0. This method can be directly extended to the case

O=<p=<h following Section 9.6.
One can prove (see [JSz1]) that if the finite element solutions u™ satisfying

(13.25) stay uniformiy bounded as the mesh size tends to zero, then the u™

vill converge to the (entropy) solution u of (13.24) with i=0. For applications
of streamline diffusion type methods to the compressible Euler and Navier-
Stokes equations, see [HFM], [HMM], [HM1], [HM2], [JSz2], [Sz]. Methods
of this type hold promise to be the first successful theoretically supported finite

element methods for compressible flow problems with potentlally extensive

Problems
13.1  Prove the following stability estimate for (13.25) for m=1, . . ., N,
m
a 2 I1rqnl ¢ V112
Ham(., tm)-11f 0+ Ezlll“nl G ta-1) iy
n=
oh S e m QUT 2 o
+zh 2 jjuttut =l s ) < lluollfm
n=1 X
13.2  Extend the discontinuous Galerkin method (8.35) to (13.13). Prove
a basic stability estimate
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13.3  Defining (U, P) on @x(0, ty) by Uls_=um, Pls,=p™, m=1, ..., N,
where (u™, p™) satisfies (13.21), prove the followmg stabnlltv estimate
in the case g=0:

HU(-JNLHLZ(Q)‘*’ 2{ [ |[U)?n-U+nds
K 3K_(U)
+2h [|[U+U- VU+ VP|2dx) < lluol £ 0,
K

where we sum over

um over elements K=1xIy, t€Th, m=1, , N
13.4  Prove that the quadratic functional F(v)= 1 |Iv]|Z is convex, cf
Example 13.1. 2
13.5  Prove with the notation of Example 13.5 that there is a sequence {v;}

such that F(v;)<1I and ||vj||y— o as i— .

13.6  Prove formally that the problems of Examples 13.6 and 13.7

n .6 ar .7 are
equivalent.
Example 13.8 In Fig 13.5 below we give for a cavity problem the velocities
obtained by the method (13.23) after 5, 10 and 15 time steps with r=1 (ie
piecewise linear velociti

ities, pressure and vorticity), d=h=At, p=10-3, given
inlet velocity=1 and initial velocity=0 on a 8x16 mesh.

Exampie i3.9 In Fig 13.6 below we give the result of applying (13.25) with
and without shock-capturing and with h=0.1 in a case where the exact solution
of (13.24) with u=0 consists of a rarefaction wave and a shock and J is replaced
by (=, ). The exact solution is represented by the dotted line (see [1Sz1]).
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