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Abstract. A pseudo-spectral numerical method for the solution of the incompressible
3D boundary layer equations is presented. The method is based on Fourier erpansion
in the lateral transformed coordinate, similarly to the transformation that leads to the
polynomial Tchebyschev expansion in finite intervals, but appropriated to semi-infinite
intervals, so that no extra parameter is needed for the outer boundary of the layer.
A scaling is applied to the normal coordinate but with the innovation that it is based
on the computed boundary layer thickness, i.e. not assuming a priori a variation for
it. Spectral decay of the expansion coefficients is shown for the similar solution to the
family of wedge flows. Also, spectral convergence of the error is shown for the case of a
convergent channel (one of the similar “wedge flows” ), for which an analytical solution
1s available. The method pretends to have a good performance also when using very
few parameters, so that results with four terms in the Fourier series (it amounts to two
independent parameters) are compared with the well known method from von Karman
and Pohlhausen. Several 2D numerical examples show the precision of the method. For
3D problems, the boundary layer equations are solved in a completely general mesh and
coordinate system on the surface using the tensorial form of the equationsl. In order
to advance the solution in the streamwise coordinate a mesh-less approximation is used
in the coordinates on the surface. This feature allows the treatment of very general
geometries. 3D numerical examples include the yawed cylinder and flat plate, and 3D
axisymmetric flows like the cone, the sphere and a rotating sphere.
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1 INTRODUCTION

Boundary layer equations are a simplification of the Navier-Stokes equations where
viscous terms parallel to the surface are neglected. Thus, the equations are “parabo-
lized” so that they can be integrated as if the longitudinal direction were a time-like
coordinate. This results, from the point of view of numerical solutions, in a great reduc-
tion in the computational resources required. Coupled potential flow / boundary layer
solutions have been the first approximate solutions of practical interest to the Navier-
Stokes equations for rather general geometries, but mainly in the context of exterior
flows around geometries where separation does not happen or it is of secondary inter-
est like, for instance rather streamlined bodies as airfoils, wing-fuselage configurations,
ships, propellers. Today, this technique continues to be used even if direct solutions of
the Navier-Stokes equations are available, due to the comparatively low computational
effort required. This ranges from complete 3D geometries on small computers, but even
for supercomputers when iteration is required, for instance optimization or free-surface
problems. Also, accurate solutions of the boundary layer equations provide the base
flow for linear an non-linear stability analysis2.

The first approximate methods where of the integral type. The velocity profile in
the layer were characterized by the layer thickness 6 and a “shape parameter”, and
their evolution were governed by some integral form of the continuity and momentum
equations. It is not evident how to extend this method in order to allow a better
representation of the profile including more parameters and deriving accordingly more
integral equations. In short, it is not evident how to extend the method in order to be
convergent. On the other hand, convergent methods have been developed via standard

3,16,10

numerical methods as finite differences and, in few cases, finite elements , and also

via series expansions as in the Multimoment or Weighted-Residual (MWR) method®. As
mentioned before, the longitudinal coordinate is treated as time-like, so that a standard
ODE solver (Runge-Kutta, multi-step, for instance) may be applied, and only the normal
coordinate y remains to be discretized. The simplicity of the domain (0 < y < oo) and
the fact that the solution is expected to be highly regular for y > 0, suggest the use of
a higher order difference method.

Spectral methods’ ™ ® are based on series expansions in a basis such that, under certain
conditions, infinite order accuracy (also termed spectral convergence) is achieved, i.e.
the error of the numerical solution with respect to the exact solution decays faster
than any finite power of the degrees of freedom (and then of the computational effort).
In this and many order aspects, spectral methods behave as finite difference infinite
order methods. Fourier series are the standard choice for periodic problems, whereas
Tchebyschev polynomials are used for bounded intervals®. Tn fact, both are closely
related, since Tchebyschev polynomials can be viewed as a particular mapping from the
bounded interval on the real axis in order to make the problem periodic while retaining
the degree of regularity of the solution. One-dimensional stretchings may be used in
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order to increase the resolution where required (shocks, boundaries). For semi-infinite
regions 0 < y < oo (as the normal coordinate in the boundary layer equations) it is
common use to truncate to a bounded interval 0 < y < yn.x and use Tchebyschev
polynomials.

Since the boundary layer thickness may grow or decrease by several orders according
to the variation of the pressure gradient, it is imperative to add or remove points from the
computational grid (in a finite difference context) if a constant step size will be adopted
in the normal direction. Alternatively, it is adviceable to scale the normal coordinate
by a length scale that should be roughly proportional to the layer thickness (either
the displacement, momentum or 99% thicknesses). In this way, a uniform resolution is
achieved with the same number of points at each longitudinal station. However, as the
thickness is a result of the computation it is not evident how to couple such scaling with
the time-marching algorithm.

Pruett and Streett7 and Pruett? applied the spectral method to the boundary layer
equations mainly in the context of obtaining highly accurate solutions to be used as a
base flow for a subsequent stability analysis. In one of the papers7 the normal coordinate
is scaled with a scale length o /2 which is appropriated for flat potential velocities,

whereas in the other’ the scale length is more general. It is based in the so called
Levy-Lees transformation and includes compressibility effects and is appropriated for
more general potential velocity profiles. For incompressible 2D flows it amounts to a

scale length oc Uext_l( [ Ue() da:)l/2, where z is the arc length and U,,, the potential

velocity. For similar flows U, o< 2", it reduces to a scaling length oc 2 R(1=m) which
is effectively proportional to the thickness of the layer for such flows, but it is not
guaranteed that it will cover more general situations. A more representative estimate
could be taken from the approximation to the momentum thickness in the well known

Thwaites method 6 oc UZ3(f U2, dx)1/2. However, we will show that it is relatively easy
to scale with the computed displacement thickness. This is one of the main goals of
this work. On the other hand, the spectral approximation in the previous mentioned
papers7’2 is based on truncating the computational domain and using a Tchebyschev
polynomial expansion, as described previously, whereas we propose here to map directly
the semi-infinite domain to the whole real axis and using a Fourier series expansion, thus
avoiding the truncation and the subsequent mapping to the bounded interval suitable
for the Tchebyschev polynomial expansion. Off course, this mapping involves some care

in order to obtain a periodic problem and preserve the regularity of the solution.

1 BOUNDARY LAYER GOVERNING EQUATIONS

The incompressible laminar 2D boundary layer equations are:

’U/U/’_qj + 'U'U/’y =V U,yy + Uext ext, T (1 a b)
uja; + ’U,y - 0 o
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where z is the streamwise coordinate, y the distance to the wall, u, v the corresponding
components of the velocity vector and ( ) ; denotes partial differentiation with respect
to x.

. Ymax\T X
computational y max(7)

domain

matching point

similar solution
(stagnation flow SVE

lli//l. S\\\

N\

N

Figure 1: Coordinate system and computational domain.

When using finite differences (or finite elements) to solve this equations we have
to restrict the computational domain to some region y < Ymax(z). It is evident that
in order to have a uniform approximation to the velocity field at all stages, Ymax(Z)
should be chosen as a fixed multiple of a measure of the local thickness as, for instance,
Ymax (2) = Mgd*(x), with Mg large (say My ~ 5), and 0* the local displacement thickness.
As 0* is not known a priori, one must guess a certain behavior for §*, say:

5" ("L‘) ~ 5sca1(m) (2)
We call ., the normal scaling length and then use:
ymax(m) = Médscal(x) (3)

For instance, the so called Levy-Lees transformation used by Pruett? implies a scaling
of the normal coordinate of the form:

5sca1 X Uext_l(/ Uext(x) d$)1/2 (4)

For the wedge flows (U, o< ) it gives a scale length o x1/2(1_m), which is correct since

it is the same dependence as the displacement thickness. However, it is not guaranteed
that it will give a good estimate in more general situations. A more approximate
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expression could be based on the momentum thickness estimate in the Thwaites method,
since it can be computed from a simple quadrature:

6scal = eThwaites <U6 /UeSxt dl’) (5)

ext

However, large discrepancy exists in the location of the separation point for the simple
Thwaites method with respect to the spectrally convergent method proposed here, and
since the layer thickness has strong variations near the separation point it is evident
that this variations will be not properly followed by the Thwaites estimate (5). For
the moment, we will derive discrete equations as if d,., were a completely independent
quantity chosen a priori. Afterwards, we will explain how to set ., automatically
at the same time that the boundary layer equations are being solved in the time-like
direction.

It is natural for numerical methods like finite differences to map the computational
domain to a rectangle with the auxiliary curvilinear transformation (z,y) — (&, 7):

E==x

__Y (6)
"7 bl

so that the computational domain is now the semi-infinite strip £ > 0, 0 < n < Mj.
This transformation is somewhat related to the well known similarity transformation
that leads to similar solutions for wedge flows. The extensions to compressible and
axisymmetriccompressible flows are called Illingworth and Levy-Lees transformations
respectively. However, the fact that these transformations lead to similar solutions is
irrelevant for numerical computations and the only interesting property which is the
proper scaling of the normal coordinate is retained by (6). Also, those transformations
not only scale the normal coordinate, but also remaps the longitudinal coordinate in
such a way that a uniform grid is appropriate. This is not necessary if an algorithm
with variable step-size automatically adjusted is used. In addition, it is relatively easy to
invert the transformation law (8) for the contravariant components of velocity induced
by (6) in order to recover the normal velocity component v, whereas special procedures

are needed for the Levy-Lees (and similar) transformations®.
The transformed equations in the new coordinate system are:

UUg+ VU, = 5L2U,,, + UntUp 6

scal (7a,b)

1
(5sca1U)’€ + ‘/:n = O

where U,V are the contravariant components of the velocity vector:
U=u
Yy 6scal,£l:' ]- (8a7b)

V=nzut+nyv=-— 5 2 u-l—(ssca]v

scal
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These equations are valid for an arbitrary choice of 0y, (x). However, as mentioned,
it seems that an optimal choice will be d,.,; ~ 0* or other thickness criterion as the
momentum thickness, for instance. One of the innovative contributions of this paper is
that the scaling thickness is set plainly to 0, = 0%, so that the computational domain
is coupled with the numerical solution. This will be explained in detail in section §2.5,
and will impose a restriction on the coefficients and some care has to be taken in the

solution of the resulting system of DAE’s ( “Differential-Algebraic Equations”S).

2 PSEUDO-SPECTRAL DISCRETIZATION

As usual, we will take benefit of the parabolic character of the boundary layer equa-
tions and solve in the £ coordinate as a “time-like” coordinate, whereas 7 remains as
the “spatial coordinate”. As & = x in transformation (6) we will use z or £ indistinctly
in the sequel. As the computational domain is the semi-infinite interval 0 < n < oo
and the solution has a high degree of regularity, it is appealing the use of high order or
spectral methods. Our method will be based in a pseudo-spectral approximation for 7
whereas a standard finite difference method will be applied in the time-like coordinate.

2.1 Basics of spectral approximations

Spectral methods are based on the approximation by a set of non-local functions
(usually coming from the “spectra” of a differential operator) such that the approxima-
tion error converges faster than any finite power of the number of terms involved®>?.
The simplest example is the Fourier series for infinite differentiable periodic functions.

Let:
M

$(0) ~ p(0) = Y cpeh? 9)
k=—M

It can be shown that, if ¢ is regular enough for all  and periodic ¢(0 + 27) = ¢(0),
then series (9) converges faster than any power of M:

¢ — dll < CM™P, for any p, M > M*(p) (10)

This is termed “spectral convergence”. In this as in many other aspects spectral methods
can be assimilated as “infinite order methods”.
2.2. Finite interval Mapping

For finite intervals one can extend the solution to the real axis periodically and apply
the previously described method. For instance, given ¢ defined on 0 < x < 1 one can
extend to —oo < 6 < oo with the following mapping:

z = 1g(0)] (11)
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with:

g(0) = 2 [(%) ~ round (%)] (12)

and round(z) is the nearest integer to . This is equivalent to map linearly 0 < z < 1
to 0 < 6 < 7 and then extend symmetrically with respect to all the points of the form
f = nm with n integer. Note that the mapping is linear in each interval of the form
nm < 0 < (n+1)mr. Assuming that ¢ has continuous derivatives of all orders as function
of 6, then the extended function is continuous, but its first derivative is discontinuous
at 2nm or (2n + 1)7, unless ¢ ; = 0 at © = 0 or 1, respectively, and similarly for all the
odd derivatives. Thus, the rate of convergence is affected by the mapping, unless all the
odd derivatives are null at z = 0,1. Consider now the mapping:

x = (1 - cos ) (13)

It is simple to see that ¢(0) preserves the same degree of continuity in the interior points
as the original function. So that if ¢ has infinite continuous derivatives with respect
to z, the same is valid with respect to 6, and a Fourier series is spectrally convergent.
This is the basis of spectral approximations for finite intervals.

As ¢ is even, coefficients ¢, satisfy ¢, = c_j and series (9) can be put in the form:

) M M
(0) = D epcy, coskd = > ay, coskb (14)
k=0 k=0

with €, = 1 for k¥ = 1 and 2 otherwise. Replacing 6 in terms of x from (13) we arrive
to the classical expansion in Tchebyschev polynomials. One point that is often used
in practice is that given the values of ¢ on a equally spaced grid of points in the 6
coordinate coefficients c; can be computed very efficiently by means of a Fast Fourier
Transform.

2.3 Semi-infinite interval

The domain of interest for the spectral approximation is the semiinfinite axis 0 <
n < oo. A first attempt is to restrain the computational domain to 0 < n < My, as
is usual in finite differences, apply mapping (13) combined with a linear mapping from
0<x<1to0<n< Mg, and assume a Tchebyschev polynomial expansion. However,
this is not efficient in the sense that the resolution is higher near the outer edge.
Consider now the following mapping:

i 1) = [y 0 (15)

nscal

It has the same regularity properties that mapping (13) at the wall (n = 0), and it has
a uniformly decreasing resolution from the wall to the outer edge (n = oo). The point
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with such mappings that include infinity is the regularity of the transformed function at
0 = 7 (the image of n = 00). As discussed previously, the resulting function ¢(6) should
have all the odd derivatives null and the even derivatives even at § = m, in order to
have all derivatives continuous there. The condition on the even derivatives is satisfied
automatically. Consider the first derivative:

d
Yy

Vo=

= 20 cosh? (1)/Near) Uy (16)
This is null if U, decays faster to zero than cosh? (M/Nsear) ~ e21/Mscal | Similar criteria
can be developed for the higher derivatives, but in order to make a rigorous analysis we
would require also a detailed analysis of how U behaves at n = oo. The important point
is that (dn/df) should not got to infinity faster than the rate at which U, decreases. If
necessary, we may choose a different 7, or modify the left hand side in the mapping
(15), for instance:

1- e = o)

vio (@] opor

nscal

where g is defined by (17.a) goes much slowly to infinity than (15) whereas (17.b)
goes faster. In addition, the degree of regularity dictaminates the ultimate rate of
convergence, i.e. the rate of convergence when the number of terms M in series (9)
goes to infinity. This means that sometimes the fact that a given mapping goes too
fast to infinity and some degree of regularity is lost doesn’t mean necessarily that the
approximation is worse than that one for a more regular mapping for a given finite
number of terms M. In conclusion, the choice of an appropriate mapping involves also
some degree of experience. In practice, we used in all cases mapping (15) with 7., = 6.

2.4 Weighted residual formulation

Let U = U/Ue, then it satisfies: U(n = 0) = 0, U(n = o0) = 1. We assume the
following expansion for U:

M
U= ) a coskb (18)
k=0

The restrictions mentioned above result in 2 linear restrictions on the a; coefficients:

) M
Un=0)=> a;=0
k=0
) M
Uln=o00)= ¥ (~1)Fap =0
k=0

(19)



Mario A. Storti

So that only Ny = M — 1 of the M + 1 coefficients are independent. Expansion (18)
can be put as:

U(z,n) = ¢ (1) - a(z)
ol =[do(n) ... oa(m)] (20)
é1(n) = cos (k)

where a=[ag a1 ... aps]7 is a vector of length M + 1 with the coefficients in the
series expansions, Replacing in the continuity equation (7.b) and solving for V,,:

1 _ _
V:’? = _—(5scaerxt),:1;U - UU,.’L‘
o ) (21)
= _5—(5scaerxt),:I;U -U ¢T a
scal

Where the dot stands for partial derivative with respect to x (the time-like coordinate).
Integrating in the normal direction:

1 n ,
V = ——Oualent)a [ UGr) dnf = UT
scal 22)
1 (
= _5—(5sca1Uext),.'L' VO - U'l/’Té
scal

where: .
Vo= ['UG) dif

0
Yy = /0 or(n') dnf

Replacing in the momentum equation (7.a):

Usla
1

_ . v _
B 5—1(6Sca]Uext),$V0 + UeXtU¢Ta Uvn o 5—2 UextU;TW =0 (24)

Uext(.]ext(U2 - 1) + U2

ext

scal

In order to obtain a system of ODE’s we weight these equations with a series of weight

functions {w; ;V:d‘if and obtain a system of the form:

F(aa 6scala éa 5scala Jf) = 0 (25)

Let us assume for the moment that d,..(z) is known a priori, for instance s = c\/.
Then, these system of equations together with restrictions (19) is a system of M + 1
DAE’s (M —1 ODE’s and 2 linear restrictions) with M +1 unknowns. It can be integrated
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by straightforwardly eliminating two of the a parameters (say ag and a1) and obtaining
a system of Naor = M — 1 ODE’s for the “state vector” u = [as a3 ... apy]L. A
standard method like Runge-Kutta or any other high order method can be used to solve
it numerically. Another possibility is to solve the full system of DAE’s with a package
like DassL®. This last doesn’t seem to be justified since the restrictions are linear. On
the other hand, what certainly should not be done is to differentiate restrictions (19)
in order to obtain a system of M + 1 ODE’s, since this would lead to a reduction in
convergence order.
System (25) is linear in a and d.cr and can be put in the form:

Aa+cl=Db (26)

where all A, c and b are functions of a, d,.,; and z. Their expressions are:* i bin oo

formulas

A= U2, Oow-qud— =, OT oy, d
ik = Jknowj n Yk an

ext / ,,,7 VO d’l’] (27)

14
l ext ext - ]-) + Uext VO 6 < 2 UeXt ,7777] d77

scal

2.5 Automatic normal scaling

As mentioned before, we propose to obtain the normal length scale ., at the same
time that the system is integrated. Suppose for instance that we want to set dge(2) =
6*(z) the displacement thickness. That would mean that:

oo

Uexté* = /0 (Uext - U) dy
o (28)
= Uext(sscal 0 (1 - U) d’f}

so that, canceling out U, 0* = Usydsca1, We arrive to an additional restriction on the
coefficients {ay}:

1= [Ta-0 dn—zﬁkak (29)

where:

B = [ [8xn = 50) — k() dn (30)

Auto-scaling consists in solving (25) with ., as an additional unknown together with
restrictions (19,29). The same discussion as at the end of the previous section §2.4 on

10
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how to reduce the system of DAE’s to a system of ODE’s or solving the system of DAE’s
with an appropriate algorithm applies. Again, we choose the first alternative. Note
that, as the restriction (29) does not involve d,.,, we can not eliminate dy.,;, so that we
are obliged to eliminate a further a; parameter, say ag, and the “state vector” is now

u=/[ag a4 ... ay (5sca1]T.

2.6 EXTENSION TO 3D

In the 3D case two main problems arise:

e There are two intrinsic coordinates on the surface so that the “time-like” analogy for
the streamwise coordinate breaks down. We have to analyze the data dependency
domain for the governing equations and choose an advance strategy.

e The statement of the boundary layer equations themselves is far more complex in
3D than in 2D. It’s clear that for general surfaces one can not provide easily an
orthogonal curvilinear system of intrinsic coordinates (£, () on the surface, so that
the use of tensor algebra concepts like contravariant and covariant components, metric

tensors, Christoffel symbols and covariant derivatives'

2.7 Mesh-less discretization on the surface

In 3D there is no more a direct analogy to problems of temporal evolution. in this
respect the governing equations resemble more the egs. for pure advection without longi-
tudinal and transverse diffusion where the advected quantities are the shape parameters
in the normal direction. If (¢, () is a system of intrinsic coordinates on the surface, then
the pseudo=-spectral discretization in the normal direction leads to a system of the
form

e 5w =0, (31)
where u is the vector of shape parameters (the coefficients in the Fourier expansion
of both components of the velocity vector u and w). The domain data dependency is
given locally by the cone including all the directions of the hodograph of the velocity at
the point at the different normal positions. As this dependency cone has an aperture
< 180° (save in particular cases as we will see later), there is some degree of freedom in
the way the solution is advanced spatially.

Look at figure 2, the velocity at point O given by the intrinsic coordinates (&, ()
at the outer edge of the boundary layer n = oo is the inviscid external velocity U,
whereas for n = 0 (at the wall) is u = 0. For 0 < 7 < oo the locus of velocities
u(&,n,¢) describes a curve called hodograph as shown in the figure. This velocity
vectors are enclosed in a cone AOB and the data dependency domain is obtained locally
continuing downstream the lines AO and BO. The numerical solution is obtained
advancing the solution by layers. For instance, known the unknowns in the layers

11
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Figure 2: Data dependency domain

A;_1,A;_2,... we can obtain the unknowns at layer A;, then on A;;1, and so on. The
only restriction is that when computing a given layer A; is that all the points in the
data dependency domain of A; should be already computed, i.e. they should belong to
layers A;_1, Aj—2,.... So, an advancing grid with layers arranged as ..., B, Bjy1,... is
admissible, but ..., C;, Cj41,. .. is not. The constraint is stronger as the aperture angle
of the cone is wider. Consider a separation bubble like that one depicted in figure 3.
Assume that the inviscid field is almost parallel to the z-direction, then at a point
A on the separation line the cone starts from the inviscid direction parallel to the z
axis. While approaching the wall, the direction of the velocity vectors depart from this
direction until that, for the layers of fluid very close to the wall, they align with the
separation streamline. As the point A moves closer to the singular separation point S
(point A’) the angle comprised in the cone approaches 90°, ranging from the x direction
to the positive z direction. But for a point A” immediately on the other side of S
the cone ranges from the x direction to the negative z direction, so that near S the
dependency cone is 180° wide. This is not surprising, since separation involves a change
in the governing equations from predominantly hyperbolic to predominantly elliptic.
Most boundary layer codes use a predetermined computational grid or intrinsic co-
ordinate system. Most of them are based on the either free streamlines, constant x
planes (where z is a global Cartesian coordinate parallel to the axis of the body, this
is mainly used for fuselages), or constant percentage of chord for wings. It is clear that

12
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singular
separation
point

Figure 3: behavior of the data dependency domain near the separation line.

these codes will break well before the separation point, unless the grid point arrives (by
mere coincidence) parallel to the separation line at the singular separation point. We
propose then to adopt a scheme that could solve system (1) for a point P; given the
data on a set of points Py, ..., P, on its data dependency domain (see figure 4). This

is equivalent do dynamically adapt the advancing front as the calculations proceed. A

suitable numerical technique is the so called mesh-less method 13, Tts basis is to obtain

a polynomial least-squares approximation to the discrete data on points P, ..., Py and
approximate the derivatives appearing in the governing equation by the derivatives of
the fitting polynomial. This strategy may be used in order to interpolate grid values at
other points, not pertaining to the original discrete set. However, the most simple choice
for the weights of interpolation leads to discontinuous interpolations. Much research is
being done currently in order to obtain a continuous approximation, but for simplicity
we will stick to the discontinuous one (which is called Fixed Least Squares Method).
Let us start with a scalar field ¢(z) and let

M

(&) ~ d(e) = kZ ag Py (8), (32)
=1

be the least squares approximation. Then forming a weighted least squares error func-

tional
N

E(@) =Y wj [¢; - cg(ﬁj)]Q (33)

j=1

13
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Figure 4: Stencil and data dependency domain for the boundary layer eqs.

and minimizing with respect to the free parameters a we obtain a system of the form

Aa=Db, (34)
with
A = 2w Prlgj) Pi(&),
J 35
by = D_wj Pr(&) ¢5- (3)
j

Then, an approximation to, say, (0¢/9¢) is,

09 .\ 0

8_§(£Z) ~ 3§ (ﬁz)
. 0P, '
_§ak8—§(£’)
_ (9P 1
_<65A WP)‘b
=c! 4.

(36)

c is a “numerical stencil” for the approximation to %% Now, let us describe how the

99

system (1) is advanced. First the numerical stencil for the approximation to g% and an

14
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is obtained in the form

96 N
8—? ~ Z c§ b,
= (37)

Then, replacing in (1) a non linear system of egs. in u; is obtained,

N N
F (Z & b3 _Zlc? qu,uj,gj) 0 (38)

This system is solved iteratively with Newton-Raphson’s method. In order to reduce
the number of iterations, the scheme is started with a “predicted value” u2*? obtained
by the same kind of meshless approximation but not including 7 = 0 in the cloud,

N
o= & o (39)

Jj=2

Note that the sum starts at 7 = 2. Usually, 2 or 3 iterations are enough for a reduction
in the residual by a factor 107 or more. However, the rate of convergence rapidly
deteriorates near the separation point.

2.8 Boundary layer equations in tensorial form

A more detailed presentation of the tensorial form of the boundary layer equations
can be found in a technical reportl. We will give here only a brief summary of the
resulting equations. Let (§,() be a curvilinear system of coordinates on the surface,
and 7 a (locally) orthogonal coordinate. We will also denote z! = ¢, 22 = ¢. The
following definitions are standard in tensor calculus:

15
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Figure 5: Intrinsic curvilinear coordinates

The covariant metric tensor g, is defined as

3
oyP oyP
= E — — 40
9ap = o1 928’ (40)

where Greek indices run on the surface coordinates o, 8 = 1,2. {yP},p = 1,2,3 is
a set of Cartesian coordinates. It is easy to show that the resulting metric tensor is
independent of the particular Cartesian system used in the definition.

The contravariant metric tensor is defined as the inverse (in the usual matrix sense),

9ap 9”7 =07, (41)

where §, is the identity matrix,

1, ifa=vy
Y — ’
Oa { 0; otherwise (42)

We also assume in such expressions that repeated indices (like 8 in the previous
eq.) are summed implicitly. Such indices should appear always once as contravariant
(supraindex) and the other as covariant (subindex).

The Christoffel symbols of the first kind are,

dy?  9*yP
= ) 43
They are also independent of the Cartesian system {yP}.
The Christoffel symbols of second kind are defined as,
Q@ apu
= g™ [Bv, 44
{ﬁ 7} o1 ()
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e The covariant derivative is defined as,

> for a scalar ¢ as simply the partial derivative,

0¢
b = p (45)
> for a contravariant vector u® as,
ou® Q@
o % a
u;ﬂ_8$ﬂ+{ﬁ7}u (46)

> for a covariant vector uq as,

ou v
uo‘ﬁ:ﬁ_{aﬁ} Uy (47)

> for a tensor of arbitrary order, as a combination of the previous expressions on
each index (covariant or contravariant) of the tensor, independently,

o
877

(756 = 508 * {ﬂau} T {vuﬂ} K 1)

The point about the covariant derivative is that it transforms as a covariant vector,
whereas the standard partial derivative has not a transformation law, so that when a
particular expression involves derivatives in a Cartesian system, they will result likely
in covariant derivatives when formulated in a general curvilinear system.

The tensorial form of the boundary layer equations in tensorial form are:

ouP v 0%uP

a,p v __Z By
’U,U,a'f"l)an = 52 87’]2 +9 D,y
. 9 (49)
v
~ (6u® — =0
5 ( ),Oé + an
This system is invariant under mappings of the intrinsic coordinates, i.e. xl, 2 - 5:1, z2.

Also §(¢) is an arbitrary length scale for the normal coordinate. The system of egs. is
valid for whatever we choose for 4, but the idea is to choose it as close as possible to
the real (displacement or momentum) thickness of the boundary layer profile. In this
respect we follow with the idea of automatically scaling with § as it is being computed.
As p is a scalar p o = (Op/0c), but usually it is more convenient to put the pressure

gradient in the form,
gl pa=U" U?a (50)

where U® are the contravariant component of the outer (inviscid) velocity field.
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3 NUMERICAL RESULTS

There is a first set of 2D examples. Due to the abundance of numerical and experi-
mental data, they allow an assessment of the precision of the method.

e Similar solutions. Wedge-flows

e Spectra for wedge flows

e Similar flow in a convergent channel
e Howarth’s flow

e Circular cylinder

e Ellipses

With respect to the 3D examples there is a first set which is rather a verification of
the code. It includes,

Yawed flat plate

Yawed circular cylinder

Invariance under change of mapping
Cones

The essentially 3D flows considered are,

e Sphere (potential outer flow)
e Sphere (actual outer flow)
e Sphere with rotation

3.1. Similar solutions Wedge-flows

Since the paper is focused on the spectral approximation of the boundary layer equa-
tions we consider only numerical experiments with laminar flow. We start with the
similar solutions of the Falkner-Skan equations for several values of the exponent m in
the external velocity law U o ™. Longitudinal velocity profiles U are shown in figure 6.
The set of values for m’s have been chosen as in the book of Schlichtimg14 for ease of
comparison. Also the abscissa has been scaled as in that reference. In order to make a
qualitative comparison, we computed integral quantities (skin friction C t, thickness 0*
and momentum displacement ) for several number of parameters M + 1 and compared
with values computed by Hartree and found in (16) (see Tables I and II). (Note: the
set of m values is different from those shown in figure 6).

It is interesting to see how the method converges as M is increased. For m =
1 the solution with four terms (M = 3) has a precision of 1% in the displacement
thickness, 4% for the momentum thickness and 0.5% for the wall friction with respect
to the values indicated by Schetz. As a reference, the method from von Kiarman and

Pohlhausen' gives errors of 1%, 5% and 3.5%. This errors are comparable except for
the last one which is seven times greater for the von Karman and Pohlhausen’s method.
This comparison is very interesting since it shows that the method not only has a high
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Figure 6: Longitudinal velocity profiles for (similar) wedge flows.

rate of convergence, but also is reasonably accurate for engineering computations with
very few terms. Indeed, both methods are equivalent in the sense that with M = 3 our
method has two degrees of freedom: the layer thickness and the remaining plays the
role of the “shape parameter” in the von Karman and Pohlhausen’s method. On the
other hand, it is enough to use M = 7 to have all the three integral quantities accurate
to three digits. It is interesting also to see how the values converge while increasing the
number of terms. For instance for M + 1 =8, 12, 18 and 24 terms the displacement
thickness changes only in a 0.01%.

Convergence is slower for decelerated flows. In particular, for the flat plate m = 0
always with M + 1 = 4 terms the errors are 8%, 16% and 5% respectively, whereas
they are 2%, 4% and 3% for the von Kdrmén and Pohlhausen’s method. In this case
the comparison is favorable to the second one. On the other hand we need 12 terms
to find the solution accurate to three digits. Finally, for m = —0.0904, which is the
value for which the flows reach separation according to Hartree, our method predicts a
momentum thickness accurate to three digits, a difference of 0.5% for the momentum
thickness and a wall friction of 0.01 (whereas it is null for the Hartree calculations).

3.2 Spectra for wedge flows

Spectral methods provide a simple form to estimate qualitatively the convergence of
the method. As the approximation is “hierarchical”, in the sense that best resolution is
achieved by the addition of new terms to the series, it is expected that if convergence
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Table I

m | M+1 | CpRef | (6°/2) Ref? | (6/7) Re,?

1 4 2.45466 0.64101 0.28004

2.46209 0.64613 0.29071

8 2.46501 0.64787 0.29232

12 2.46519 0.64792 0.29237

18 2.46518 0.64790 0.29234

24 2.46506 0.64793 0.29236
Hartree | 2.465 0.648 0.292

1/3 4 1.51736 0.96434 0.40234
6 1.51074 0.98127 0.42543

8 1.51511 0.98644 0.43004

12 1.51490 0.98536 0.42898

24 1.51490 0.98537 0.42899
Hartree 1.515 0.985 0.429

0.1 4 1.00924 1.28990 0.49960

6 0.98779 1.34479 0.55509
8 0.99401 1.35255 0.56099

12 0.99312 1.34765 0.55640

24 0.99314 1.34786 0.55659
Hartree | 0.993 1.348 0.557

0 4 0.69913 1.58478 0.55410

6 0.65832 1.74522 0.68966

8 0.66563 1.72735 0.66970

12 0.66408 1.72145 0.66472

24 0.66411 1.72079 0.66411
Hartree | 0.664 1.721 0.664

is good the contribution from the terms with high indices would be negligible. To see
this, we plot the absolute value of the coefficients aj versus k for several m values in
figure 7. It can be seen that coefficients decay strongly. For instance, for all values
except m = —0.0904 the last coefficients (k = 13,14) are below 1076, whereas the first
ones are above 0.01. This convergence tends to deteriorate for decelerated flows, but
even at separation (m = —0.0904) the last coefficient represents 1073 of the first one.

20



Mario A. Storti

Table IT

m | M+1 | CpRef2 | (0%/5)Redf? | (6/2) Res?
-0.01 0.66170 1.62682 0.55854
0.61716 1.81453 0.71368

8 0.62456 1.78590 0.68373

12 0.62291 1.78105 0.67983

24 0.62294 1.78004 0.67891

Hartree | 0.623 1.780 0.679

-0.05 4 0.49200 1.83731 0.56571
6 0.42137 2.26311 0.88137

8 0.42962 2.10911 0.74329

12 0.42693 2.12121 0.75439

24 0.42697 2.11775 0.75146

Hartree | 0.427 2.117 0.751
-0.0904 4 0.26503 2.17629 0.51471
6 0.06094 4.10997 1.60755

8 0.08120 2.95492 0.72862

12 0.03321 3.29244 0.83852

24 0.01031 3.44190 0.86797

Hartree 0 3.428 0.868

3.3 Similar flow in a convergent channel

A related family of similar flows correspond to outer velocity profiles of the form
Uexe o |2|™ for z < 0. In this case, m < 0 corresponds to accelerated flow and m > 0
to decelerated flow. It is particularly interesting the case m = —1 since in this case an

exact solution is available. The solution is14

Y = 3 tanh? "—*+1146 -2 (51)
U V2

where tanh™! 23 = 1.146 and n* = (y/z)/ Re;;b. In figure 8 we see the computed profile
with four terms and the exact profile. The displacement thickness is §* = 0.744, whereas
the exact one is 0.778 and von Kédrman and Pohlhausen’s method predicts 6* = 0.5952.
The error is 0.5% for the proposed method, whereas it is as high as 24% for the von

Karman and Pohlhausen’s one.*In figure 9 we can see the maximum error (on a fixed,__

grid of N = 28 points) of the solution for different number of terms. Note that the

21

verificar esto!!



Mario A. Storti

0.1
|a|
0.01

0.001
0.0001

le-05

le-06

le-07

-0.01
Figure 7: Spectra of coefficients in the Fourier series for similar flows.

vertical axis is logarithmic and the horizontal one is linear, so that a straight line will
represent an error ~ e~ M , which fits within the concept of “spectral convergence”.
We see that, even if a certain deceleration in the rate of convergence is observed, an
ultimate rate of convergence of 1 order of magnitude each 20 terms is achieved. Even
if asserting “spectral convergence” is rather subjective, the rate of convergence is quite
high with respect to finite precision methods.

3.4 Howarth flow

This corresponds to a decelerated external flow given by:
U(z) =Uy — ax (52)

The time-like coordinate is made non-dimensional by defining z* = az/Uy. L. Howarth
obtained accurate solutions by series expansions whose results can be found in Schlicht-

ing’s book'?. Numerical results have been obtained with a number of methods as
described in the book of White* and recently using finite elements in the normal coordi-

nate by Schetzg. In figure 10 we can see the variation of the displacement thickness and
wall friction and longitudinal velocity profiles in figure 11. We detected separation at
xz* = 0.01195 which is in very good coincidence with both the value of z* = 0.0119863
reported by Wippermann using finite differences and taken by White as the reference
value, and also with the numerical results from Schetz.
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Figure 8: Flow in a convergent channel Uy,  |z|™!, (x < 0)

3.5 Yawed circular cylinder

The inviscid potential around a cylinder is U, = 2Uxo sin(¢), where ¢ = /R and
x is the arc length on the cylinder. It is well known that the flow separates somewhere
slightly after the point of maximum pressure, so that the boundary layer calculations
for this expression are of relative practical importance. However, there are accurate cal-
culations via series expansions for this flow, so that it serves as a test for the numerical
method. On the other hand, for flows of practical interest over aerodynamic profiles
where the flow do not separate, the series do not converge, specially due to the large
variation of U, near the nose. In figure 12 we see the variation of displacement thick-
ness and wall friction whereas longitudinal velocity profiles at several stages are shown
in figure 13. There is a rather large discrepancy with respect to the location of the sep-
aration point. Whereas both the Blasius series and the von Karman and Pohlhausen’s
method predicts separation near ¢g = 109.5°, our method gives ¢g = 103.8°. This
seems to be in accordance with more precise calculations using finite differences and

MWR as described in the book of White4, which report ¢g =1 — 4.5°.
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Figure 9: Maximum error versus number of terms for the convergent channel flow
(Unrw < —|z|1, for < 0).

3.6 Ellipses

Results for flow around ellipses, when the undisturbed flow is oriented with the
major axis of the ellipse are shown in figures 14, 15 and 16. Similar results using the
approximate method from von Kiarman and Pohlhausen are shown in the book from
Schlichting14. The circular cylinder discussed in the previous section corresponds to the
particular case: a/b = 1. Also, the flat plate can be included if considered as an ellipse
with a/b — oc.

3.7 Yawed flat plate

Consider a uniform flow impinging on a flat plate at 45° with respect to its lead-
ing edge. It can be shown that the boundary layer solution is the same (along each
streamline) as if the plate were non-yawed. We verified that the displacement thickness

evolves as 0% = 1.721\/\/55 , where the factor v/2 takes into account the inclination of
the streamline with respect to the £ axis. Also the u and v velocity components are
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Figure 10: Displacement thickness and wall friction for Howarth’s flow U, (x) =
Uy — ax
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Figure 11: Longitudinal velocity profiles for Howarth’s flow.

proportional (equal, in fact, for incidence a 45°).
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Figure 12: Displacement thickness and wall friction for flow around a circular
cylinder U, = 2Uy sin(z/R)

3.8 Yawed cylinder

This case corresponds to a yawed cylinder such that the non-perturbed flow impinges
at 45° to its axis (see figures 17 and 18). As indicates the theory, the velocity component
normal to the axis of the cylinder is the same as for the non-yawed cylinder. However
the limit streamlines, i.e. the streamlines for the fluid immediately over the wall) tend
to curve near the separation point and to align with the separation streamline, which for
cylinders is always an x =cnst curve. The computations is with the potential velocity
(u = 2xsin(¢)) and separation occurs at the same point as for the non-yawed cylinder,
i.e. at 104.45° which is in very good agreement with computations reported in the
literature.

3.9 Invariance under change of mapping

Here we solve the standard Blasius flow but including an artificial mapping of the
form;

E==x
¢ =z+a f(x) sin(27z) (53)
with,
_ S [(z—0.5)1—)]?/0.25% ; for 0.5 <z < 1;
flo) = {0 ; otherwise (54)

and a = 0.05. For this value of a the maximum and minimum values of relative stretch-
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Figure 13: Longitudinal velocity profiles for flow around a circular cylinder.

ing of the iso-( lines is in a ratio of 4:1. Here z and z are Cartesian coordinates on the
plate, such hat z is parallel to the leading edge and = perpendicular to it, and parallel to
the flow. Solving the problem in the distorted coordinates should give the correct result,
which will show that the 3D equations are correct. Off course discretization coupled
with mesh distortion introduces an error, and the results in the distorted coordinates
tend to approach the correct ones only with refinement. We checked that the maximum
relative variation in the displacement thickness at £ = 1.2 was 2 x 1074,

3.10 Cones

In 3D, there are two kind of similar flows that have been used for checking the code:
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Figure 15: Wall friction or flow around ellipses of various slenderness

yawed wedge flows and cone flow. In both cases the external velocity potential is oc ™.
For yawed wedge flow, the normal flow is the same (as usual for cylinders) to the non

yawed flow (already shown in the 2D paper15). In the case of cone flow, it can be

shown that it is equivalent to a wedge 2D flow with a external velocity oc 2°™, whereas

the displacement thickness is v/3 to the equivalent wedge flow. This has been checked
numerically but will not be reported in detail here.
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Figure 16: Longitudinal velocity profiles for flow around slenderness a/b = 4.

3.11 Sphere (potential velocity distribution)

This is an axysymmetric flow without lateral (azimuthal) component of velocity. Us-
ing the velocity distribution given by the potential flow U = 1.5sin(¢) we obtain the
results for wall friction and displacement Thickness shown in figure 19. The separa-
tion point is detected at ¢ = 105.45° which is in very good agreement with the value
recommended by White as being between 104° and 106°.

3.12 Sphere (actual velocity distribution)

The actual velocity distribution can be approximated with very good precision as

UEO = 1.5(z/a) — 0.4371 (z/a)3 + 0.1481 (z/a) — 0.0423 (z/a)" (55)

With this velocity distribution the code predicts separation at ¢ = 81.6° which is again
in very good agreement with other computations and with the experimental value of
83° reported by Fage.
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Figure 17: Inviscid streamlines.

separation streamline

Figure 18: Computed viscous streamlines.

3.13 Rotating sphere

In this case take the the actual distribution of velocity (55) but the sphere is rotating
with an angular velocity wR/Us, = 1, about an axis parallel to the free stream velocity.
Whereas the inviscid streamlines are simply meridians, the limit viscous streamlines have
a tendency to rotate with the sphere, until they align with the separation streamline
that is a parallel at 84.2° with respect to the pole facing the fluid. Note that rotation
tends to stabilize the boundary layer against separation, resulting in a delay of almost

30



Mario A. Storti

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

. . . . . . * glrad]
0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Figure 19: Results for the sphere with velocity distribution given by potential flow.
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Figure 20: Limit streamlines for the rotating sphere.

3 degrees. This is due to the centrifugal force that can be assimilated to a pressure
gradient directed to the equator. Since the separation for the sphere happens before
the equator this is equivalent to a favorable pressure gradient. This has a significant
incidence in the drag also.

4 CONCLUSIONS

A spectrally accurate algorithm for the solution of the boundary layer equations with
automatic scaling of the normal coordinate is presented. The scaling amounts to assume
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the scaling length as a further unknown and adding the corresponding restriction as a
constraint. The resulting system of Differential-Algebraic Equations (DAE) is solved by
eliminating one parameter in the expansion and solving the resulting system of ODE’s.
The spectral approximation is based on a direct mapping from the semiinfinite domain
to a periodic problem and using a Fourier expansion, instead of truncating the semiin-
finite domain and mapping to a bounded interval and using a Tchebyschev expansion.
Several numerical results are presented, and spectral convergence is demonstrated by
analysis of the decay rate of the coefficients in the expansion for similar flows, and by
straightforward computation of the maximum error in the longitudinal velocity profile
for the special case of flow towards a sink, for which an analytic expression is available.
Also, the accuracy of the method when very few parameters are used was analyzed, by
comparison with von Karméan and Pohlhausen’s method.
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