

An FFT Preconditioning Technique for the Solution of Incompressible Flow with Fractional Step Methods on GPGPU's

by M.Storti, S.Costarelli, R.Paz, L.Dalcin

Centro Internacional de Métodos Computacionales en Ingeniería - CIMEC INTEC, (CONICET-UNL), Santa Fe, Argentina mario.storti@gmail.com http://www.cimec.org.ar/mstorti

Solution of incompressible Navier-Stokes flows on GPU

• GPU's are less efficient for algorithms that require access to the *card's (device) global memory*. Shared memory is much faster but usually *scarce*

(16K per thread block in the Tesla C1060)

- The best algorithms are those that make computations for one cell requiring only information on that cell and their neighbors. These algorithms are classified as *cellular automata (CA)*.
- Lattice-Boltzmann and explicit F*M (FDM/FVM/FEM) fall in this category.
- *Structured meshes* require less data to exchange between cells (e.g. neighbor indices are computed, no stored), and so, they require less shared memory. Also, very fast solvers like *FFT-based* (*Fast Fourier*

Transform) or *Geometric Multigrid* are available

Fractional Step Method on structured grids with QUICK

Proposed by *Molemaker et.al. SCA'08: 2008 ACM SIGGRAPH*, Low viscosity flow simulations for animation. 丞

- Fractional Step Method (a.k.a. pressure segregation)
- *u*, *v*, *w* and continuity cells are *staggered*.
- *QUICK* advection scheme is used in the predictor stage.
- Poisson system is solved with IOP (Iterated Orthogonal Projection) (to be described later), on top of Geometric MultiGrid

ΙΝΤΕΟ

UNL

CONICET

CIMEC

Quick advection scheme

1D Scalar advection diffusion: a= advection velocity, ϕ advected scalar.

(launch video khinstab)

CIMEC-INTEC-CONICET-UNL

((version texstuff-1.0.36-213-g1864495 Wed Apr 11 09:24:51 2012 +0200) (date Wed Apr 11 09:42:15 2012 +0200))

Solution of the Poisson equation on embedded geometries

- Solution of the *Poisson equation* is, for large meshes, the more CPU consuming time stage in Fractional-Step like Navier-Stokes solvers.
- One approach for the solution is the *IOP (Iterated Orthogonal Projection)* algorithm.
- It is based on solving iteratively the Poisson eq. on the *whole domain* (*fluid+solid*). Solving in the whole domain is fast, because algorithms like Geometric Multigrid or FFT can be used. Also, they are very efficient

running on GPU's 🥮

• However, if we solve in the whole domain, then we can't enforce the boundary condition $(\partial p/\partial n) = 0$ at the solid boundary which, then means the violation of the *condition of impenetrability at the solid*

boundary 🗳

The IOP (Iterated Orthogonal Projection) method

The method is based on succesively solve for the incompressibility condition (on the whole domain: solid+fluid), and impose the boundary condition.

CIMEC-INTEC-CONICET-UNL

Convergence of IOP

- Π_{bdy} , Π_{div} are orthogonal projection operators on $L_2 \implies$ the algorithm converges, with *linear rate of convergence*
- Rate of convergence is O(1), i.e. **NOT**

depending on refinement **.** For instance for an embedded sphere, the residual is reduced to a factor of 0.1 in 3 iterations. However, the rate of convergence *degrades when thin surfaces*

are present 🥝

 In videogame software, and special effects animation, 3 iterations are usually enough, but for engineering purposes this is insufficient and an algorithm with better convergence properties is needed.

Using IOP/AGP with the FFT transform

- When solving the projection problem $\mathbf{u}' = \mathbf{\Pi}_{\mathrm{div}}(\mathbf{u})$ for IOP or the preconditioning for AGP, we have to solve a *Poisson problem on the whole (fluid+solid) domain*. This is normally done with a *Geometric Multigrid* solver which has a complexity $O(N \log \epsilon)$ (N = nbr of grid cells, $\epsilon =$ tolerance). It is an *iterative solver*.
- On the other hand, FFT solves the same problem in $O(N \log N)$. It is a *direct solver*.

Accelerated Global Preconditioning (AGP)

- The IOP algorithm iterates on the *velocity* u state.
- A method based on *pressure* would be more efficient, and in particular in

the GPGPU, due to a better use of the shared memory

• In addition, IOP is a stationary method (with linear rate of convergence)

🧭. We look for an *accelerated Krylov space* algorithm (CG) 📡

- The proposed *AGP algorithm* is to solve the fluid pressure problem with *PCG (Preconditioned Conjugate Gradient)* with the solution on the *whole (fluid+solid) domain*.
- It can be shown that the *condition number* of the preconditioned matrix is also O(1)
- It is an *accelerated method*, so convergence is much better than IOP; for the sphere with three iterations we have a reduction of 1e-3 in the residual

(while IOP gives a reduction of 0.1)

Conditioning degrades also for thin surfaces

Accelerated Global Preconditioning (AGP) (cont.)

To solve:

$$\begin{bmatrix} \mathbf{A}_{FF} & \mathbf{A}_{FB} \\ \mathbf{A}_{BF} & \mathbf{A}_{BB} \end{bmatrix} \begin{bmatrix} \mathbf{x}_F \\ \mathbf{x}_B \end{bmatrix} = \begin{bmatrix} \mathbf{b}_F \\ \mathbf{b}_B \end{bmatrix}$$

AGP Preconditioning:

$$\mathbf{P}_{AGP}\mathbf{x}_{FB} = \mathbf{y}_{FB}$$

defined by

$$\begin{bmatrix} \mathbf{A}_{FF} & \mathbf{A}_{FB} & \mathbf{0} \\ \mathbf{A}_{BF} & \tilde{\mathbf{A}}_{BB} & \mathbf{A}_{BG} \\ \mathbf{0} & \mathbf{A}_{GB} & \mathbf{A}_{GG} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{FB} \\ \mathbf{x}_{G} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{FB} \\ \mathbf{0}_{G} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \\ \mathbf{0}_{G} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \\ \mathbf{F} \\ \mathbf{F} \\ \mathbf{0}_{G} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \\$$

de ັງ griost n

fluid

a

b

Spectral decomposition of Stekhlov operators

Stekhlov operator \mathcal{S}_F for the fluid domain is defined by: $w = \mathcal{S}_F(v)$, if

$$\Delta \phi = 0, \; {
m in} \; \Omega_F$$

$$\phi_{\Gamma} = v$$

then $w = \left(\partial \phi / \partial n \right) |_{\Gamma}$

In the same way the Stekhlov operator S_S for the fluid domain can be defined. It turns out to be that the preconditioned matrix corresponds to $\mathbf{P}^{-1}\mathbf{A} \to (\mathcal{S}_F + \mathcal{S}_S)^{-1}\mathcal{S}_F$.

INTEC

UNL

CONICET

FFT Solver

- $\bullet\,$ We have to solve a linear system $\mathbf{A}\mathbf{x}=\mathbf{b}$
- The Discrete Fourier Transform (DFT) is an orthogonal transformation $\tilde{\mathbf{x}} = \mathbf{O}\mathbf{x} = \mathrm{fft}(\mathbf{x}).$
- The inverse transformation $\mathbf{O}^{-1} = \mathbf{O}^T$ is the inverse Fourier Transform $\mathbf{x} = \mathbf{O}^T \tilde{\mathbf{x}} = \operatorname{ifft}(\mathbf{x}).$
- If the operator matrix A is *homogeneous* (i.e. the stencil is the same at all grid points) and the b.c.'s are periodic, then it can be shown that O diagonalizes A, i.e. $OAO^{-1} = D$.
- So in the transformed basis the system of equations is diagonal

$$(\mathbf{OAO}^{-1})(\mathbf{Ox}) = (\mathbf{Ob}),$$

 $\mathbf{D\tilde{x}} = \tilde{\mathbf{b}},$ (1)

• For $N = 2^p$ the Fast Fourier Transform (FFT) is an algorithm that computes the DFT (and its inverse) in $O(N \log(N))$ operations.

FFT Solver (cont.)

- So the following algorithm computes the solution of the system in $O(N\log(N))$ ops.
 - $\triangleright \tilde{\mathbf{b}} = \mathrm{fft}(\mathbf{b})$, (transform r.h.s)
 - $\triangleright \tilde{\mathbf{x}} = \mathbf{D}^{-1}\tilde{\mathbf{b}}$, (solve diagonal system O(N))
 - $\triangleright \mathbf{x} = ifft(\tilde{\mathbf{x}})$, (anti-transform to get the sol. vector)
- Total cost: 2 FFT's, plus one element-by-element vector multiply (the reciprocals of the values of the diagonal of D are precomputed)
- In order to precompute the diagonal values of D,
 - $\triangleright\,$ We take any vector z and compute y=Az,
 - \triangleright then transform $\tilde{\mathbf{z}} = \mathrm{fft}(\mathbf{z})$, $\tilde{\mathbf{y}} = \mathrm{fft}(\mathbf{y})$,

$$\triangleright D_{jj} = y_j/z_j$$
.

NSFVM Computing rates in CPU

- i7-3820@3.60Ghz (Sandy Bridge), 1 core (sequential): 1.7 Mcell/sec
- i7-950@3.07 (Nehalem), 1 core (sequential): 1.51 Mcell/sec
- Cellrates with nthreads>1, and W3690@3.47Ghz not available at this time.
- BUT, we expect at most 7 to 10 Mcell/secs, so there is speedup factor of 8 to 10, with respect to the GPGPU (GTX-580, DP).

NSFVM Computing rates in CPU (cont.)

NSFVM and "Real Time" computing

- For a 128x128x128 mesh (≈ 2Mcell), we have a computing time of 2 Mcell/(140 Mcell/sec) = 0.014 secs/time step.
- That means 70 steps/sec.
- A von Neumann stability analysis shows that the QUICK stabilization scheme is inconditionally stable if advanced in time with Forward Euler.
- With a second order Adams-Bashfort scheme the critical CFL is 0.588.
- For NS eqs. the critical CFL has been found to be somewhat lower (\approx 0.5).
- If L = 1, u = 1, h = 1/128, $\Delta t = 0.5h/u = 0.004$ [sec], so that we can compute in 1 sec, 0.28 secs of simulation time. We say ST/RT=0.28.

(launch video nsfvm-bodies)

(launch video kh-instab-128)

CIMEC-INTEC-CONICET-UNL

((version texstuff-1.0.36-213-g1864495 Wed Apr 11 09:24:51 2012 +0200) (date Wed Apr 11 09:42:15 2012 +0200))

LBM and FVM

- This algorithm competes with the popular Lattice Boltzmann Method.
- Both are CA (Cellular Automata) algorithms
- Both are fast (measured in cellrates) on GPGPU's with structured meshes.
- LBM doesn't solve a Poisson equation, so it's partially compressible, and then there is a CFL penalization factor $\propto Mach_{art}$.
- Both can be nested refined near surfaces, or other interest zones.
- Higher order treatment of BC's on body surfaces may be better improved in FVM.

Conclusions

The Accelerated Global Preconditioning (AGP) algorithm for the solution of the Poisson equation specially oriented to the solution of Navier-Stokes equations on GPU hardware was presented. It shares some features with the well known *IOP* iteration scheme. As a summary of the comparison between both methods, the following issues may be mentioned

- Both solvers are based on the fact that an efficient preconditioning that consists in solving the Poisson problem on the global domain (fluid+solid). Of course, this represents more computational work than solving the problem only in the fluid, but this can be faster in a structured mesh with some fast solvers as Multigrid or *FFT*.
- Both solvers have their convergence governed by the spectrum of the $\mathcal{S}^{-1}\mathcal{S}_F$, however

▷ *IOP* is a *stationary method* and its limit rate of convergence is given by

$$\|\mathbf{r}^{n+1}\| \leq \gamma_{\text{IOP}} \|\mathbf{r}^{n}\|$$

$$\gamma_{\text{IOP}} = 1 - \lambda_{\min},$$

$$\lambda_{\min} = \min(\text{eig}(\mathcal{S}^{-1}\mathcal{S}_{F})).$$
(2)

▷ *AGP* is a preconditioned *Krylov space method* and its convergence is governed by the condition number of $S^{-1}S_F$, i.e.

$$\kappa(\mathbf{A}^{-1}\mathbf{A}_F) = \frac{1}{\min(\operatorname{eig}(\mathcal{S}^{-1}\mathcal{S}_F))} = \frac{1}{\lambda_{\min}},$$
 (3)

- It has been shown that $\lambda_{\min} = O(1)$, i.e. it *does not degrade with refinement*, so that *IOP* has a linear convergence with limit rate O(1).
- By the same reason, the condition number for *AGP does not degrade with refinement*.
- *IOP* iterates over both the velocity and pressure fields, whereas *AGP* iterates only on the pressure vector (which is better for implementation on GPU's).

Acknowledgments

This work has received financial support from

- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina, PIP 5271/05),
- Universidad Nacional del Litoral (UNL, Argentina, grant CAI+D 2009-65/334),
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina, grants PICT-1506/2006, PICT-1141/2007, PICT-0270/2008), and
- European Research Council (ERC) Advanced Grant, Real Time Computational Mechanics Techniques for Multi-Fluid Problems (REALTIME, Reference: ERC-2009-AdG, Dir: Dr. Sergio Idelsohn).

The authors made extensive use of Free Software as GNU/Linux OS, GCC/G++ compilers, Octave, and *Open Source* software as VTK among many others. In addition, many ideas from these packages have been inspiring to them.