An Enrichment Scheme for Solidification Problems

Alejandro Cosimo Víctor Fachinotti Alberto Cardona

Centro Internacional de Métodos Numéricos Aplicados a la Ingeniería (CIMEC-INTEC), Universidad Nacional del Litoral-CONICET

10th World Congress on Computational Mechanics

Mathematical setting of the problem

글 🕨 🖌 글

э

- Mathematical setting of the problem
- Numerical strategies to solve the problem

- Mathematical setting of the problem
- Numerical strategies to solve the problem
- The proposed 1D solution

- Mathematical setting of the problem
- Numerical strategies to solve the problem
- The proposed 1D solution
- Application examples

- Mathematical setting of the problem
- Numerical strategies to solve the problem
- The proposed 1D solution
- Application examples
- Two dimensional extension

- Mathematical setting of the problem
- Numerical strategies to solve the problem
- The proposed 1D solution
- Application examples
- Two dimensional extension
- Conclusions and observations

Mathematical setting

Equation

$$\rho \dot{\mathcal{H}} = Q + \nabla \cdot (k \nabla T)$$

Initial Condition and boundary conditions

$$T = T_0$$

$$T = T_d$$

$$-(k\nabla T) \cdot \mathbf{n} = q_w$$

$$-(k\nabla T) \cdot \mathbf{n} = h_f(T - T_f)$$

Constraints on the interface

$$T = T_m$$
$$[-(k\nabla T) \cdot \mathbf{n}]_{\Gamma} = \rho \mathcal{L} \mathbf{u}_{\Gamma}$$

(1)

 $\begin{array}{l} \mathcal{L}: \text{ Latent Heat} \\ \mathbf{u}_{\Gamma}: \text{ Velocity of } \Gamma \\ f_l: \text{ Liquid fraction} \\ (a \text{ Heaviside step}) \\ c: \text{ Heat Capacity} \\ \mathcal{H}: \text{ Specific Enthalpy} \\ \mathcal{Q}: \text{ Heat Source} \\ \rho: \text{ density} \end{array}$

Numerical strategies to solve the problem

 Moving mesh or front tracking methods

Numerical strategies to solve the problem

- Moving mesh or front tracking methods
- Fixed mesh methods
 - Enthalpy Methods
 - Capacitance Methods
 - Temperature Based Methods

Numerical strategies to solve the problem

- Moving mesh or front tracking methods
- Fixed mesh methods
 - Enthalpy Methods
 - Capacitance Methods
 - Temperature Based Methods
- Our Objective: enrich the space.
 Literature: an auxiliary formulation to evolve the interface is used
 - Chessa, Smolinsky and Belytschko (2002)
 - Ji, Chopp and Dolbow (2002)
 - Merle and Dolbow (2002)
 - Bernauer and Herzog (2011)

Example: fixed mesh method without representing the gradient discontinuity

The proposed Enrichment Function

Alejandro Cosimo, Víctor Fachinotti, Alberto Cardona An Enrichment Scheme for Solidification Problems

$$\sum_{i\in[s,l]}\int_{\Omega_i} w\left[\rho\dot{\mathcal{H}}-\nabla\cdot(k\nabla T)-Q\right] d\Omega_i=0$$

$$\begin{array}{l} \mathcal{L}: \text{ Latent Heat} \\ f_l: \text{ Liquid fraction} \\ (a \text{ Heaviside step}) \\ c: \text{ Heat Capacity} \\ \mathcal{H}: \text{ Specific Enthalpy} \\ \mathcal{Q}: \text{ Heat Source} \\ \rho: \text{ density} \end{array}$$

∃ >

э

$$\Omega = \Omega_s \cup \Omega_l$$

$$\sum_{i\in[s,l]}\int_{\Omega_i} w\left[\rho\dot{\mathcal{H}}-\nabla\cdot(k\nabla T)-Q\right] d\Omega_i=0$$

Then, making use of

$$\blacktriangleright \mathcal{H} = \mathcal{H}^{\text{sen}} + \mathcal{H}^{\text{lat}} = \int_{\mathcal{T}_{\text{ref}}}^{\mathcal{T}} c(\tau) d\tau + \mathcal{L} f_l(\mathcal{T})$$

 $\begin{array}{l} \mathcal{L}: \text{ Latent Heat} \\ f_l: \text{ Liquid fraction} \\ (a \text{ Heaviside step}) \\ c: \text{ Heat Capacity} \\ \mathcal{H}: \text{ Specific Enthalpy} \\ \mathcal{Q}: \text{ Heat Source} \\ \rho: \text{ density} \end{array}$

$$\Omega = \Omega_s \cup \Omega_l$$

$$\sum_{i\in[s,l]}\int_{\Omega_i} w\left[\rho\dot{\mathcal{H}}-\nabla\cdot(k\nabla T)-Q\right] d\Omega_i=0$$

Then, making use of

$$\blacktriangleright \mathcal{H} = \mathcal{H}^{\mathsf{sen}} + \mathcal{H}^{\mathsf{lat}} = \int_{\mathcal{T}_{\mathsf{ref}}}^{\mathcal{T}} c(\tau) d\tau + \mathcal{L} f_{\mathsf{l}}(\mathcal{T})$$

The Reynolds Theorem

L: Latent Heat f_i: Liquid fraction (a Heaviside step) c: Heat Capacity H: Specific Enthalpy Q: Heat Source p: density

Find $T \in S$ such that $\forall w \in V$

An Enrichment Scheme for Solidification Problems

Time and Spatial Discretisations: one dimensional case

Taking

$$T^h = \mathbf{N}^T \mathbf{T}$$

where

$$\mathbf{N} = \begin{bmatrix} N_1(x) \\ N_2(x) \\ E(x,t) \end{bmatrix} \quad \text{and} \quad \mathbf{T} = \begin{bmatrix} T_1 \\ T_2 \\ a \end{bmatrix}$$

Time and Spatial Discretisations

We have

$$\mathbf{\Pi} = \frac{\mathbf{CT}_{n+1}}{\Delta t} - \frac{\mathbf{C}^* \mathbf{T}_n}{\Delta t} + \frac{\mathbf{L}_{n+1} - \mathbf{L}_n}{\Delta t} + \mathbf{KT}_{n+1} + \mathbf{F} - \mathbf{Q}$$

where

$$\mathbf{C}^* = \int_{\Omega} \rho c_{n+1} \mathbf{N}_{n+1} \mathbf{N}_n^T \, d\Omega$$
$$\mathbf{L}_{n+1} = \int_{\Omega} \rho \mathcal{L} \mathbf{N}_{n+1} f_{l(n+1)} \, d\Omega$$

$$\mathbf{L}_{n} = \int_{\Omega} \rho \mathcal{L} \mathbf{N}_{n+1} f_{l(n)} \, d\Omega$$

Interface Position Determination

Basically we make use of the constraint

$$T|_{\Gamma} = T_m$$

and using the introduced enrichment function, we have

$$s = \frac{T_m - T_1^{(i)} - a^{(i)}}{T_2^{(i)} - T_1^{(i)}}$$
(4)

Discontinuous Integration

ъ

э

We take as an example the term ${\bf C}^*$

$$\mathbf{C}^* = \int_{\Omega} \rho c \mathbf{N}_{n+1} \mathbf{N}_n^T \, d\Omega = \sum_{p=1}^3 \sum_{g=1}^{n_g} \rho c \mathbf{N}_{n+1}(x_g^{(p)}) \mathbf{N}_n^T(x_g^{(p)}) w_g \Omega^{(p)}$$

From the previous slide we can detect three sources where \mathbf{C}^* depends on \mathbf{T} :

Evaluation dependency

From the previous slide we can detect three sources where \mathbf{C}^* depends on \mathbf{T} :

- Evaluation dependency
- Enrichment definition dependency

From the previous slide we can detect three sources where \mathbf{C}^* depends on \mathbf{T} :

- Evaluation dependency
- Enrichment definition dependency
- Integration region dependency

In the following *p* represents the number of subdomains and n_g the number of Gaussian points. To take an idea of the needed derivatives, take a glance to $(\frac{\partial \mathbf{C}^*}{\partial \mathbf{T}})$:

$$\frac{\partial C_{rk}^*}{\partial T_j} = \sum_{p=1}^3 \sum_{g=1}^{n_g} \rho c \left[\frac{\partial N_{n+1(r)}}{\partial x_g^{(p)}} \frac{\partial x_g^{(p)}}{\partial s} \frac{\partial s}{\partial T_j} N_{n(k)} w_g \Omega^{(p)} + N_{n+1(r)} \frac{\partial N_{n(k)}}{\partial x_g^{(p)}} \frac{\partial x_g^{(p)}}{\partial s} \frac{\partial s}{\partial T_j} w_g \Omega^{(p)} + \frac{\partial N_{n+1(r)}}{\partial x_a} \frac{\partial x_a}{\partial s} \frac{\partial s}{\partial T_j} N_{n(k)} w_g \Omega^{(p)} + N_{n+1(r)} N_{n(k)} w_g \frac{\partial \Omega^{(p)}}{\partial s} \frac{\partial s}{\partial T_j} \right]$$

In the following *p* represents the number of subdomains and n_g the number of Gaussian points. To take an idea of the needed derivatives, take a glance to $(\frac{\partial \mathbf{C}^*}{\partial \mathbf{T}})$:

$$\frac{\partial C_{rk}^*}{\partial T_j} = \sum_{p=1}^3 \sum_{g=1}^{n_g} \rho c \left[\frac{\partial N_{n+1(r)}}{\partial x_g^{(p)}} \frac{\partial x_g^{(p)}}{\partial s} \frac{\partial s}{\partial T_j} N_{n(k)} w_g \Omega^{(p)} + N_{n+1(r)} \frac{\partial N_{n(k)}}{\partial x_g^{(p)}} \frac{\partial x_g^{(p)}}{\partial s} \frac{\partial s}{\partial T_j} w_g \Omega^{(p)} + \frac{\partial N_{n+1(r)}}{\partial x_a} \frac{\partial x_a}{\partial s} \frac{\partial s}{\partial T_j} N_{n(k)} w_g \Omega^{(p)} + N_{n+1(r)} N_{n(k)} w_g \frac{\partial \Omega^{(p)}}{\partial s} \frac{\partial s}{\partial T_j} \right]$$

The core of the idea: the derivative $\frac{\partial s}{\partial T_i}$

After some computations, we have

$$\frac{\partial s}{\partial \mathbf{T}} = -\left(\sum_{i=1}^{2} h \frac{\partial N_i}{\partial x}(x_a) T_i\right)^{-1} \begin{bmatrix} N_1(x_a) \\ N_2(x_a) \\ 1 \end{bmatrix}$$

(5)

Alejandro Cosimo, Víctor Fachinotti, Alberto Cardona An Enrichment Scheme for Solidification Problems

Algorithmic Implementation

Some special treatment must be considered when one of following situations is detected:

 Once an element is enriched and as the simulation evolves, careful attention must be paid to the elemental latent heat contribution in order to accurately determine the element state.

Algorithmic Implementation

Some special treatment must be considered when one of following situations is detected:

If the parameter s and the parameter associated to the enrichement a are below or above certain thresholds, the element is not enriched.

Algorithmic Implementation

Some special treatment must be considered when one of following situations is detected:

- If the parameter s and the parameter associated to the enrichement a are below or above certain thresholds, the element is not enriched.
- ▶ When the parameter s is outside the range (0, 1), the element is considered liquid or solid depending on which state is most likely.

Example I: we study the frezzing of a long slab of length L with two Dirichlet boundary conditions at its ends. Parameters of the problem:

$$T_m = 0 \circ C$$
$$\mathcal{L} = 190.26 \frac{J}{kg} \qquad 4 \circ C$$
$$T_0 = 4 \circ C$$

- **B** - **N** - **B** - **N**

With Enrichment

Without Enrichment

∃ ► < ∃ ►</p>

э

Alejandro Cosimo, Víctor Fachinotti, Alberto Cardona An Enrichment Scheme for Solidification Problems

Alejandro Cosimo, Víctor Fachinotti, Alberto Cardona

An Enrichment Scheme for Solidification Problems

Example II: we study the melting of a long slab of length L with one Dirichlet condition and one Neumann boundary condition. Parameters of the problem:

$$T_m = -0.1 \,^{\circ}\mathrm{C}$$

$$\mathcal{L} = 190.26 \frac{\mathrm{J}}{\mathrm{kg}}$$

$$0 \frac{WK}{^{\circ}\mathrm{Cm}^2}$$

$$T_0 = -1.1 \,^{\circ}\mathrm{C}$$

Alejandro Cosimo, Víctor Fachinotti, Alberto Cardona

An Enrichment Scheme for Solidification Problems

 Fixed domain method with the ability to represent the discontinuity in the temperature gradient inside the element.

- Fixed domain method with the ability to represent the discontinuity in the temperature gradient inside the element.
- ► No level set auxiliary formulation.

- Fixed domain method with the ability to represent the discontinuity in the temperature gradient inside the element.
- ► No level set auxiliary formulation.
- Accurate solutions were obtained.

- Fixed domain method with the ability to represent the discontinuity in the temperature gradient inside the element.
- ► No level set auxiliary formulation.
- Accurate solutions were obtained.
- The nonlinearity of the problem increases.

- Fixed domain method with the ability to represent the discontinuity in the temperature gradient inside the element.
- ► No level set auxiliary formulation.
- Accurate solutions were obtained.
- The nonlinearity of the problem increases.
 - Besides, when the temperature profile is close to the melting temperature, we approach to the one phase problem.

- Fixed domain method with the ability to represent the discontinuity in the temperature gradient inside the element.
- ► No level set auxiliary formulation.
- Accurate solutions were obtained.
- The nonlinearity of the problem increases.
 - Besides, when the temperature profile is close to the melting temperature, we approach to the one phase problem.
- ► Work in progress: two dimensional extension.

Thanks for your attention

Questions?

Alejandro Cosimo, Víctor Fachinotti, Alberto Cardona An Enrichment Scheme for Solidification Problems

Image: A Image: A

э