Test cases C

Conclusions

Conclusions

GENERATION OF TURBULENT INLET VELOCITY CONDITIONS FOR LARGE EDDY SIMULATIONS

Hugo G. Castro and Rodrigo R. Paz

CONICET

Centro Internacional de Métodos Computacionales en Ingeniería CIMEC-INTEC-UNL UTN-FRRe Argentina <castrohgui@gmail.com>

10th World Congress on Computational Mechanics

CONICET

10th World Congress on Computational Mechanics 8-13 July 2012 • Sao Paulo • Brazel

イロト イボト イヨト イヨト

Introduction ●○	MDSRFG 00000000		
Introduction			
Intro and Genera	l Objectives		

 \triangleright Large eddy simulation (LES) has become an attractive approach to solve fluid flow problems due to the improvement of computational power.

 \triangleright In order to obtain a fully developed turbulence flow without a significant increase in computational costs one must assure that the turbulence inlet conditions are adequately prescribed.

▷ Several methods are available (Tabor and Baba-Ahmadi, Computer and Fluids, 2010):

▷ Precursor simulation methods: *cyclic domains, preprepared library concurrent library generation.*

CONICET

ld Congress on putational Mechanics

• • • • • • • • • • •

▷ Synthesis method: Fourier techniques, digital filter based method, proper orthogonal decomposition analysis.

Introduction ○●	MDSRFG 00000000		
Introduction			
Intro and General	Obiectives		

Objective of this research:

 \triangleright Develope a synthesis turbulence method to be used in the generation of inflow boundary conditions for LES with application to turbulent fluid flows.

▷ Key points of the proposed technique:

> Statistical properties of turbulence.

▷ Isotropic and anisotropic turbulence.

▷ Spectral target function.

 MDSRFG
 Test

 •00000000
 0000

est cases (

Conclusions

イロト イボト イヨト イヨト

CONICET

stational Mechanics

Numerical method

Modified discretizing and synthesizing random flow generation (MDSRFG)

▷ The proposed methodology is based on previous approaches:

▷ Random flow generation technique (RFG, Smirnov et al, *Journal of Fluids Engineering*, 2001):

-Inhomogeneous and anisotropic turbulence flow. -Time and spatial scales incorporated in the formulation. -Included in the software FLUENT (spectral synthesizer). -Gaussian's spectral model only.

▷ Discretizing and synthesizing random flow generation method (DSRFG, Huang et al, Journal of Wind Engineering and Industrial Aerodynamics, 2010):

-Any model spectrum can be used.

-Inhomogeneous and anisotropic turbulence flow.

-Highly parallelizable algorithmic implementation.

-Time correlation?.

-What about frequency interval size (Δf) ?.

	MDSRFG ○●○○○○○○○		
MDSRFG			
MDSRFG (cont.)			

Huang et al. (2010) analysis:

According to Huang et al. (2010) (based on the work of Smirnov et al. (2001) and Kraichnan (1970)) an inhomogeneous and anisotropic turbulent flow field $\mathbf{u}(\mathbf{x},t)$ can be synthesized as follows:

$$u_i(\mathbf{x}, t) = \sum_{m=1}^{M} \sum_{n=1}^{N} \left[p_i^{m,n} \cos\left(\tilde{k}_j^{m,n} \tilde{x}_j + \omega_{m,n} t\right) + q_i^{m,n} \sin\left(\tilde{k}_j^{m,n} \tilde{x}_j + \omega_{m,n} t\right) \right],$$

where M and N are the number of wavenumbers (k_m) considered in the discretization of the target spectrum and the sample size of each k_m , respectively, and $\omega_{m,n} \in N(0, k_m U_{avg})$.

イロト イボト イヨト イヨト

	MDSRFG 00000000		
MDSRFG			
MDSREG (cont.)			

and

$$p_{i}^{m,n} = \operatorname{sign}(r_{i}^{m,n}) \sqrt{\frac{4}{N} E_{i}(k_{m}) \frac{(r_{i}^{m,n})^{2}}{1 + (r_{i}^{m,n})^{2}}},$$

$$q_{i}^{m,n} = \operatorname{sign}(r_{i}^{m,n}) \sqrt{\frac{4}{N} E_{i}(k_{m}) \frac{1}{1 + (r_{i}^{m,n})^{2}}}.$$

$$\tilde{x} = \frac{x}{L_{s}},$$

$$\tilde{k}^{m,n} = \frac{k^{m,n}}{k_{0}},$$

$$L_{s} = \theta_{1} \sqrt{L_{u}^{2} + L_{v}^{2} + L_{w}^{2}}.$$

where $r_i^{m,n} \in N(0,1)$, θ_1 is a scalar value between 1 and 2 used to adjust the spatial correlation.

8-13 July 2012 · São Paulo · Brazil

< □ ト < □ ト < Ξ ト < Ξ ト</p>

	MDSRFG		
MDSRFG			
MDSREG (cont.)			

$$p_i^{m,n} = \operatorname{sign}(r_i^{m,n}) \sqrt{\frac{4}{N} E_i(k_m) \frac{(r_i^{m,n})^2}{1 + (r_i^{m,n})^2}}$$

$$q_i^{m,n} = \operatorname{sign}(r_i^{m,n}) \sqrt{\frac{4}{N} E_i(k_m) \frac{1}{1 + (r_i^{m,n})^2}}$$

these factors align the energy spectrum according to the anisotropy conditions of the turbulence, providing a sinthesized velocity series that must satisfy the mean square values in each of the spatial coordinate axes

• • • • • • • • • • •

Starting from the mean square value of a random function f(t) definition:

$$f_{\rm rms}^2(t) = \lim_{T\to\infty} \frac{1}{T} \int_0^T f^2(t) dt$$

we obtain:

$$u_{\mathrm{rms},i}^2(\mathbf{x},t) = \lim_{T \to \infty} rac{1}{T} \int_0^T \Big\{ \sum_{m=1}^M \sum_{n=1}^N [p_i^{m,n} \cos(ilde{k}_j^{m,n} ilde{x}_j + \omega_{m,n} t) + q_i^{m,n} \sin(ilde{k}_j^{m,n} ilde{x}_j + \omega_{m,n} t)] \Big\}^2 dt.$$

	MDSRFG ○○○○○○●○○		
MDSRFG			
MDSREG (cont.)			

And after some mathematical manipulations:

$$\overline{u_{i}u_{i}} = \frac{1}{2}\sum_{m=1}^{M}\sum_{n=1}^{N}p_{i}^{m,n}p_{i}^{m,n} + \frac{1}{2}\sum_{m=1}^{M}\sum_{n=1}^{N}q_{i}^{m,n}q_{i}^{m,n}$$
$$= 2\int_{0}^{\infty}E(k)dk \approx 2\sum_{m=1}^{M}E(k_{m})\Delta k_{m},$$

CONICET

8-13 July 2012 • São Paulo • Brazil

hence,

$$\overline{u_{i}u_{i}} = \frac{1}{2} \sum_{m=1}^{M} \sum_{n=1}^{N} \sum_{i=1}^{3} \left[\frac{4}{N} E_{i}(k_{m}) \frac{(r_{i}^{m,n})^{2}}{1 + (r_{i}^{m,n})^{2}} + \frac{4}{N} E_{i}(k_{m}) \frac{1}{1 + (r_{i}^{m,n})^{2}} \right]$$

$$= \frac{2}{N} \sum_{m=1}^{M} \sum_{n=1}^{N} E(k_{m}) = 2 \sum_{m=1}^{M} E(k_{m}),$$
10° World Corporation Mechanics

	MDSRFG ○○○○○○●○		
MDSRFG			
MDSRFG (cont.)			

$$\overline{u_i u_i} = 2 \sum_{m=1}^M E(k_m)$$

as $E(k_m)$ is a positive quantity for any k, the kinetic energy is represented by a divergent series. This causes a strong dependency of the turbulence intensity of the generated fluctuating velocities with the number of points M considered to discretize the target spectrum.

CONICET

10th World Congress on Computational Mechanics

A D D A (P) A B D A B

So, some modifications to the DSRFG method are proposed:

$$u_{i}(\mathbf{x}, t) = \sum_{m=1}^{M} \sum_{n=1}^{N} \left[p_{i}^{m,n} \cos \left(\tilde{k}_{j}^{m,n} \tilde{x}_{j} + \omega_{m,n} \frac{t}{\tau_{0}} \right) + q_{i}^{m,n} \sin \left(\tilde{k}_{j}^{m,n} \tilde{x}_{j} + \omega_{m,n} \frac{t}{\tau_{0}} \right) \right],$$

where $p_i^{m,n}$ and $q_i^{m,n}$ are modified according to the previous analysis and τ_0 is added in order to handle the time correlation of the series.

$$p_i^{m,n} = \operatorname{sign}(r_i^{m,n}) \sqrt{\frac{4c_i}{N} E_i(k_m) \Delta k_m} \frac{(r_i^{m,n})^2}{1 + (r_i^{m,n})^2}}{q_i^{m,n}} = \operatorname{sign}(r_i^{m,n}) \sqrt{\frac{4c_i}{N} E_i(k_m) \Delta k_m} \frac{1}{1 + (r_i^{m,n})^2}}.$$

	MDSRFG 00000000	Test cases ●00000000000000000000000000000000000	
Test cases			
Validation of the	procedure		

1) Same test as in the work of Huang et al., *Journal of Wind Engineering and Industrial Aerodynamics*, 2010): an inhomogeneus and anisotropic turbulent flow field.

▷ von Kármán models:

$$S_{u}(f) = \frac{4(I_{u}U_{\text{avg}})^{2}(L_{u}/U_{\text{avg}})}{[1+70.8(fL_{u}/U_{\text{avg}})^{2}]^{5/6}},$$

$$S_{v}(f) = \frac{4(I_{v}U_{\text{avg}})^{2}(L_{v}/U_{\text{avg}})(1+188.4(2fL_{v}/U_{\text{avg}})^{2})}{[1+70.8(2fL_{v}/U_{\text{avg}})^{2}]^{11/6}},$$

$$S_{w}(f) = \frac{4(I_{w}U_{\text{avg}})^{2}(L_{w}/U_{\text{avg}})(1+188.4(2fL_{w}/U_{\text{avg}})^{2})}{[1+70.8(2fL_{w}/U_{\text{avg}})^{2}]^{11/6}}.$$
CONICET

World Congress on Computational Mechanics

 \triangleright Turbulence intensity values: $\mathit{I_u}=8\%, \mathit{I_v}=16\%, \mathit{I_w}=24\%.$

 \triangleright Turbulence integral length scales: $L_u = 0.6$ m, $L_v = 0.3$ m, $L_w = 0.1$ m

	MDSRFG 00000000	Test cases ○●○○○○○○○○○○○○○○○	
Test cases			

To apply the procedure we must first obtain the c_i values for p_i and q_i :

$$\begin{split} u_{\rm rms,1}^2 &= (I_u U_{\rm avg})^2 = 2c_1 \int_0^\infty S_u(k) dk \\ &\approx 2c_1 \ 0.2377 \ \beta \Big(\frac{1}{3}, \frac{1}{2}\Big) I_u^2 U_{\rm avg} \ \Rightarrow \ c_1 = \frac{U_{\rm avg}}{2}, \\ u_{\rm rms,2}^2 &= (I_v U_{\rm avg})^2 = 2c_2 \int_0^\infty S_v(k) dk \\ &\approx 2c_2 \ \Big[0.1189 \ \beta \Big(\frac{1}{2}, \frac{4}{3}\Big) + 0.3163 \ \beta \Big(\frac{1}{3}, \frac{3}{2}\Big) \Big] I_v^2 U_{\rm avg} \\ &\Rightarrow \ c_2 = c_3 \approx \frac{U_{\rm avg}}{2}. \end{split}$$

	MDSRFG 00000000	Test cases ○○●○○○○○○○○○○○○○○	
Test cases			

Comparison of the spectra by the MDSRFG method and the target spectrum:

	MDSRFG	Test cases	
		000000000000000000000000000000000000000	
Test cases			

Comparison of the rms values of the simulated fluctuating velocities:

	σ_u	σ_v	σ_w
Scaling and transformation	0.9968	2.44	2.9956
Aligning and remapping	0.95	1.9987	3.08
MDSRFG approach	1.0527	2.1850	3.1123
target	1.12	2.24	3.36

	MDSRFG	Test cases	
		000000000000000000000000000000000000000	
Test cases			

Spatial correlation:

Introduction 00	MDSRFG 00000000	Test cases ○○○○○●○○○○○○○○○○○○	
Validation of the	procedure (cont	.)	

Time correlation: samples of temporal correlations from the MDSRFG and the DSRFG methods are shown in the next figures for each velocity component. Also, they are compared to the autocorrelation function of a random stationary process:

$$R_i(\tau)=e^{-|\tau|/T_i},$$

with time scales T_i (i = u, v, w) computed as

$$T_i = \int_0^\infty R_i(\tau) d au \equiv \sum_{j=0}^{M_0} R_i(j \ \delta au) \ \delta au,$$

where $M_0 < M$. Low frequency fluctuations cause oscillations on the time correlation around the zero value as the time lag tends to infinite. Consequently, if equation (1) is approximated without an adequate upper limit of the sum, it will fail to estimate the scale. In this work the time scale is computed by setting M_0 to the first τ -axis crossing value.

> Computational Mechanics 8-13 July 2012 • See Paulo • Brazil

CONICE'

	MDSRFG	Test cases	
		000000000000000000000000000000000000000	
Test cases			

Time correlation: Time scale statistics comparison (sec).

	T_u	T_{v}	T_w
DSRFG approach	0.034 ± 0.028	0.022 ± 0.009	0.010 ± 0.002
MDSRFG approach	$\textbf{0.043} \pm \textbf{0.021}$	0.023 ± 0.014	0.011 ± 0.002
target	0.043	0.021	0.007

• • • • • • • • • • • • • •

	MDSRFG 00000000	Test cases ○○○○○○○○○○○○○○○○○	
Test cases			

Time correlation: Time scale statistics of the fluctuating velocity components as a function of τ_0 obtained by the MDSRFG method.

	MDSRFG 00000000	Test cases ○○○○○○○●○○○○○○○○	
Test cases			
Some remarks			

 \triangleright For each node at the inlet section the cost at each time step is O(MN). (Same as in the DSRFG method)

▷ The turbulence synthesis for some number of time steps (or the entire simulation process) can be done prior to the LES computations. (Same as in the DSRFG method)

 \triangleright The anisotropic turbulence conditions at the inlet plane can be obtained by performing a previous RANS simulation or by experimental measurements. The two input parameters, L_s and τ_0 must be selected in order to reproduce the statistical properties of the flow under consideration. (Same as in the DSRFG method in the case of L_s)

> ld Congress on putational Mechanics

イロト イボト イヨト イヨ

	MDSRFG 00000000	Test cases 00000000000000000000000000000000000	
Test cases			
Some remarks			

 $\triangleright \text{ Is important to highlight the possibility to slightly modify the time scale with different <math>\tau_0$ values in the MDSRFG method while the DSRFG method are limitated in this way. Note that even the target time scales, estimated by the Taylor's hypothesis, are in accordance with the values obtained by the DSRFG method, the application of the MDSRFG approach leads to a wider range of possible values by changing τ_0 .

 \triangleright Also, to validate the relation proposed for the equations of p_i and q_i , the influence of the frequency interval size Δf over the rms values of the time series was analyzed. What it is expected is that the synthetic turbulence generation provides a correct rms values as $\Delta f \rightarrow 0$, that is, as the discretization of the spectrum becomes finer the energy turbulence content in each frequency will be included in the time series generation.

> World Congress on Computational Mechanics

イロト イボト イヨト イヨ

	MDSRFG 00000000	Test cases ○○○○○○○○○○○○○○○○○	
Test cases			

Some remarks

It can be seen that the method proposed in this work converges to the target values as Δf becomes smaller while in the case of the DSRFG method the values do not converge at all.

Δf		σ_u		σ_v		σ_w	_
	DSRFG	MDSRFG	DSRFG	MDSRFG	DSRFG	MDSRFG	
10	0.49	0.76	1.27	1.84	2.05	2.95	_
5	0.83	0.87	1.93	2.07	2.94	3.01	
2	1.47	0.98	3.15	2.11	4.69	3.03	CONI
1	2.17	1.04	4.47	2.11	6.75	3.11	
target	1	12	2		3	.36	65

▷ As a final observation we notice that the proposed approach, as any synthesized turbulence generation method, must be used as a turbulence initializer, i.e., a perturbation generator that "triggers" the transition to a fully developed turbulence state by LES. In this regard, it must be said that independently of the selected L_s value, the resolved scales are in concordance with the mesh (filter) size which is inherent to the LES work conception.

	MDSRFG 00000000	Test cases ○○○○○○○○○○○○○○○○○	
Test cases			

2) This test case consists of a swirling boundary layer developing in a conical diffuser that was experimentally studied by Clausen *et al* (1993).

Reynolds number of the experimental test was 2.08 \times 10⁶ based on the diameter of the inlet section Dictional Mechanic Computational Mechanic Computational

	MDSRFG 00000000	Test cases 00000000000000000000000000000000000	
Test cases			
Validation of the	procedure (2)		

Inlet conditions by the MDSRFG method:

10th World Congress on Computational Mechanics 813 July 2012 - Silo Paulo - Brazil

	MDSRFG 00000000	Test cases	
Test cases			

Q-vortex structures:

	MDSRFG 00000000	Test cases ○○○○○○○○○○○○○○○	
Test cases			

3) Simulation of a wind tunnel inlet flow field (Ahmed body test).

	MDSRFG 00000000	Test cases ○○○○○○○○○○○○○○○	
Test cases			
Validation of the	procedure (3)		

	MDSRFG 00000000	Test cases ○○○○○○○○○○○○○○○	
Test cases			
Validation of the	procedure (3)		

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ()

		IDSRFG		Test cases ○○○○○○○○○○○○○○○○	
Test cases					
	.		$\langle \alpha \rangle$		

Standard deviation velocity magnitude.

	MDSRFG 00000000	Conclusions	
Conclusions			

▷ A general method for the generation of inflow synthesized turbulence was presented and evaluated. The method is based on the DSRFG method, preserving its main characteristics and advantages.

▷ The key point of the MDSRFG method presented in this study is that it preserves the statistical quantities that would be prescribed at the inlet of the domain independently of the number of samples M (number of pointsonicer in the spectrum) considering in the computation of the factors $p_i^{m,n}$ and $q_i^{m,n}$.

 As each fluctuating velocity component is generated in each node independently of the others, the method is highly parallelizable.
 Furthermore, the generation of each nodal fluctuating velocity component can be done previously to the computation by LES, calling in each time step the corresponding nodal value.

> World Congress on Computational Mechanics 8-13 July 2012 • Sko Paulo • Brazil

イロト イボト イヨト イヨ

Conclusions

 \triangleright Analysing the swirling flow inside a diffuser problem, the MDSRFG method has shown that can set properly the inlet conditions for LES of turbulent flows.

▷ With regard to the simulation of the flow over the Ahmed body, it has been shown that the results obtained in the LES, i.e., force coefficients, level of unsteadiness in the wake and the back-light of the model, are very sensitive to the upstream inflow conditions.

Conclusions

Conclusions

::THANKS::

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ のへで