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Abstract. The number and type of boundary conditions to be used in the numerical modeling
of fluid mechanics problems is normally chosen according to a simplified analysis of the char-
acteristics, and also from the experience of the modeler. The problem is harder at input/output
boundaries which are, in most cases, artificial boundaries, so that a bad decision about the
boundary conditions to be imposed may affect the precision and stability of the whole compu-
tation. For inviscid flows, the analysis of the sense of propagation in the normal direction to
the boundaries gives the number of conditions to be imposed and, in addition, the conditions
that are“absorbing” for the waves impinging normal to the boundary. In practice, it amounts
to counting the number of positive and negative eigenvalues of the advective flux Jacobian pro-
jected onto the normal. The problem is still harder when the number of incoming characteristics
varies during the computation, and to correctly treat these cases poses both mathematical and
practical problems. One example considered here is compressible flow where the flow regime
at a certain part of an inlet/outlet boundary can change from subsonic to supersonic and the
flow can revert. In this work the technique for dynamically imposing the correct number of
boundary conditions along the computation, using Lagrange multipliers and penalization is
discussed, and several numerical examples are presented.
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1 INTRODUCTION

Deciding how many and which boundary conditions to impose at each part of an artificial
boundary is often a difficult problem. This decision is taken from the number of incoming
characteristicsn+ and the quantities known for each problem. If the number of conditions im-
posed on the boundary is in excess they are absorbed through spurious shocks at the boundary.
On the other hand if less conditions are imposed, then the problem is mathematically ill posed.
Even if the number of imposed boundary conditions is correct, this does not guarantee that the
boundary conditions are non-reflective.

When dealing with models in infinite domains one has to introduce an artificial boundary
distant as far as possible from the region of interest. The simplest choice is to impose a boundary
condition assuming that the flow far from the region of interest is undisturbed. However, one
has the freedom of choosing the boundary condition so as to give the best solution for a given
position of the boundary. Boundary conditions that tend to give the solution as if the domain
were infinite are called generally“absorbing” (ABC) or “non reflective” (NRBC). ABC’s tend
to give a better solution for a given position of the artificial boundary or, in other words, they
allow to put the artificial boundary closer to the region of interest for a given admissible error.
Of course, the advantage of putting the artificial boundary closer to the region of interest is
the reduction in computational cost. However, in some cases, like for instance the solution of
the Helmholtz equation on exterior domains, using absorbing boundary conditions is required
since using a non absorbing boundary (like Dirichlet or Neumann) condition may lead to a lack
of convergence of the problem, because these conditions are completely reflecting and wave
energy is trapped in the domain, producing false resonance modes.

There are basically two approaches for the design of ABC’s,globalandlocal. Global bound-
ary condition are usually more accurate but expensive. In the limit, a global ABC may repro-
duce the effect of the whole external problem onto the boundary, i.e. even maintaining a fixed
position of the artificial boundary the ABC may give a convergent solution while refining the
interior mesh. In general these ABC’s arenon-local, i.e. its discrete operator is a dense matrix.
Global boundary condition exist and are popular for the simpler linear operators, like potential
flow problems, frequency domain analysis of wave problems like the Helmholtz equations for
acoustics or the Maxwell equations.1,2,3,4,5,6

On the other hand the discrete operator for local absorbing boundary conditions is usually
sparse but has a lower order accuracy and, in general, it is needed to bring the artificial boundary
condition to infinity while refining in order to make the whole algorithm convergent. These kind
of ABC’s are popular for more complex non-linear fluid dynamic problems, like compressible
or incompressible, Navier-Stokes equations or the inviscid Euler equations. An excellent review
has been written by Tsynkov.7

In order to have an ABC not anyn+ conditions must be imposed at the boundary but exactly
thosen+ corresponding to the incoming characteristics. This can be determined through an
eigenvalue decomposition problem of the advective flux Jacobian at the boundary.

In many cases the number of incoming characteristics may change during the computation,



for instance in compressible flow it is common that the flow goes from subsonic to supersonic
in certain parts of the outlet boundary. In 3D this means passing from one imposed boundary
conditions to none.

In more complex problems it can go through the whole possible combinations of regimes:
subsonic inlet, supersonic inlet, subsonic outlet, supersonic outlet. A typical case where this
can happen is the free fall of a blunt symmetrical object like an ellipse, for instance. If the body
starts from rest, it will initially accelerate and, depending on the size and relation between the
densities of the body and the surrounding atmosphere it may reach the supersonic regime. As
the body falls, even at subsonic speeds, its angle of attack tends to increase until eventually it
stalls, and then falls towards its rear part, and repeating the process in a characteristic movement
that recalls the fall of tree leaves. During the fall, the speed of the object varies periodically,
accelerating when the angle of attach is smaller and the body experiences less drag, and decel-
erating when the angle of attack is large. For a supersonic fall the regime may change from
supersonic to subsonic and back during the fall. In addition, if the problem is solved in a sys-
tem of coordinates attached to the body, the unperturbed flow may come from every direction
relative to the body’s axis. In this way the regime and direction of the flow at a given point of
the boundary may change through the whole possible combinations.

Another example is the modeling of the ignition of a rocket exhaust nozzle. In this case the
condition at the outlet boundary changes from rest to supersonic flow as the shock produced at
the throat reaches the exterior boundary.

For transport of scalars this behavior may happen if the transport velocity varies in time and
the flow gets reverted at the boundary. One such situation is when modeling the transport of
a scalar like smoke or contaminant concentration in a building with several openings under an
exterior wind. Assume that the concentration of solid particles or contaminant is so low that its
influence on the fluid is negligible so that we can solve first the movement of the fluid inside
the building and then a transport equation for the scalar, taking the velocity of the fluid as the
transport velocity. As the flow in the interior fluctuates, the normal component of velocity at a
given opening may reverse direction.

Changing the number of imposed boundary conditions at a given point of the boundary is
hard to implement from the computational point of view since it involves changing the struc-
ture of the Jacobian matrix. The solution proposed here is to impose these conditions through
Lagrange multipliers or penalization techniques. The main objective of this papers is to explain
how these variable boundary conditions may be implemented through Lagrange multipliers or
penalization techniques, to discuss numerical aspects relative to the use of this techniques, to
discuss specific issues relative to the physical problems described above, and to show some
numerical examples.



2 GENERAL ADVECTIVE-DIFFUSIVE SYSTEMS OF EQUATIONS

Consider an advective diffusive system of equations in conservative form

∂H(U)

∂t
+

∂Fc,j(U)

∂xj

=
∂Fd,j(U,∇U)

∂xj

+ G. (1)

HereU ∈ IRn is the state vector,t is time,Fc,j,Fd,j are the advective and diffusive fluxes
respectively,G is a source term including, for instance, gravity acceleration or external heat
sources, andxj the spatial coordinates.

The notation is standard, except perhaps for the“generic enthalpy function” H(U). The
inclusion of the enthalpy function allows the inclusion of conservative equations in term of
non-conservative variables. Some well-known advective diffusive systems of equations may be
cast in this general setting as follows.

2.1 Linear advection diffusion

For instance, the heat advection-diffusion equation in terms of temperature can be put in this
form through the definitions

U = T,

H(U) = ρCpT.

Fc,j(U) = ρCpTuj,

Fd,j(U,∇U) = −qj = −k
∂T

∂xj

.

(2)

whereρ is density,Cp the specific heat,u a given velocity field,T is temperature (the unknown
field), q the heat flux vector,k the thermal conductivity of the medium.

2.2 Gas dynamics equations

The compressible flow, gas dynamics equations, can be put in conservative form with the fol-
lowing definitions

Up = [ρ,u, p]T ,

U = Uc = [ρ, ρu, ρe]T ,

H(U) = U,

Fc,jnj =

 ρ(u · n̂)
ρu(u · n̂) + pn̂
(ρe + p)(u · n̂)

 ,

Fd,j(U)nj =

 0,
T · n̂

Tikukni − qini

 .

(3)



Note that that even if the equations are put in terms of conservative variables, the diffusive and
convective fluxes are expressed in term of the primitive variablesUp = [ρ,u, p]T . However, the
fluxes can be thought as implicitly depending on the conservative variables, since the relation
Uc(U) is one to one. Now, the conservation equations can be also thought in terms of any other
set of variables, for instance the primitive variables, if we introduce the“enthalpy function”
H(Up) = Uc(Up).

2.3 Shallow water equations

Shallow water equations describes the open flow of fluids over regions whose characteristic
dimensions are much larger than the depth.

Up = [h,u]T ,

U = Uc = [h, hu]T ,

H(U) = U,

Fc,jnj =

[
h(u · n̂)

h(u · n̂)u + 1/2gh2 I

]
.

(4)

whereh is the fluid depth,u the velocity vector,Up,Uc the primitive and conservative variables,
g the gravity acceleration. We assume that the height of the bottom with respect to a fixed datum
is constant. If this is not so, additional terms must be included in the source termG, but this is
irrelevant for the absorbing boundary condition issue.

2.4 Channel flow

Flow in a channel can be cast in advective form as follows

Up = [h, u]T ,

U = Uc = [A, Q]T ,

H(U) = U,

F =

[
Q

Q2/A + F

]
.

(5)

whereh andu are water depth and velocity (as in the shallow water equations).A(h) is the sec-
tion of the channel occupied by water for a given water heighth and then defines the geometry
of the channel. For instance

• Rectangular channels:A(h) = wh, w=width.
• Triangular channels:A(h) = 2h2 tan θ/2; with θ=angle opening.
• Circular channel:

A(h) =

∫ h

h′=0

√
2Rh− h2 dh

= θR2 − w(h)(R− h)/2

(6)



whereR is the radius of the channel,w(h) = 2
√

2Rh− h2 is the waterline for a given
water height andθ = atan[w/(2(R− h))] is the angular aperture.

Q = Au is the water flow rate.F (h) is a function defined by

F (h) =

∫ h

h′=0

A(h′) dh′. (7)

Again, for the sake of simplicity, we restrict to the case of constant channel section an channel
depth. For more general situations, other terms that can be included in the source and diffusive
terms are present, not needed for the discussion of absorbing boundary conditions. For rectan-
gular channels the equations reduce to those for one dimensional shallow water equations.

Channel flow is very interesting since it is in fact a family of different 1D hyperbolic systems
depending on the area functionA(h).

3 VARIATIONAL FORMULATION

The weighted variational form for this kind of systems is to findUh ∈ Sh such that, for every
Wh ∈ Vh,∫

Ω

Wh ·
(

∂H(Uh)

∂t
+

∂Fc,j

∂xj

−G

)
dΩ +

∫
Ω

∂Wh

∂xj

Fd,j dΩ−
∫

Γh

Wh ·Hh dΓ

+

nelem∑
e=1

∫
Ω

τe AT
k

∂Wh

∂xk

·
(

∂H(U)

∂t
+

∂Fc,j(U)

∂xj

− ∂Fd,j(U,∇U)

∂xj

−G

)
dΩ = 0

(8)

where
Sh =

{
Uh|Uh ∈ [H1h(Ω)]m, Uh

∣∣
Ωe ∈ [P 1(Ωe)]m, Uh = g atΓg

}
Vh =

{
Wh|Wh ∈ [H1h(Ω)]m, Uh

∣∣
Ωe ∈ [P 1(Ωe)]m, Uh = 0 atΓg

} (9)

are the space of interpolation and weight function respectively,τe are stabilization parameters
(a.k.a.“intrinsic times” ), Γg is the Dirichlet part of the boundary, whereU = g is imposed, and
Γh is the Neumann part of the boundary whereFd,jnj = H is imposed.

4 ABSORBING BOUNDARY CONDITIONS

For steady simulations using time-marching algorithms, it can be shown that the error towards
the steady state propagates as waves, so that absorbing boundary conditions help in eliminat-
ing error from the computational domain. In fact, it can be shown that for strongly advective
problems absorption at the boundaries is usually the main mechanism of error reduction (the
other mechanism is physical or numerical dissipation in the interior of the computational do-
main). It has been shown that in such cases the rate of convergence can be directly related to
the“transparency” of the boundary condition.8

In general, absorbing boundary conditions are based on an analysis of the characteristic
waves. A key point is to determine which of them areincoming and which areoutgoing.



Absorbing boundary conditions exist from the simplest first order ones based on a plane wave
analysis at a certain smooth portion of the boundary (as will be described below), to the more
complex ones that tend to match a full analytic solution of the problem in the exterior region
with the internal region.

In this paper we will concentrate in the use of absorbing boundary conditions in situations
where the conditions at the boundary change, so as the number of incoming and outgoing char-
acteristic waves varies during the temporal evolution of the problem, or even when the condi-
tions at the boundary are not well knowna priori.

4.1 Advective diffusive systems in 1D

Consider a pure advective system of equations in 1D, i.e.Fd,j ≡ 0

∂H(U)

∂t
+

∂Fc,x(U)

∂x
= 0, in [0, L]. (10)

If the system is“linear”, i.e. Fc,x(U) = AU, H(U) = CU then we obtain a first order linear
system

C
∂U

∂t
+ A

∂U

∂x
= 0. (11)

The system is“hyperbolic” if C is inversible,C−1A is diagonalizable and has real eigenvalues.
If this is so we can make the following eigenvalue decomposition forC−1A

C−1A = SΛS−1. (12)

whereS is real and inversible andΛ is real and diagonal. If we define new variablesV = S−1U,
then (11) becomes

∂V

∂t
+ Λ

∂V

∂x
= 0. (13)

Now, each equation is a linear scalar advection equation

∂vk

∂t
+ λk

∂vk

∂x
= 0, (no summation overk). (14)

vk are the“characteristic components” andλk are the“characteristic velocities” of propagation.

4.2 Linear 1D absorbing boundary conditions

Asumingλk 6= 0, the absorbing boundary conditions are, depending on the sign ofλk,

if λk > 0: vk(0) = v̄k0; no boundary condition atx = L

if λk < 0: vk(L) = v̄kL; no boundary condition atx = 0
(15)

This can be put in compact form as

Π+
V (V − V̄0) = 0; atx = 0

Π−
V (V − V̄L) = 0; atx = L

(16)



whereΠ±
V are theprojection matrices onto the right/left-going characteristic modes in theV

basis,

Π+
V,jk =

{
1; if j = k andλk > 0

0; otherwise,

Π+ + Π− = I.

(17)

It can be easily shown that they are effectivelyprojection matrices, i.e. Π±Π± = Π± and
Π+Π− = 0. Coming back to the boundary condition atx = L in theU basis, we have

Π−
V S−1(U− ŪL) = 0 (18)

or, multiplying byS at the left

Π±
U (U− Ū0,L) = 0, atx = 0, L, (19)

where
Π±

U = SΠ±
V S−1, (20)

are the projection matrices in theU basis. These conditions are completely absorbing for 1D
linear advection (11).

The rank ofΠ+ is equal to the numbern+ of positive eigenvalues, i.e. the number of right-
going waves. Recall that the right-going waves are incoming at thex = 0 boundary and outgo-
ing at thex = L boundary. Conversely, the rank ofΠ− is equal to the numbern− of negative
eigenvalues, i.e. the number of left-going waves (incoming atx = L and outgoing at thex = 0
boundary).

4.2.1 Numerical example. 1D compressible flow

We consider the solution of 1D compressible flow in0 ≤ x ≤ L = 4. The unperturbed flow has
a Mach number of 0.5 and att = 0 there is a perturbation in the form of a Gaussian as follows

U(x, t = 0) = Uref + ∆U e(x−x0)/σ2

, (21)

whereρref = 1, uref = 0.5, pref = 0.714, (Maref = 0.5) δρ = δp = 0, δu = 0.1, R = 1, x0 =
0.8, σ = 0.3. The evolution of this perturbation is simulated usingN = 50 equispaced finite
elements (h = L/N = 0.08) with SUPG stabilization, Crank-Nicholson temporal scheme with
∆t = 0.05 (CFL number≈ 0.84). As the flow is subsonic we have to impose two conditions
at inlet and one at outlet. We will compare the results using standard and absorbing boundary
conditions at outlet (x = L), while imposing non-absorbingρ = ρref andu = uref at inlet
(x = 0). In figure1 we see the evolution in time (in the form of an elevation view) of the velocity
when using the conditionp = pref at outlet, while in figure3 we see the results when using first
order linear absorbing boundary conditions based on the unperturbed state. We see that without
absorbing boundary condition the perturbation reflects at both boundaries. Even aftert = 40



a significant amount of perturbation is still in the domain. At this point the perturbation has
reflected four times at the boundaries. On the other hand, when using the absorbing boundary
condition the perturbation is almost completely absorbed after it hits the outlet boundary. Note
that the absorption is performed in two steps. First the perturbation splits in two components,
one propagating downstream an another upstream. The first hits the outlet boundary and is
absorbed, the other travels backwards, reflects at the inlet boundary and then travels to the
outlet boundary, where it hits att = 4.5. This shows that in 1D it is enough with only one
absorbing boundary to have a strong dissipation of energy.

Figure 1: Temporal evolution of axial velocity in 1D gas dynamics problemwithout absorbing boundary condition
at outlet.

4.3 Multidimensional problems

For multidimensional problems we can make a simplified 1D analysis in the direction normal
to the local boundary and results in that the flux JacobianA in (12) must be replaced with the
projection of the flux Jacobians onto the exterior normaln̂, as follows

Π−
n (U− Ū) = 0,

Π−
n = Sn Π−

V n S−1
n ,

(Π−
V n)jk =

{
1; if j = k andλj < 0,

0; otherwise.

C−1An = SnΛnS
−1
n , (Λn diagonal),

An = Alnl.

(22)



Figure 2: Temporal evolution of axial velocity in 1D gas dynamics problemwith absorbing boundary condition at
outlet.

This conditions are perfectly absorbing for perturbations reaching the boundary normal to the
surface. For perturbations not impinging normally, the condition is partially absorbing, with a
reflection coefficient that increases from 0 at normal incidence to 1 for tangential incidence.

4.4 Absorbing boundary conditions for non-linear problems

If the problem is non-linear, as the gas dynamics or shallow water equations, then the flux
JacobianA is a function of the state of the fluid, and then the same happens for the projection
matricesΠ±. If we can assume that the flow is composed of small perturbations around a
reference stateUref , then we can compute the projection matrix at the stateUref

Π(Uref)
−
n (U−Uref) = 0. (23)

However, as long as the fluid state departs from the reference value the condition becomes less
and less absorbing.



||
∆

U
||

time

 1e−14

 1e−12

 1e−10

 1e−08

 1e−06

 0.0001

 0.01

 1

 0  5  10  15  20  25  30  35  40  45  50

not absorbing

absorbing
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4.4.1 Numerical example. Varying section compressible 1D flow.

Consider the one-dimensional flow in a tube with a contraction of 2:1. The inlet Mach number
is 0.2 and the variation of area along the tube axis is

A(x) = A0

(
1− C

tanh(x− Lx/2)

Lc

)
. (24)

whereA0 is some (irrelevant) reference area,C is a constant given byC = (α − 1)/(α + 1),
α = Ain/Aout is the area ratio,Lc = 0.136 is a parameter controlling the width of the transition.
We imposeρ andu at inlet and consider different outlet conditions, namely

• non-absorbing, p =cnst,
• absorbing linear (see (19)), and
• absorbing non-linear (see (23)).

In figure4 we see the evolution of the state vector increment (‖∆U‖) as

4.5 Riemann based absorbing boundary conditions

Suppose that we take for a small intervalt ≤ t′ ≤ t + ∆t the stateU(t) as the reference state
then, during this interval we can takeΠ−(U(t)) as the projection operator onto the incoming
characteristics and the absorbing boundary conditions are

Π−(U(t)) (U(t′)−U(t)) = 0. (25)
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Figure 4: Rate of converge of 1D gas dynamics problem in full non-linear regime with diffrent kind of absorbing
boundary conditions.

But regarding the equivalent expression (18) we can see that it can be written as

lj(U) · dU = 0, if λj < 0, (26)

wherelj is thej-th left eigenvalue of the normal flux Jacobian. Note that, aslj is a function of
U, this is a differential form on the variableU. If it happens that this is atotal differential, i.e.

µ(U) lj(U) · dU = dwj(U), (27)

for some non-linear functionwj and an“integration factor” µ(U), then we could impose

wj(U) = wj(Uref), (for wj anincoming char.) (28)

which would be an absorbing boundary condition for the whole nonlinear regime. The functions
wj are often referred as“Riemann invariants” (RI) for the flux function.

For the 2D shallow water equations the Riemann invariants are well known (reference...).
For 1D channel flow, Riemann invariants are known for a few channel shapes (rectangular and
triangular). For general channel sections they are not known and in addition there is not a gen-
eral numerical method for computing them. They could be computed by numerical integration
of (27) along a path in state space, but the integration factor is not known.



For the gas dynamics equations, the well known Riemann invariants are invariant only under
isentropic conditions, so that they are not truly invariant. They are

w± = u± 2c

γ − 1
. (29)

Riemann invariants are known for the Riemann equations

w± = u · n̂± 2
√

gh. (30)

Riemann invariants for channel flow are known only for rectangular and triangular shape and
for triangular

w± = u · n̂± 4
√

gh. (31)

4.6 Absorbing boundary conditions based on last state

While integrating the discrete equations in time, we can take the state of the fluid in the previous
state as the reference state

Π−(Un) (Un+1 −Un) = 0. (32)

It is clear that the assumption of linearization is well justified, since in the limit of∆t → 0 we
should haveUn+1 ≈ Un. In fact, (32) is equivalent, for∆t → 0 to (26), so that if Riemann
invariants exist, then this scheme preserves them, except for numerical errors. We call this
strategy ULSAR (forUse Last State as Reference).

However, if this scheme is used in the whole boundary, then the flow in the domain is only
determined by the initial condition, and it can drift in time due to numerical errors. Also if we
look for a steady state at a certain regime, one has no way to guarantee that that regime will be
obtained. For instance, if we want to obtain the steady flow around an aerodynamic profile at a
certain Mach number, then we can set the initial state with a non perturbed constant flow at that
conditions, but we can’t assure that the final steady flow will preserve that Mach number. In
practice we often use a mix of the strategies, with linear boundary conditions imposed at inlet
regions and absorbing boundary conditions based on last state on the outlet regions.

4.6.1 Numerical example. ULSAR strategy keeps RI constant.

Consider a 1D compressible flow example, as in§4.2.1, with ρref = 1, uref = 0.2, pref = 0.714,
(Maref = 0.2), δρ = δp = 0, δu = 0.6, R = 1, x0 = 0.5L = 2, σ = 0.3. Note that
this represents a perturbation in velocity that goes fromMa =0.2 to 0.8, so that full non-linear
effects are evidenced. The evolution of this perturbation is simulated usingN = 200 equispaced
finite elements (h = L/N = 0.08) with SUPG stabilization, Crank-Nicholson temporal scheme
with ∆t = 0.02 (CFL number≈ 1.2). Absorbing boundary conditions based on the ULSAR
strategy are applied at both endsx = 0, L. The values of the Riemann (29) are computed there
and they are plotted in figure5. It can be seen that the incoming RI (the right goingw+) is kept
approximately constant at the left boundaryx = 0 and the same happens,mutatis mutandis, at
the other endx = L. Convergence history is shown in figure6. Note that absorption is very
good, despite the full non-linear character of the flow.
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Figure 5: Riemann invariants at boundaries with ULSAR a.b.c.’s

4.7 Imposing non-linear absorbing boundary conditions

In this section we discuss how the absorbing boundary conditions can be integrated in a numer-
ical code. For linear systems, the discrete version of equation (11) is of the form

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un

0

h
= 0;

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un

k−1

2h
= 0, k ≥ 1

(33)

whereUn
k is the state at grid pointk at timetn = n∆t. We assume a constant mesh step size

of h, i.e. xk = kh, and assume a boundary at mesh nodex0 = 0. We have made a lot of
simplifications here, no source or upwind terms, and a simple discretization based on centered
finite differences. Alternatively, it can be thought as a pure Galerkin FEM discretization with
mass lumping.

If the projector onto incoming wavesΠ+
U has rankn+ = n, thenΠ+

U = I and the absorbing
boundary condition reduce toU = Uref (beingUref a given value orUn

0 for ULSAR). This
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happens for instance in a supersonic inlet for gas dynamics or an inlet boundary for linear
advection. In this case we simply replace the balance equation for the boundary node (the
first equation in (33)) with the absorbing conditionU = Uref , keeping the balance between
equations and unknowns.

Conversely, if the if the projector onto incoming wavesΠ+
U has rankn+ = 0, thenΠ+

U =
0 and the absorbing boundary condition reduce to not imposing anything. This happens for
instance in a supersonic outlet for gas dynamics or an outlet boundary for linear advection. In
this case we simply discard the absorbing conditionU = Uref . Again the number of equations
and unknowns is maintained.

The case is more complicated when0 < n+ < n we can’t simply add the absorbing condition
(either (19), (28) or (32)), because we can neither discard the boundary balance equation nor
keep it.

There are at least two strategies for imposing this non-linear boundary conditions. One is to
replace the boundary balance equation for the outgoing waves with a null first derivative con-
dition. Then a discrete version can be generated with finite difference approximations. (This
requires, however, a structured mesh at least near the boundary). The other is to resort to the use
of Lagrange multipliers or penalization techniques. One advantage of using Lagrange multipli-
ers or penalization is that not only the boundary conditions coefficients can easily be changed
for non-linear problems, but alsothe number of imposed boundary conditions. This is impor-
tant for problems where the number of incoming characteristics can not be easily determineda
priori, or for problems where the flow regime is changing from subsonic to supersonic, or the
flow reverts. In the rest of this section we will describe in detail this second strategy.



In the base of the characteristic variablesV (33) can be written as

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn

0

h
= 0;

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn

k−1

h
= 0, k ≥ 1.

(34)

For the linear absorbing boundary conditions (19) we should impose

Π+
V (Vref) (V0 −Vref) = 0. (35)

while discarding the equations corresponding to the incoming waves in the first rows of (34).
HereUref/Vref is the state about which we make the linearization.

4.7.1 Using Lagrange multipliers

This can be done, via Lagrange multipliers in the following way

Π+
V (Vref) (V0 −Vref) + Π−

V (Vref)Vlm = 0,

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn

0

h
+ Π+

V (Vref)Vlm = 0;

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn

k−1

2h
= 0, k ≥ 1.

(36)

whereVlm are the Lagrange multipliers for the imposition of the new conditions. Note that, if
j is an incoming wave (λj ≥ 0), then the equation is of the form

vj0 − vref0 = 0

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn

j0

h
+ vj,lm = 0

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − vn

jk

2h
= 0, k ≥ 1

(37)

Note that, due to thevj,lm Lagrange multiplier, we can solve for thevjk values from the first and
last rows, while the value of the multipliervj,lm “adjusts” itself in order to satisfy the equations
in the second row.

On the other hand, for the outgoing waves (λj < 0), we have

vj,lm = 0

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn

j0

h
= 0

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − vn

jk

2h
= 0, k ≥ 1

(38)



So that the solution coincides with the unmodified original FEM equation, and the Lagrange
multiplier isvj,lm = 0.

Coming back to theU basis, we have

Π+
U(Uref) (U0 −Uref) + Π−

U(Uref)Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un

0

h
+ CΠ+

U(Uref)Ulm = 0;

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un

k−1

2h
= 0, k ≥ 1.

(39)

4.7.2 Using penalization

The corresponding formulas for penalization can be obtained by adding a diagonal term scaled
by a small regularization parameterε to the first equation in (39)

−εUlm + Π+
U (U0 −Uref) + Π−

U Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un

0

h
+ Π+

U Ulm = 0;
(40)

where, for the moment, we dropped the dependence of the projectors onUref . EliminatingUlm

from the first and second rows we obtain

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un

0

h
+ Π+

U (Π−
U + εI)−1 Π+

U(U0 −Uref) = 0. (41)

Now, using projection algebra we can show that

(Π−
U + εI)−1 = (

1

ε
Π+

U +
1

1 + ε
Π−

U) (42)

so that the last term in (41) reduces toΠ+
U(U0 −Uref) and the whole equation is

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un

0

h
+

1

ε
CΠ+

U(U0 −Uref) = 0. (43)

Here1/ε can be thought as a large penalization factor.

5 DYNAMICALLY VARYING BOUNDARY CONDITIONS

5.1 Varying boundary conditions in external aerodynamics

During flow computation it the number of incoming characteristicsn+ may change. This can
occur due to the flow changing regime (i.e. from subsonic to supersonic) or due to the flow
changing sense (flow reversal). A typical case is the external flow around an aerodynamic body
as shown in figure7. Consider first a steady subsonic flow. The flow is normally subsonic at the
whole infinite boundary, even if some supersonic pockets can develop at transonic speeds. Then



the only two possible regimes are subsonic inlet (n+ = nd + 1, nd is the spatial dimension) and
subsonic outlet (n+ = 1). We can determine whether the boundary is inlet or outlet by looking
at the projection of the unperturbed flow velocityu∞ with the local normal̂n. For the steady
supersonic case the situation is very different. A bow shock develops in from of the body and
forms a subsonic region which propagates downstream. Far downstream the envelope of the
subsonic region approaches a cone with an aperture angle equal to the Mach angle for the non-
perturbed flow. At the boundary we have now a supersonic inlet region, and on the outlet region
we have both subsonic and supersonic parts. The point where the flow at outlet changes from
subsonic to supersonic may be estimated from the Mach angle, but it may very inaccurate if
the boundary is close to the body. Having a boundary condition that can automatically adapt
to the whole possibilities can be of great help in such a case. Now, consider the unsteady case,
for instance a body accelerating slowly from subsonic to supersonic speeds. The inlet part will
change at some point from subsonic to supersonic. At outlet, some parts will change also from
subsonic to supersonic, and the point of separation between both will be changing position,
following approximately the instantaneous Mach angle.
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Figure 7: Number of incoming characteristics changing on accelerating body.

5.2 Aerodynamics of falling objects

For instance, one interesting case is the aerodynamics of a falling body.9,10,11,12,13 Consider,
for simplicity, a two dimensional case of an homogeneous ellipse in free fall. As the body
accelerates, the pitching moments tend to increase the angle of attack until it stalls (A), and
then the body starts to fall towards its other end accelerating while its main axis aligns with
gravity (B). As the body accelerates the pitching moment growths until it eventually stalls again
(c), and so on... This kind of falling mechanism is typical of slender bodies with relatively small
moment of inertia like a sheet of paper and is called“flutter”. However, depending of several
parameters, but mainly depending of the moment of inertia of the body, if it has a large angular
moment at (B) then it may happen that it rolls on itself, keeping always the same sense of



rotation. This kind of falling mechanism is called tumbling and is characteristic of less slender
and more massive objects. For massive objects (like a ballistic projectile, for instance) tumbling
may convert a large amount of potential energy in the form of rotation, causing the object to
rotate at very large speeds.
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Figure 8: Falling ellipse

As the body falls it accelerates and can reach supersonic speeds. This depends on the density
of the body relative to the surrounding atmosphere and its dimensions and shape. As the weight
of the body goes with∝ L3, beingL the characteristic length while the drag force goes with
∝ L2, larger bodies tend to reach larger limit speeds and eventually reach supersonic regime.

One can model a falling body in several ways. In order to avoid the use of deforming meshes,
a fixed mesh attached to the body can be used. Then one can choose to perform the computation
in a non-inertial frame moving with the body or to perform the computation in an inertial
frame using amoving but not deforming mesh. In the first case“inertial forces” (Coriolis,
centrifugal...) must be added, while in the second case convective terms must take into account
the mesh velocity as in the“Arbitrary Lagrangian Eulerian (ALE)” formulation. In this example
we choose to use the first strategy.

The computation of the flow is linked to the dynamics of the falling object. The strategy is
a typically staggered fluid/solid interaction process.14,15,16 Basically we solve the fluid problem



in an non-inertial frame with inertial terms computed with the actual state of the body (linear
accelerationa, angular rotation velocityω and angular rotation accelerationω̇). Also boundary
conditions in the non-inertial frame at infinity must take into account the actual linear and
angular velocity of the object. The fluid solver updates the state of the fluid fromtn to tn+1.
Then, with the state of the fluid attn+1 the forces exerted by the fluid on the body are computed.
With this forces, the equations for the rigid motion of the body are solved (six degrees of
freedom, two linear position and velocities, rotation angle and its derivative).

Coming back to the boundary conditions issue, we have now in addition to the fact that
the body can accelerate and decelerate, and going back and forth from subsonic to supersonic
speeds, that the angle from which the unperturbed flow impinges on the body varies with time.
So, as the body can rotate arbitrarily, the flow can impinge from any direction relative to the
non-inertial frame fixed to the body.

5.2.1 Numerical example. Ellipse falling at supersonic speed.

As an example consider the fall of an ellipse with the following physical data

• a = 1, b = 0.6 (major and minor semi-axes, eccentricitye =
√

1− b2/a2 = 0.8),
• m = 20, (mass),
• I = 50, (moment of inertia),
• g = 0.15, (acceleration of gravity),
• ρa = 1, (atmosphere density),
• p = 1, (atmosphere pressure),
• γ = 1.4, (gas adiabatic indexγ = Cp/Cv),

A coarse estimation of the limit speedv can be obtained balancing the vertical forces on the
body, i.e. the drag on the body (Faero), the weight and the hydrostatic flotation

Faero + W + Ffloat = CDρav
2A− ρsgV + ρagV (44)

whereV = πab is the volume of the body (the area in 2D) andA = 2b the area of the section
facing the fluid (length in 2D).CD = 0.2 is an estimation for the drag coefficient of the body
andρs = m/V, ρa the densities of solid and atmosphere respectively. For the data above this
estimation gives a limit speed ofv = 3.1 approximately. As the speed of sound of the atmo-
sphere isc =

√
γp/ρa = 1.18, so that it is expected that the body will reach supersonic speeds.

Of course, if the body does reach supersonic speed, then the drag coefficient will be higher and
probably the average speed will be lower than that one estimated above.

The initial conditions are the ellipse starting at velocity(0,−2), and an angle of its major
axis of10

◦
with respect with the vertical, the fluid is initially at rest. The computed trajectory

until t = 1.83 time units is shown in figure9. The mean vertical velocity during this period was
−1.8. The computed trajectory is shown in a reference system falling at velocity−1.46 (this is
done in order to reduce the vertical span of the plot). In figures10 we see colormaps of Mach
number at four instants, in the non inertial frame fixed to the body. The instants are marked



asA, B, C,D and identified in the trajectory. Note that as the ellipse rotates, each part of the
boundary experiments all kind of regimes and the absorbing boundary condition cope with all
of them. Note also that the artificial boundary is located very near to the body, the radius of
the external circle is 3.25 times the major semi-axis of the ellipse. (An animation and further
material can be found at the author home page).
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Figure 9: Computed trajectory of falling ellipse

6 CONCLUSIONS

Absorbing boundary conditions reduces computational cost by allowing to put the artificial
exterior boundary nearer to the region of interest. Extension to the non-linear cases can be done
either by using Riemann invariants or by using the state at the previous time step as reference
state for a linearized boundary condition. For complex simulations the number of incoming
characteristic waves may vary during the computation or may not be known a priori. In those
cases absorbing boundary conditions can be imposed with the help of Lagrange multipliers or
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Figure 10: Ellipse falling at supersonic speeds. Colormaps of Mach number.

penalization techniques.
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