_

PARALLEL FINITE ELEMENT MODEL FOR SURFACE AND SUBSURFACE HYDROLOGY

Rodrigo R. PAZ¹, Mario A. Storti¹, Sergio R. Idelsohn¹, Leticia B. RODRIGUEZ², Carlos A. VIONNET² and Germán P. FARÍAS²

1: Centro Internacional de Métodos Computacionales en Ingeniería CIMEC **INTEC/CONICET/UNL - Santa Fe, ARGENTINA**

2: Grupo de Estudios Hidro-Ambientales (GEHA). **UNL/CONICET - Santa Fe - ARGENTINA.**

MECOM 2002, October 28-31, 2002 - Santa Fe-Paraná. ARGENTINA

Parallel Solution for Large Scale Hydrological Systems.

- State of development of Large Scale Model for Surface and Subsurface water flow in multi-aquifer systems.
- Study Domain: Santa Fe province in the argentinian Litoral (130.000 km^2 ,

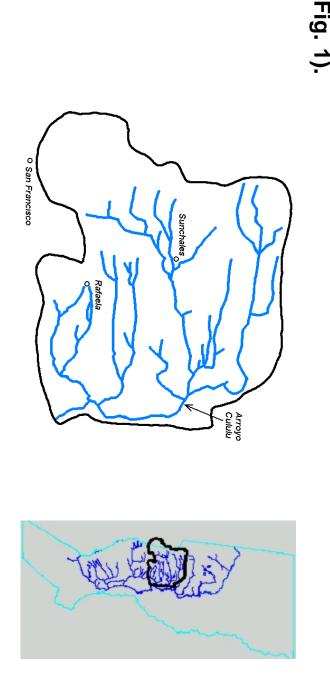


Figure 1: Drainagge network and system location in province of Santa Fe.

- Surface and subsurface water flow problems (i.e. multi-aquifer/river complex domains and dissimilar time scales. systems) deal with coupled nonlinear and linear differential equations in
- The problem is highly dependent of the terrain topology where water
- Construction of a Delaunay tesellation from satellite data images and the system and therefore the mesh for the parallel finite element model. scale 1:50.000), which represents the geometry of the stream/aquifer DTM data (Digital Terrain Model obtained from 88 topographical maps,
- Interpolation of any hydrological physical properties via the Natural **Neighbor Method**
- Mathematical treatment of ground-water flows follows the confined aquifer surface-water flows are treated with the kinematic wave approximation theory (Classical Dupuit approximation) for unconfined aquifers whereas (KWM model) or Shallow-Water theory for unsteady open channel flow.

- interacting term among the two hydrological components A mathematical expression similar to Ohm's law is used to simulate the
- Both Manning and Chèzy friction models are available for the streams.
- refinement is required in the drainage network neighborhoods Due to the the spread in time (slow time scale for ground-water flow and fast time scale for surface flow) and length scales, an important degree of
- for parallel processing techniques In a 2D multi-aquifer model, the number of unknowns per surface node is, is expected to have a very high demand of CPU computation time, calling at least, equal to the number of aquifers and aquitards; due to this fact, it
- developed. A C++ FEM code based on the PETSc-FEM and PETSc libraries was

The Hydrological Model.

aquifer, coupled with a surface net of 1D streams for KW model or a 2D triangulation for Shallow-Water model (Fig. 2 and Fig. 3). The implemented module solves the problem of subsurface flow in a free

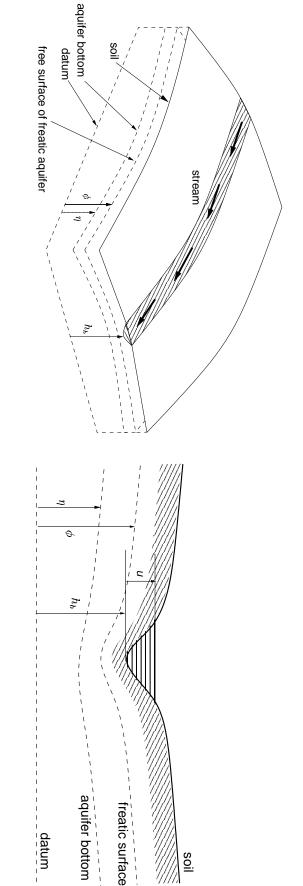


Figure 2: Aquifer/stream system.

တ

The equation for the aquifer integrated in the vertical direction is:

$$\frac{\partial}{\partial t} \left(S(\phi - \eta) \phi \right) = \mathrm{div}(K(\phi - \eta) \nabla \phi) + \sum G_a,$$

losses from streams or other aquifers where S is the storativity, K is the hydraulic conductivity and G is a source term, due to rain,

"Kinematic Wave Model" KWM approach [Whitham1974],

$$\frac{\partial A(u)}{\partial t} + \frac{\partial Q(A(u))}{\partial s} = G_s,$$

the flow rate and that is a function of A through the friction law under the KWM mode. where u is the height of the water, A is the transverse cross section of the stream. Q is

2D Shallow-Water Stream Model.

$$\frac{\partial U}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial G}{\partial y} = S,$$

where

$$\mathbf{U} = \begin{bmatrix} h \\ hw \end{bmatrix}; \mathbf{E} = \begin{bmatrix} hw^2 + g\frac{h^2}{2} \\ hwv \end{bmatrix}; \mathbf{G} = \begin{bmatrix} hwv \\ hwv \end{bmatrix};$$

$$\mathbf{S} = \left[egin{array}{c} gh(S_{0x} - S_{fx}) \ gh(S_{0y} - S_{fy}) \end{array}
ight]$$

where $m{h}$ is the flow depth, $ar{u}$ =(w,v) is the velocity vector,

 ${oldsymbol S}_0$ is the bottom slope and

g is the gravitational constant,

 \mathbf{S}_f is the slope friction.

 ∞

Friction Laws

 \circ KW Model. ($Q=\gamma A^m$)

$$\gamma = C_h \, S_0^{1/2} \, P^{-1},$$

$$m = \frac{3}{2}$$

Chèzy model.

$$\gamma = \bar{a} \, n^{-1} \, S^{1/2} \, P^{-2/3},$$

$$m = \frac{5}{3}$$

Manning model.

Shallow-Water Model.

$$S_{fx} = \frac{1}{C_h h} w|\bar{u}|, \qquad S_{fy} = \frac{1}{C_h h} v|\bar{u}|$$

Chèzy model.

$$S_{fx} = \frac{n^2}{h^4/3} w|\bar{u}|,$$

$$S_{fy}=rac{n^2}{h^4\!/_3}v|ar{u}|$$

Manning model.

constants where P is the wetted perimeter, and C_h , $ar{a}$ and n (the Manning roughness) are model

Coupling Term

$$G_s = P/R_f(\phi - h_b - u), \quad$$
 KW model.

$$G_s = 1/R_f(\phi - h_b - h), \quad$$
 S-W model.

to the aquifer and R_f is the resistivity factor per unit arc length of the perimeter in the where G_s represent the gain or loss of the stream, and the main component is the loss KW model and the resistivity factor per surface unit in the Shallow-Water model

The corresponding gain to the aquifer is

$$G_a = -G_s \,\delta_{\Gamma_s},\tag{4}$$

distribution with a unit intensity per unit length, i.e where Γ_s represents the planar curve of the stream and δ_{Γ_s} is a Dirac's delta

$$\int f(\mathbf{x}) \, \delta_{\Gamma_s} \, d\Sigma = \int f(\mathbf{x}(s)) \, ds. \tag{5}$$

Natural Neighbor Interpolation.

A powerful set of C^{∞} (except at the nodes where they are C^{0}) shape functions for smooth interpolation of physical properties.

$$u^h(\mathbf{x}) = \sum_{i=1}^N \phi_i(\mathbf{x}) u_i, \quad i=1,2...$$
 a vector-valued function.

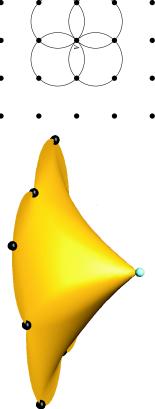
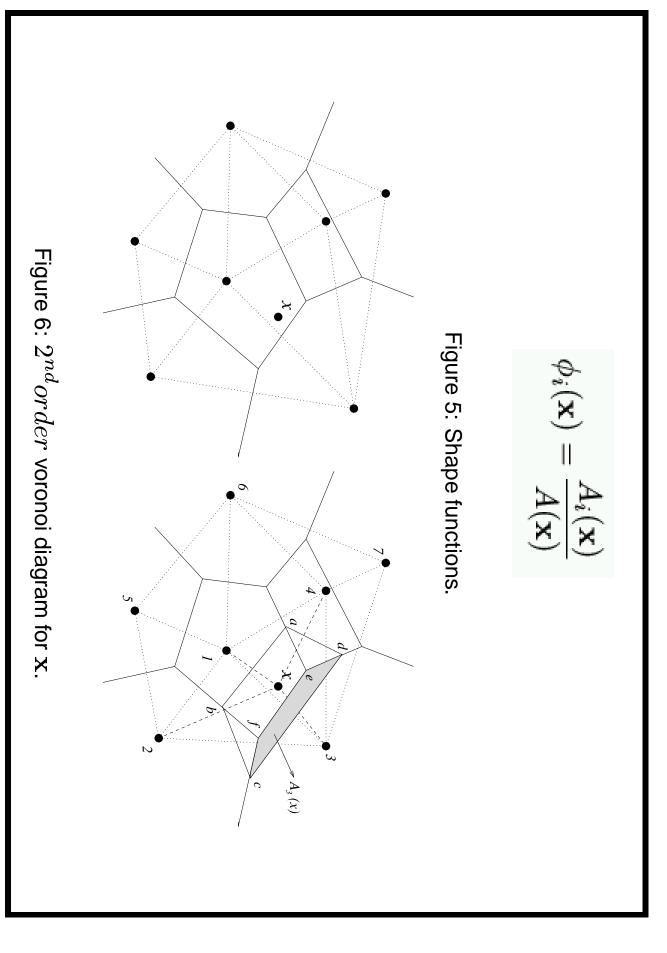
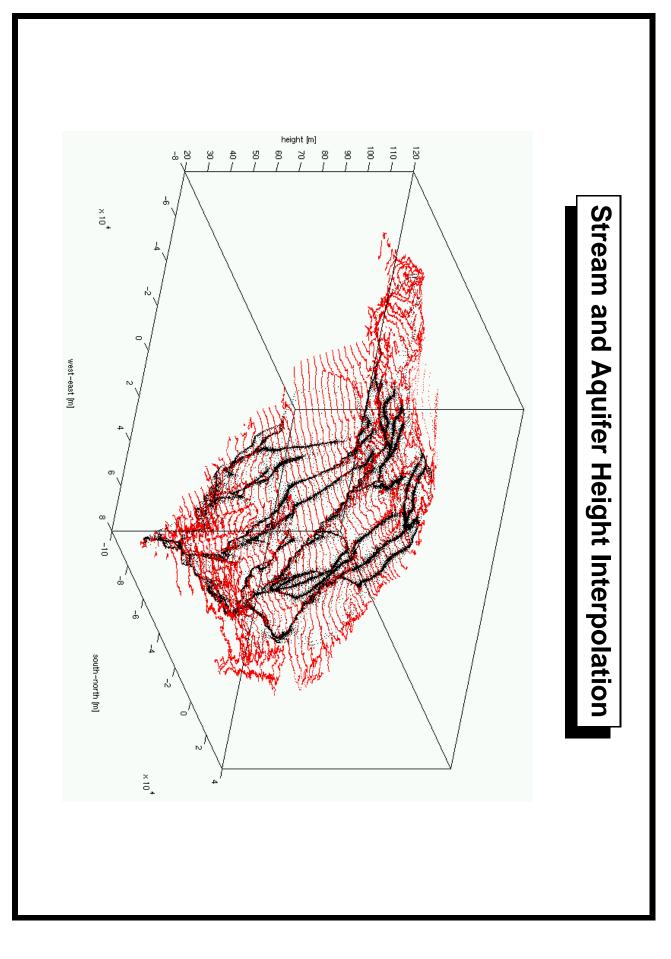




Figure 4: Support and Natural Neighbor shape function.

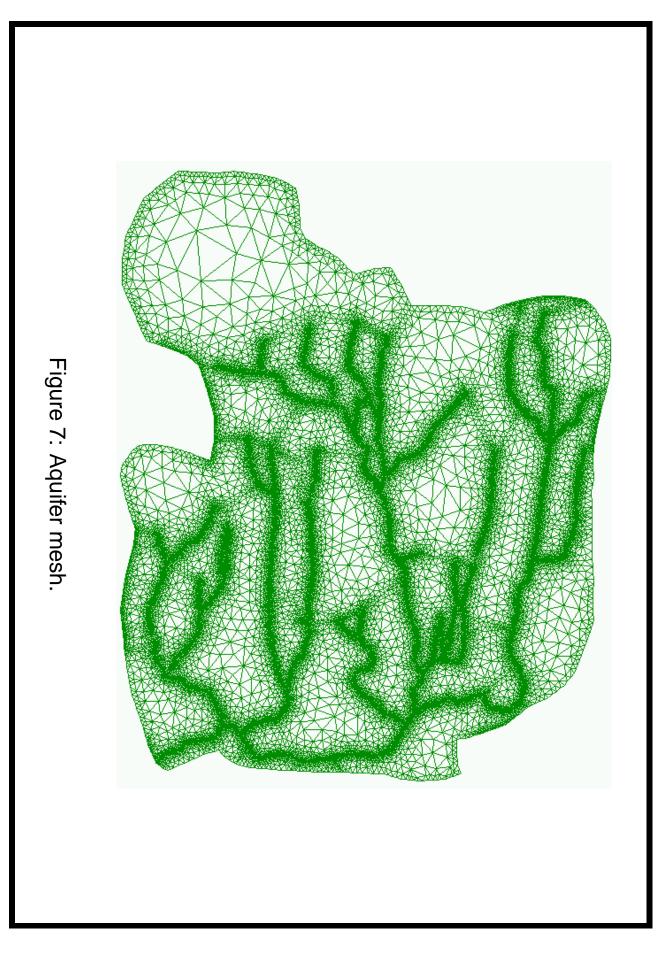
12

- An implemented algorithm as a C++ function using CGAL geometrical library.
- Construct a Delaunay tessellation with nodes where values are knowns
- 2. For each node n_i where we wish know the vector-value $u^h(\mathbf{x})$
- ullet Find the face F_{n_i} such as $n_i \in F_{n_i}$
- Construct a secondary local Delaunay tessellation with nodes in ${\cal F}_{n_i}$ and node n_i
- ullet Compute $A_i(\mathbf{x}), \;\; (i=1,2,...,N)$
- Compute $u^h(\mathbf{x})$ with $u^h(\mathbf{x}) = \sum_{i=1}^N \phi_i(\mathbf{x}) u_i$.

4

Fem Computations

- ground-water flow problems entails to a large demand of computational The large time and length scales presents in surface-water and resources
- Considering multi-aquifer system where several layers are added the number of unknowns will be 10 to 20 unknowns per node
- A rough estimate suggests that triangulations in the order of 100,000 to unknowns lie between $10^{\rm o}$ and $10^{\rm o}$ 1,000,000 triangles should be used, therefore, the expected number of
- System solution strategy: Domain Decomposition Method, i.e. a mixture interiors interface unknowns and solve with a LU factorization in the subdomain of iterative and direct solvers. We iterate a GMRES method on the


Numerical Results

KWM runs.

in last years) is introduced. of 200 days with a precipitation rate of 1,000 mm/year (the annual average The first example is periodic case with wet and dry seasons. A wet season

streambed. The physical constants are: $\mathbf{K} = 2 \cdot 10^{-3}$, $\mathbf{S} = 2.5 \cdot 10^{-2}$, time $t=0~\phi=30~m$ above the aquifer bottom and u=10~m above the $\mathbf{R_f} = 3 \cdot 10^{-3}$. The time step adopted is Dt = 1 day. A mesh of 96,131 triangular elements and 48,452 nodal points is used. At

was 3.6 seconds in average. The second example is a case with no With 7 processor Pentium IV 1.4-1.7 Ghz and 512 Mb RAM (Rambus) raindrop and a constant recharge of 5 meters in upstream boundaries. connected through a switch Fast Ethernet (100 Mbit/sec, latency=O(100))

- Shallow-Water runs
- An impermeable river with a parabolic bump in the bottom and a wavetrain perturbation.
- 2. An small scale stream/aquifer system with long wave perturbation and rainfall periods.

Conclusions

- hydrological model for surface and subsurface water flow The primary goal of the present work was the development of a large scale
- More accurate physical data are being obtained through intensive measurements work
- Future work includes multi-layers/multi-aquifer systems, pollutant transport, etc.

Acknowledgment

CAI+D-UNL-PIP-02552-2000 Germen-CFD, SECyT-FONCyT-PICT-6973 PROA and Universidad Nacional del Litoral (UNL) through grants CONICET PIP 198/ Nacional de Promoción Científica y Tecnológica (ANPCyT) and Investigaciones Cientí-ficas y Técnicas (CONICET, Argentina), Agencia This work has received financial support from *Consejo Nacional d*e

PETSc, Newmat, GMV and many others

We made extensive use of freely distributed software as Linux OS, MPI,