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Introduction

Intro and General Objectives

. Large eddy simulation (LES) has become an attractive approach to
solve fluid flow problems due to the improvement of computational power.

. In order to obtain a fully developed turbulence flow without a
significant increase in computational costs one must assure that the
turbulence inlet conditions are adequately prescribed.

. Several methods are available (Tabor and Baba-Ahmadi, Computer and Fluids, 2010):

. Precursor simulation methods: cyclic domains, preprepared library,
concurrent library generation.

. Synthesis method: Fourier techniques, digital filter based method,
proper orthogonal decomposition analysis.
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Introduction

Intro and General Objectives

Objective of this research:

. Develope a synthesis turbulence method to be used in the generation of
inflow boundary conditions for LES with application to turbulent fluid
flows.

. Key points of the proposed technique:

. Statistical properties of turbulence.

. Isotropic and anisotropic turbulence.

. Spectral target function.
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Numerical method

Modified discretizing and synthesizing random flow generation (MDSRFG)

. The proposed methodology is based on previous approaches:

. Random flow generation technique (RFG, Smirnov et al,
Journal of Fluids Engineering, 2001):
-Inhomogeneous and anisotropic turbulence flow.
-Time and spatial scales incorporated in the formulation.
-Included in the software FLUENT (spectral synthesizer).
-Gaussian’s spectral model only.

. Discretizing and synthesizing random flow generation method
(DSRFG, Huang et al, Journal of Wind Engineering and Industrial Aerodynamics, 2010):
-Any model spectrum can be used.
-Inhomogeneous and anisotropic turbulence flow.
-Highly parallelizable algorithmic implementation.
-Time correlation?.
-What about frequency interval size (∆f )?.
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MDSRFG

MDSRFG (cont.)

Huang et al. (2010) analysis:
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MDSRFG

MDSRFG (cont.)

According to Huang et al. (2010) (based on the work of Smirnov et al. (2001)
and Kraichnan (1970)) an inhomogeneous and anisotropic turbulent flow field
u(x, t) can be synthesized as follows:

ui (x, t) =

M∑
m=1

N∑
n=1

[
pm,n

i cos
(
k̃m,n

j x̃j + ωm,nt
)

+ qm,n
i sin

(
k̃m,n

j x̃j + ωm,nt
)]
,

where M and N are the number of wavenumbers (km) considered in the
discretization of the target spectrum and the sample size of each km,
respectively, and ωm,n ∈ N(0, kmUavg).
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MDSRFG

MDSRFG (cont.)

and

pm,n
i = sign(rm,n

i )

√
4
N Ei (km)

(rm,n
i )2

1 + (rm,n
i )2 ,

qm,n
i = sign(rm,n

i )

√
4
N Ei (km)

1
1 + (rm,n

i )2 .

x̃ =
x
Ls
,

k̃m,n =
km,n

k0
,

Ls = θ1

√
L2

u + L2
v + L2

w .

where rm,n
i ∈ N(0, 1), θ1 is a scalar value between 1 and 2 used to adjust the

spatial correlation.
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MDSRFG

MDSRFG (cont.)

pm,n
i = sign(rm,n

i )

√
4
N Ei (km)

(rm,n
i )2

1 + (rm,n
i )2

qm,n
i = sign(rm,n

i )

√
4
N Ei (km)

1
1 + (rm,n

i )2

these factors align the energy spectrum according to the anisotropy
conditions of the turbulence, providing a sinthesized velocity series that

must satisfy the mean square values in each of the spatial coordinate axes.
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MDSRFG

MDSRFG (cont.)

Starting from the mean square value of a random function f (t) definition:

f 2
rms(t) = lim

T→∞

1
T

∫ T

0
f 2(t) dt

we obtain:

u2
rms,i (x , t) = lim

T→∞

1
T

∫ T

0

{ M∑
m=1

N∑
n=1

[pm,n
i cos(k̃m,n

j x̃j + ωm,nt)+

qm,n
i sin(k̃m,n

j x̃j + ωm,nt)]
}2

dt.
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MDSRFG

MDSRFG (cont.)

And after some mathematical manipulations:

uiui =
1
2

M∑
m=1

N∑
n=1

pm,n
i pm,n

i +
1
2

M∑
m=1

N∑
n=1

qm,n
i qm,n

i

= 2
∫ ∞

0
E(k)dk ≈ 2

M∑
m=1

E(km)∆km,

hence,

uiui =
1
2

M∑
m=1

N∑
n=1

3∑
i=1

[ 4
N Ei (km)

(rm,n
i )2

1 + (rm,n
i )2 +

4
N Ei (km)

1
1 + (rm,n

i )2

]
=

2
N

M∑
m=1

N∑
n=1

E(km) = 2
M∑

m=1

E(km),
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MDSRFG

MDSRFG (cont.)

uiui = 2
M∑

m=1

E(km)

as E(km) is a positive quantity for any k, the kinetic energy is represented
by a divergent series. This causes a strong dependency of the turbulence
intensity of the generated fluctuating velocities with the number of points

M considered to discretize the target spectrum.
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MDSRFG

MDSRFG (cont.)

So, some modifications to the DSRFG method are proposed:

ui (x, t) =

M∑
m=1

N∑
n=1

[
pm,n

i cos
(
k̃m,n

j x̃j + ωm,n
t
τ0

)
+ qm,n

i sin
(
k̃m,n

j x̃j + ωm,n
t
τ0

)]
,

where pm,n
i and qm,n

i are modified according to the previous analysis and τ0 is
added in order to handle the time correlation of the series.

pm,n
i = sign(rm,n

i )

√
4ci

N Ei (km)∆km
(rm,n

i )2

1 + (rm,n
i )2 ,

qm,n
i = sign(rm,n

i )

√
4ci

N Ei (km)∆km
1

1 + (rm,n
i )2 .
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Test cases

Validation of the procedure

1) Same test as in the work of Huang et al., Journal of Wind Engineering and Industrial

Aerodynamics, 2010): an inhomogeneus and anisotropic turbulent flow field.

. von Kármán models:

Su(f ) =
4(IuUavg)2(Lu/Uavg)

[1 + 70.8(fLu/Uavg)2]5/6 ,

Sv (f ) =
4(IvUavg)2(Lv/Uavg)(1 + 188.4(2fLv/Uavg)2)

[1 + 70.8(2fLv/Uavg)2]11/6 ,

Sw (f ) =
4(IwUavg)2(Lw/Uavg)(1 + 188.4(2fLw/Uavg)2)

[1 + 70.8(2fLw/Uavg)2]11/6 .

. Turbulence intensity values: Iu = 8%, Iv = 16%, Iw = 24%.

. Turbulence integral length scales: Lu = 0.6 m, Lv = 0.3 m, Lw = 0.1 m
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Test cases

Validation of the procedure (cont.)

To apply the procedure we must first obtain the ci values for pi and qi :

u2
rms,1 = (IuUavg)2 = 2c1

∫ ∞
0

Su(k)dk

≈ 2c1 0.2377 β
(1
3 ,

1
2

)
I2
uUavg ⇒ c1 =

Uavg

2 ,

u2
rms,2 = (IvUavg)2 = 2c2

∫ ∞
0

Sv (k)dk

≈ 2c2

[
0.1189 β

(1
2 ,

4
3

)
+ 0.3163 β

(1
3 ,

3
2

)]
I2
vUavg

⇒ c2 = c3 ≈
Uavg

2 .
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Test cases

Validation of the procedure (cont.)

Comparison of the spectra by the MDSRFG method and the target spectrum:
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Test cases

Validation of the procedure (cont.)

Comparison of the rms values of the simulated fluctuating velocities:

σu σv σw

Scaling and transformation 0.9968 2.44 2.9956
Aligning and remapping 0.95 1.9987 3.08
MDSRFG approach 1.0527 2.1850 3.1123
target 1.12 2.24 3.36
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Test cases

Validation of the procedure (cont.)

Spatial correlation:
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Test cases

Validation of the procedure (cont.)

Time correlation: samples of temporal correlations from the MDSRFG and the
DSRFG methods are shown in the next figures for each velocity component.
Also, they are compared to the autocorrelation function of a random stationary
process:

Ri (τ) = e−|τ |/Ti ,

with time scales Ti (i = u, v ,w) computed as

Ti =

∫ ∞
0

Ri (τ)dτ ≡
M0∑
j=0

Ri (j δτ) δτ, (1)

where M0 < M. Low frequency fluctuations cause oscillations on the time
correlation around the zero value as the time lag tends to infinite.
Consequently, if equation (1) is approximated without an adequate upper limit
of the sum, it will fail to estimate the scale. In this work the time scale is
computed by setting M0 to the first τ -axis crossing value.
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Test cases

Validation of the procedure (cont.)

Time correlation: Time scale statistics comparison (sec).

Tu Tv Tw

DSRFG approach 0.034± 0.028 0.022± 0.009 0.010± 0.002
MDSRFG approach 0.043± 0.021 0.023± 0.014 0.011± 0.002
target 0.043 0.021 0.007
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Test cases

Validation of the procedure (cont.)

Time correlation: Time scale statistics of the fluctuating velocity components
as a function of τ0 obtained by the MDSRFG method.
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Test cases

Some remarks

. For each node at the inlet section the cost at each time step is O(MN).
(Same as in the DSRFG method)
. The turbulence synthesis for some number of time steps (or the entire
simulation process) can be done prior to the LES computations. (Same as
in the DSRFG method)
. The anisotropic turbulence conditions at the inlet plane can be obtained
by performing a previous RANS simulation or by experimental
measurements. The two input parameters, Ls and τ0 must be selected in
order to reproduce the statistical properties of the flow under
consideration. (Same as in the DSRFG method in the case of Ls)
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Test cases

Some remarks

. Is important to highlight the possibility to slightly modify the time scale
with different τ0 values in the MDSRFG method while the DSRFG
method are limitated in this way. Note that even the target time scales,
estimated by the Taylor’s hypothesis, are in accordance with the values
obtained by the DSRFG method, the application of the MDSRFG
approach leads to a wider range of possible values by changing τ0.
. Also, to validate the relation proposed for the equations of pi and qi ,
the influence of the frequency interval size ∆f over the rms values of the
time series was analyzed. What it is expected is that the synthetic
turbulence generation provides a correct rms values as ∆f → 0, that is,
as the discretization of the spectrum becomes finer the energy turbulence
content in each frequency will be included in the time series generation.
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Test cases

Some remarks

It can be seen that the method proposed in this work converges to the target
values as ∆f becomes smaller while in the case of the DSRFG method the
values do not converge at all.

∆f σu σv σw
DSRFG MDSRFG DSRFG MDSRFG DSRFG MDSRFG

10 0.49 0.76 1.27 1.84 2.05 2.95
5 0.83 0.87 1.93 2.07 2.94 3.01
2 1.47 0.98 3.15 2.11 4.69 3.03
1 2.17 1.04 4.47 2.11 6.75 3.11

target 1.12 2.24 3.36

. As a final observation we notice that the proposed approach, as any
synthesized turbulence generation method, must be used as a turbulence
initializer, i.e., a perturbation generator that “triggers” the transition to a
fully developed turbulence state by LES. In this regard, it must be said
that independently of the selected Ls value, the resolved scales are in
concordance with the mesh (filter) size which is inherent to the LES
conception.
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Test cases

Validation of the procedure (2)

2) This test case consists of a swirling boundary layer developing in a conical
diffuser that was experimentally studied by Clausen et al (1993).

diffuser

dumper

3.5 Da) b)

c)

3 D

Reynolds number of the experimental test was 2.08 × 106 based on the diameter of the inlet section D, the mean

axial velocity Ux = 11.6 m/s, the kinematic viscosity ν = 1.45× 10−6 m2/s.
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Test cases

Validation of the procedure (2)

Inlet conditions by the MDSRFG method:
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Test cases

Validation of the procedure (2)

Q-vortex structures:
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Test cases

Validation of the procedure (3)

3) Simulation of a wind tunnel inlet flow field (Ahmed body test).
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Test cases

Validation of the procedure (3)
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Test cases

Validation of the procedure (3)

Drag force spectrum.
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Test cases

Validation of the procedure (3)

Standard deviation velocity magnitude.
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Conclusions

. A general method for the generation of inflow synthesized turbulence
was presented and evaluated. The method is based on the DSRFG
method, preserving its main characteristics and advantages.
. The key point of the MDSRFG method presented in this study is that it
preserves the statistical quantities that would be prescribed at the inlet of
the domain independently of the number of samples M (number of points
in the spectrum) considering in the computation of the factors pm,n

i and
qm,n

i .
. As each fluctuating velocity component is generated in each node
independently of the others, the method is highly parallelizable.
Furthermore, the generation of each nodal fluctuating velocity component
can be done previously to the computation by LES, calling in each time
step the corresponding nodal value.
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Conclusions

. Analysing the swirling flow inside a diffuser problem, the MDSRFG
method has shown that can set properly the inlet conditions for LES of
turbulent flows.
. With regard to the simulation of the flow over the Ahmed body, it has
been shown that the results obtained in the LES, i.e., force coefficients,
level of unsteadiness in the wake and the back-light of the model, are
very sensitive to the upstream inflow conditions.
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::THANKS::


	Introduction
	Introduction
	Introduction

	MDSRFG
	Numerical method
	MDSRFG
	MDSRFG
	MDSRFG
	MDSRFG
	MDSRFG
	MDSRFG
	MDSRFG
	MDSRFG

	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases
	Test cases

	Conclusions
	Conclusions

