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Abstract. The large spread in length scales present in the hydrological problems requires
a high degree of refinement in the finite element mesh and, then, requires very large com-
putational resources. Also, in a 2D multi-aquifer model, the number of unknowns per
surface node s, at least, equal to the number of aquifers and aquitards. Due to this fact,
it is expected to have a very high demand of CPU computation time, calling for parallel
processing techniques. A C++ FEM code based on the PETSc-FEM and PETSc libraries
was developed.

Several systems of aquifers/aquitards coupled with a net of surface streams can be solved.
The streams are modeled with the KWM (Kinematic Wave Model) approzimation and
there is mass exchange between streams and aquifers through a resistance coefficient at
the stream walls. Both Manning and Chézy friction models are available for the streams.



1 INTRODUCTION

The aim of this work is to present the state of development of Large Scale Model for
Surface and Subsurface water flow in multi-aquifer systems. The study area is the ar-
gentinian Litoral, in the middle north-east of the country, where several non connected
multi-aquifer/river systems are founds (i.e Cululi, Las Conchas, San Antonio, Colastiné
and Monjes-Caniada Carrizales drainage systems), (Fig. 1). This area represents 1/8 of
the total area of the province of Santa Fe (130.000 km?).
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Figure 1: Drainage network and system location in province of Santa Fe.
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Surface and subsurface water flow problems (i.e. multi-aquifer/river systems) deal with

coupled nonlinear and linear differential equations in complex domains and dissimilar time
scales. The problem is highly dependent of the terrain topology where water flows. We
present the manner to obtain a “good” Delaunay tesellation from satellite data images
and the DTM data, digital terrain model (obtained from 88 topographical maps, scale
1:50.000), which represents the geometry of the stream/aquifer system and therefore the
mesh for the parallel finite element model. We interpolate any system physical properties
or via the Natural Neighbor Method.
The mathematical treatment of ground-water flows follows the confined aquifer theory or
the classical Dupuit approximation for unconfined aquifers whereas surface-water flows are
treated with the kinematic wave approximation for open channel flow (KWM model) as a
first approximation and we expect to implement a 2D Saint-Venant model in subsequent
step. A mathematical expression similar to Ohm’s law is used to simulate the interacting
term among the two hydrological components. The spread in time (slow time scale for
ground-water flow and fast time scale for surface flow) and length scales requires an
important degree of refinement in drainage network neighborhoods.



2 THE HYDROLOGICAL MODEL
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Figure 2: Aquifer/stream system.

per R | \\\\\\\kﬁ\\/zf /,7»’*‘>—frééti_c—5>u;féf.le
L\m s batom
n datum

Figure 3: Aquifer/stream system. Transverse 2D view.

The implemented module solves the problem of subsurface flow in a free aquifer, coupled
with a surface net of 1D streams. To model such system three element sets must be used:
an aquifer system representing the subsurface aquifer, a stream element set representing
the 1D stream and a stream_loss element set representing the losses from the stream to
the aquifer (or vice versa) see Fig. 2 and Fig. 3.

The aquifer element set is a 2D element set with triangle or quadrangle elements
(see Fig. 4). A per-node property eta represents the height of the aquifer bottom to
a given datum. The corresponding unknown for each node is the piezometric height or
the level of the freatic surface at that point ¢. On the other hand, the stream element
set represents a 1D stream of water. It has its own nodes, separate from the aquifer
nodes, whose coordinates must coincide with some corresponding node in the aquifer. For
instance, the aquifer element in the figure is connected to nodes n1, n2 and n3, while the
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Figure 4: Aquifer/stream system. Discretization.

stream element is connected to nodes n4 and n5. nl and nd have the same coordinates
(but different unknowns) and also n2 and n5. A constant per node field represents the
stream bottom height hy, with reference to the datum. So that, normally, we have for
each node two coordinates and the stream bottom height. The unknown for these nodes
is the height u of the stream free water surface with reference to the stream bottom. The
channel shape and friction model and coefficients are entered via properties described
below. If the stream level is above the freatic aquifer level (hy + u > ¢) then the stream
losses water to the aquifer and vice versa.
The equation for the aquifer integrated in the vertical direction is

0
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where S is the storativity, K is the hydraulic conductivity and G is a source term, due to

rain, losses from streams or other aquifers.
The equation for the stream is, according to the “Kinematic Wave Model” KWM

approach,’
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where u is the unknown field that represents the height of the water in the channel with
respect to the channel bottom as a function of time and a linear arc coordinate along the
stream, A is the transverse cross section of the stream and depends, through the geometry
of the channel, on the channel water height u. @ is the flow rate and, under the KWM
model is a function only of A through the friction law.

Q=~A", (3)

where v = C}, SY/2 P~! and m = 3/, for the Chezy friction model, and y = an~* S/2 p~2/3
and m = s/, for the Manning model, where S = (dh;/ds) is the slope of the stream bot-
tom, P is the wetted perimeter, and C}, @ and n (the Manning roughness) are model

(S(¢—m)g) =V - (K(¢—n)Ve)+ Y Ga, (1)

- Gsa (2)



constants.
The stream/aquifer interaction process occurs between a stream and its adjacent flood-
plain aquifer. Then, we can write the coupling,

Gy = P/R;(¢ — hy — u), (4)

where G, represent the gain or loss of the stream, and the main component is the loss
to the aquifer and Ry is the resistivity factor per unit arc length of the perimeter. The
corresponding gain to the aquifer is

Go, = —G5 or,, (5)

where I'; represents the planar curve of the stream and dr, is a Dirac’s delta distribution
with a unit intensity per unit length, i.e.

[ sose.as= [ s as ©)

The stream_loss element set represents this loss, and a typical discretization is shown
in Fig. 4. The stream loss element is connected to two nodes on the stream and two on
the aquifer.

Contrary to standard approaches, the coupling term is incorporated through a boundary
flux integral that arises naturally in the weak form of the governing equations rather than
through a source term.

3 NATURAL NEIGHBOR INTERPOLATION

In order to interpolate physical properties and topographical data from DTM maps we
have implemented a C++ Natural Neighbor interpolation function using CGAL geomet-
rical library?(http://www.cgal.com/).

Natural Neighbor shape functions are C*> everywhere, except at the nodes where they
are C° (3), see Fig. 5. This property and properties showed below make them powerful
in order to obtain a smooth interpolation.

Let x € 2 C R"™ be a point in R™ (n: the space dimension). Consider an interpolation
scheme for a vector-valued function (or a vector-field) u(x) : Q@ — R,

wh(o0) = 3 du(x)us Y

where u;(i = 1,2,...,N) are the nodal values at the N natural neighbors, and ¢; are
the natural neighbors shape functions associated with each node. For n = 2 the shape
function for the node i is the ratio of the area of overlap of the 2"%order dual Delaunay



tessellation cells* (i.e 2"%order Voronoi diagram cells) to the total area of the Voronoi cell

of x, (see Fig. 6 and Fig. 7).
Ai(x)

60 = 55, ®)
where A(x) = N: A;(x). For instance, the shape function for node 3 is
j=1*"J
_ As(x)
¢3(X) - A(X) : (9)

3.1 Properties
3.1.1 Interpolation

By definition of the shape function, Eq. 8), the property 0 < ¢;(x) < 1 is evident.
If x coincide with any node, i. e. with node 4, then it is seen that ¢;(x) = 1 and
¢j(x) =0 Vj # . Then,

$i(x;) = 0ij. (10)
3.1.2 Partition Unity

From Eq. 8, we have
N

D ¢i(x) =1 in Q. (11)

i=1
This relation implies that the interpolant exactly reproduce constant functions.
3.1.3 Linear Completeness

Natural Neighbors shape functions also satisfy local coordinate property,

x =Y ¢i(x)x;, (12)

=1

then, this interpolant function can exactly reproduce the geometrical coordinates.

3.1.4 Support

The support is seen to be the union of Delaunay circumcircles about node A (see Fig. 5).

The interpolation algorithm proceeds as follows:

1. Construct a Delaunay tessellation with nodes where values are knowns
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Figure 5: Support and Natural Neighbor shape function.

Figure 6: 1%‘order voronoi diagram.

2. For each node n; where we wish know the vector-value u”(x)

e Find the face F},, such as n; € F,,
e Construct a secondary local Delaunay tessellation with nodes in F;,; and node
n;
e Compute A;(x), (i=1,2,...,N)
e Compute u"(x) with Eq. 7
For instance, we can see in Fig. 8 points the height interpolation for nodal point of a

refined triangulation for our stream/aquifer FEM application (in black) from from iso-
height data points DTM map (in red) using the algorithm above.
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Figure 7: 2™order voronoi diagram for x.
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Figure 8: Height interpolation.



4 FEM COMPUTATIONS

The large time and length scales presents in surface-water and ground-water flow problems
entails to a large demand of computational resources. Typically, the range of length scales
vary among hundred of kilometers and hundred of meters while time scale vary between
days and years. A rough estimate suggests that triangulations in the order of 100,000
to 1,000,000 triangles should be used. Moreover, considering multi-aquifer system with
several layers the number of unknowns will be 10 to 20 unknowns per node. Therefore,
the expected number of unknowns lie between 10% and 107.

Regarding the efficiency of parallelism, FEM computations can be split basically in two
parts, matrix and right hand side assembly and linear system solution. The right hand
side and the matrix can be assembled in each processor almost independently, at the
exception of the contribution to nodes in the inter-subdomain interfaces. This requires
some inter-processor communication, but this is usually irrelevant, specially for very large
problems (In fact, the relation communication/computation for the assembly stage and
for a given fixed problem, scales with h, the mesh size.) The solution stage requires more
communication and, then, is less parallelizable. The strategy used in this work is to use a
Domain Decomposition Method, i.e. a mixture of iterative and direct solvers. We iterate a
GMRES method on the interface,® 19 and solve with a LU factorization in the subdomain
interiors. With this strategy, high computational efficiency can be attained. We adopt a
Backward Euler scheme for time integration.

5 NUMERICAL RESULTS

We present two examples of surface and subsurface interaction flow for Cululd stream
system. The first example is periodic case with wet and dry seasons (Fig. 9). A wet
season of 200 days with a precipitation rate of 1,000 mm/year. introduced in wet periods
is the annual average precipitation observed in last years (1,000 mm/year). A mesh of
96,131 triangular elements and 48,452 nodal points is used to represent the aquifer domain
(see Fig. 10). The average space between nodal river points is 100 meters. At time ¢ =0
the piezometric height in freatic aquifer is 30 meters above the aquifer bottom, while the
water height in stream is 10 meters above the streambed.

The hydraulic conductivity and storativity of freatic aquifer are 2 - 107 and 2.5 - 1072,
respectively. We adopt the Manning friction law. The roughness of stream channel is
3-1073 and the river width is 10 meters. The stream_loss resistivity average value is
10°. The time step adopted in both cases is Dt = 1 day.

The time used to solve each time step in the nonlinear coupled problem with 7 processor
Pentium IV 1.4-1.7 Ghz and 512 Mb RAM (Rambus) connected through a switch Fast
Ethernet (100 Mbit/sec, latency=0(100)) was 3.6 seconds in average.



5.1 First case

In figures 11 to 17 we see the freatic height level at time stages showed in Fig. 9.
The slightly increment in freatic levels in river vicinities is due to the high value of R;.
This value is not well determined yet and is the higher expected for that stream system.

5.2 Second case

The second example (results in figures 18 to 23) is a case with no raindrop and a constant
recharge of 5 meters in upstream boundaries. Physical constants and initial state of
aquifer freatic height level are holded. Resistivity coefficient for stream_loss element set
is smaller than the first case in the scope to appreciate the recharge of the aquifer due to
higher level of rivers.

6 CONCLUSIONS

The primary goal of the present work was the development of a large scale hydrological
model for surface and subsurface water flow.

More accurate physical data are being obtained through intensive measurements work.
Future work includes a 2D Saint-Venant model for surface flow, multi-layers/multi-aquifer
systems, pollutant transport.
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Figure 10: Aquifer mesh.
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Figure 11: ¢ at t = 0.

Figure 12: ¢ at t = 60 days.
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Figure 13: ¢ at t = 180 days.

Figure 14: ¢ at t = 330 days.
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Figure 15: ¢ at t = 420 days.

Figure 16: ¢ at t = 540 days.
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Figure 17: ¢ at t = 690 days.

Figure 18: ¢ at t = 0.
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Figure 19: ¢ at t = 200 days.

Figure 20: ¢ at t = 400 days.
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Figure 21: ¢ at t = 600 days.

Figure 22: ¢ at t = 800 days.
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Figure 23: ¢ at ¢t = 1000 days.



