
The C++ fPoint class

E. Robert Tisdale

May 15, 1999

Abstract

The C++ fPoint class library is used to implement numerical algo-
rithms which will execute in either floating-point or fixed-point mode in or-
der to help convert numerical algorithms from floating-point arithmetic to
fixed-point arithmetic. Variables of type fPoint are actually represented
by high-precision floating-point numbers and all operations on variables
of type fPoint are implemented with high-precision floating-point arith-
metic. In floating-point mode, the fixed-point range and precision are
ignored and the assignment operation gathers statistics on the floating-
point result which help determine range and precision requirements for
the fixed-point variable. In fixed-point mode, the assignment operation
coerces the floating-point result into the range and precision specified for
the fixed-point variable. Operations on variables of type fPoint which
return a floating-point result by value may not be combined with other
operations in an expression unless the intermediate result is first assigned
to a variable of type fPoint.

1 Introduction

1.1 Fixed-point arithmetic

A fixed-point number is simply a denormalized floating-point number with a
constant exponent. A sign and magnitude representation is typical for a floating-
point mantissa but a 2’s complement representation is more common for a fixed-
point mantissa. A binary fixed-point number

x = m · 2e (1)

where the exponent e is a constant integer and the 2’s complement mantissa

m = −m0 +
p∑
k=1

mk · 2−k (2)

where the mantissa bit mk ∈ {0, 1}, the most significant mantissa bit m0 is the
sign bit and p ≥ 0 is the position of the least significant mantissa bit. The
fixed-point range

−2e ≤ x ≤ +2e − 2e−p (3)

1



is restricted by the range

−1 ≤ m ≤ +1− 2−p (4)

of the mantissa.
Numerical algorithms are sensitive to both method errors and representation

errors but these errors are independent of each other. The numerical analyst
simply assumes that the method used to compute the result for any operation
on finite precision variables is exact or at least sufficiently accurate to determine
the nearest value of the finite precision variable to which the result is assigned.

If the result x is assigned to fixed-point variable, it is truncated

x← bx · 2p−ec2e−p (5)

or rounded
x← bx · 2p−e + 1/2c2e−p (6)

to the nearest multiple of 2e−p then it wraps around

x← (x+ 2e) mod 2 · 2e − 2e (7)

the interval [−2e,+2e] or saturates

x←
{
−2e if x < −2e

+2e − 2e−p if + 2e − 2e−p < x
(8)

unless x ∈ [−2e,+2e − 2e−p].

2 class fPoint

A variable of type fPoint has a high-precision floating-point representation and
a reference to a fixed-point specifier of type fPoint::Specification. Opera-
tions on variables of type fPoint which compute a floating-point result return
type fPoint::Result by value.

2.1 class fPoint::Specification

The fPoint::Specification class is derived from the fPoint::Statistics
class. It includes constant specifications for fixed-point range and precision,
fixed-point rounding, saturation and representation controls and a character
string which can be used to describe the specification.

2.1.1 Controls

The FlagBits enumeration

2



fPoint::Specification::FlagBits description
fPoint::Specification::ZeroBits clear all control flags
fPoint::Specification::Saturate saturate on overflow
fPoint::Specification::Roundoff round to the nearest
fPoint::Specification::Signless the mantissa is unsigned
fPoint::Specification::SignMagnitude sign and magnitude mantissa

The flagbits type definition

type synonym
unsigned int fPoint::Specification::flagbits

2.1.2 Static Data Members

type default initial value
int fPoint::Specification::DefaultExponent 0

unsigned int fPoint::Specification::DefaultPosition 15
flagbits fPoint::Specification::DefaultControls ZeroBits

const char* fPoint::Specification::DefaultNotation ""

2.1.3 Constructors

The explicit constructor fPoint::Specification(exponent, position,
controls, notation) where

type argument description
int exponent is the fixed-point exponent,

unsigned int position is the least significant bit position,
flagbits controls contains control flag bits and

const char* notation is descriptive notation.

Each argument assumes its respective default value if omitted.

2.1.4 Member Functions

exponent() returns the exponent.

position() returns the least significant bit position.

controls() returns the controls for saturation, rounding and representation.

notation() returns a pointer to the notation character string.

saturate() returns true if the fPoint::Specification::Saturate control
flag is set.

3



roundoff() returns true if the fPoint::Specification::Roundoff control
flag is set.

signless() returns true if the fPoint::Specification::Signless control
flag is set.

signmagnitude() returns true if the fPoint::Specification::SignMagnitude
control flag is set.

roundoff(x) returns x truncated or rounded to the nearest multiple of 2e−p

if 0 ≤ x < 2e where e = exponent() and p = position().

coerce(x) returns x truncated or rounded to the nearest multiple of 2e−p then
wrapped around the interval [−2e,+2e] or saturated if it is not in the interval
[−2e,+2e − 2e−p] where e = exponent() and p = position().

2.1.5 Operators

os << s writes the specification s to output stream os then returns a reference
to os.

is >> s reads a the specification from input stream is and discards it then
returns a reference to is.

2.2 class fPoint::Statistics

The fPoint::Statistics class accumulates statistics from all of the variables
of type fPoint which reference it. It collects and reports different statistics in
floating-point mode than it does in fixed-point mode. In floating-point mode, it
counts all the non-zero finite floating-point numbers assigned to all the variables
which reference it and computes the minimum, average and maximum floating-
point exponent and the variance from zero for them. It also counts the zeros and
non-finite floating-point numbers and reports them as underflows and overflows
respectively. In fixed-point mode, it simply counts the number of underflows
and overflows.

2.2.1 Constructors

The default constructor fPoint::Statistics() initializes the statistics.

2.2.2 Member Functions

update(x) updates the statistics using floating-point value x then returns a
reference to them.

samples() returns the number finite non-zero samples.

4



minimum() returns the minimum exponent.

average() returns the average exponent.

maximum() returns the maximum exponent.

variance() returns the variance from zero.

overflows() returns a reference to the number of overflows.

underflows() returns a reference to the number of underflows.

2.2.3 Operators

os << s writes the statistics s to output stream os then returns a reference
to os.

is >> s reads the statistics from input stream is and discards them then
returns a reference to is.

2.3 class fPoint::Result

Programmers cannot combine fixed-point and floating-point operations in an
expression accidentally because no operations are permitted on a variable of
type fPoint::Result except assignment to a variable of type fPoint.

fPoint a, b, c, d, t;
a = b + c + d; // error!
a = (t = b + c) + d; // ok
a = fPoint(b + c) + d; // ok

2.3.1 Constructors

The default constructor fPoint::Result(x) initializes the underlying rep-
resentation to the floating-point value of argument x or to some obviously in-
correct floating-point value such as an IEEE NaN if argument x is omitted.

2.3.2 Member Functions

floating() returns the floating-point value of the underlying representation.

2.3.3 Operators

operator =(x) assigns the floating-point value of argument x to the underly-
ing representation.

5



2.4 Mode Types

The ModeType enumeration

fPoint::ModeType arithmetic
fPoint::floatingPoint floating-point
fPoint::fixedPoint fixed-point

2.5 Static Data Members

The fPoint::Mode After the fPoint.h header file has been included, the
programmer must include one but not both of the following statements

const fPoint::ModeType fPoint::Mode = fPoint::floatingPoint;
const fPoint::ModeType fPoint::Mode = fPoint::fixedPoint;

in the global scope of the program.

The fPoint::InitialSpecifier

const
type fPoint::Specification initial value
data fPoint::InitialSpecifier fPoint::Specification()

is initialized with the initial default values.

The fPoint::DefaultSpecifier

const
type fPoint::Specification* initial value
data fPoint::DefaultSpecifier &fPoint::InitialSpecifier

2.6 Constructors

The explicit constructor fPoint(s, x) initializes a variable of type fPoint
which references fixed-point specifier s and assigns the floating-point value x to
the underlying representation. It references *fPoint::DefaultSpecifier if
argument s is omitted and initializes the underlying representation or to some
obviously incorrect floating-point value such as an IEEE NaN if argument x is
omitted.

2.7 Member Functions

floating() returns the floating-point value of the underlying representation.

specifier() returns a constant reference to the fixed-point specifier.

statistics() returns a reference to the floating-point statistics.

6



assign(x) assigns the floating-point value x to the underlying representation
then updates the statistics in floating-point mode or coerces the underlying
representation in fixed-point mode and returns a reference to the variable.

2.8 Operators

The fPoint class library includes all of the usual floating-point operators.

(const Specification&)x returns a reference to the fixed-point specifier ref-
erenced by x.

(Statistics&)x returns a reference to the statistics through the fixed-point
specifier referenced by x.

x << n returns the floating-point value of x multiplied by 2+n where argument
n is a positive integer.

x >> n returns the floating-point value of x multiplied by 2−n where argument
n is a positive integer.

os << x writes the floating-point value of x to output stream os then returns
a reference to os.

is >> x reads a floating-point value from input stream is and assigns it to
the underlying representation of x then returns a reference to is.

x <<= n assigns x << n to the underlying representation of x the returns a
reference to x.

x >>= n assigns x >> n to the underlying representation of x the returns a
reference to x.

2.9 Functions

The fPoint class library includes all of the usual floating-point functions.

7


