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2 R. R. PAZ AND M. A. STORTIor Finite Element Methods are normally solved in parallel by iterative methods [8, 6℄ beausethey require muh less ommuniation ompared to diret solvers.The Shur omplement domain deomposition method leads to a redued system bettersuited for iterative solution than the global system, sine its ondition number is lower (/ 1=hvs. / 1=h2 for the global system, h being the mesh size) and the omputational ost periteration is not so high one the sub-domain matries have been fatorized.Iterative substruturing methods rely on a non-overlapping partition into sub-domains(substrutures). The eÆieny of these methods an be further improved by usingpreonditioners [5℄. One the degrees of freedom inside the substrutures have been eliminatedby blok Gaussian elimination (or other algorithm), a preonditioner for the resulting Shuromplement system is built with matrix bloks relative to a deomposition of interfae �niteelement funtions into subspaes related to geometrial objets (verties, edges, faes, singlesubstrutures) or simply by the oeÆients of sub-domain matries near the interfae. Iterativemethods like Conjugate Gradient and GMRES are then employed. Early works, suh as [10, 11℄,have inuened most of the later work in the �eld. They proposed two spaes for the oarseproblem. One of their oarse spaes is given in terms of the averages of the nodal values over theentire substruture boundaries �
i. The other spae is de�ned by extending the wire basket(we reall that the wire basket is the union of the boundaries of the faes whih separate thesubstrutures) values as a two dimensional disrete harmoni funtion onto the faes, and thenas disrete harmoni funtion into the interiors of the sub-domains.For auto-adjoint positive semide�nite problems, Neumann-Neumann preonditioner is themost lassial one. From a mathematial point of view, the preonditioner is de�ned byapproximating the inverse of the global Shur omplement matrix by the weighted sum of loalShur omplement matries. From a physial point of view, Neumann-Neumann preonditioneris based on splitting the ux applied to the interfae in the preonditioning step and solvingloal Neumann problems in eah sub-domain. This strategy is good only for symmetrioperators.The preonditioner proposed here is based on solving a problem in a \strip" of nodes aroundthe interfae (�gure 1). When the width of the strip is narrow, the omputational ost andmemory requirements are low and the iteration ount is relatively high, when the strip is wide,the onverse is veri�ed.This preonditioner performs better for non-symmetri operators and does not have rigidbody modes for internal oating sub-domains, as is the ase for the Neumann-Neumannpreonditioner. Reall that for operators that involve only derivatives of the unknowns (asLaplae equation, steady elastiity, steady advetion-di�usion, for instane) a portion of theboundary should have Dirihlet or mixed boundary onditions. Otherwise, the problem isill-posed and the matrix is singular. When using the Neumann-Neumann preonditioner, sub-domains inherit the boundary ondition of the original problem in the external boundary,whereas Neumann boundary onditions are imposed at the internal sub-domain interfaes. Sub-domains that have a non-empty intersetion with a portion of the Dirihlet part of the externalboundary do not have rigid modes. Sub-domains whose boundary has empty intersetion withthe external Dirihlet or mixed portion of the boundary, would have Neumann onditionimposed on their whole boundary and would have rigid modes for the kind of operatorsdesribed above.In ontrast with the wire-basket algorithms, the IS preonditioner is purely algebrai, i.e. itan be assembled from a subset of the matrix oeÆients. There are no requirements on theCopyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 1. Domain Deomposition.topology of the mesh, and even it ould be applied to sparse matries oming from other kindof problems, not neessarily from PDE disretizations.2. THE OPEN CHANNEL FLOW MODEL [13, 17℄The equations for the 2D Saint-Venant open hannel ow are the well-known mass andmomentum onservation equations integrated in the vertial diretion. If we write theseequations in the onservation matrix form (Einstein summation onvention is assumed), wehave �U�t + �Fi(U)�xi = Gi(U); i = 1; 2; on 
st � [0; t℄; (1)where 
st is the stream domain, U = (h; hu; hv)T is the state vetor and the advetive uxfuntions in (1) are F1(U) = (hu; hu2 + gh22 ; huv)T ;F2(U) = (hv; huv; hv2 + gh22 )T ; (2)where h is the height of the water in the hannel with respet to the hannel bottom, �u = (u; v)Tis the veloity vetor and g is the aeleration due to gravity. Gs represents the gain (or loss)of the river, the soure term isG(U) = (Gs; gh(S0x � Sfx); gh(S0y � Sfy))T (3)Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



4 R. R. PAZ AND M. A. STORTIwhere S0 is the bottom slope and Sf is the slope frition.Sfx = 1C2hhuj�uj; Sfy = 1C2hhvj�uj Ch�ezy model.Sfx = n2h4=3 uj�uj; Sfy = n2h4=3 vj�uj; Manning model. (4)where Ch and n (the Manning roughness) are model onstants. In the ase of great lakes, widerivers and estuaries we should take into aount the e�et of Coriolis fore (see [17℄).Initial and Boundary Conditions [14℄. To obtain a well-posed problem we add someinitial onditions Ujt=0 = ~U0; on 
st; (5)and boundary onditions on �
st (the stream boundary). We reall that the type of a ow ina stream or in an open hannel depends on the value of the Froude number Fr = j�uj= (where = pgh is the wave elerity ). A ow is said uvial if j�uj <  and torrential if j�uj > .Fluvial Boundary.� inow boundary: �u spei�ed and h is extrapolated from interior points, for instane.� outow boundary: h spei�ed and veloity �eld extrapolated from interior points, forinstane.Torrential Boundary.� inow boundary: �u and the depth h are spei�ed.� outow boundary: all variables are extrapolated from interior points.Solid Wall Condition. We presribe the simple slip ondition over �
slip (� �
st)�u � n = 0 (6)Upon using the SUPG stabilized �nite element disretization with linear triangles and/orbilinear retangular elements, and the trapezoidal rule for time integration we obtain thesystem to be solved at eah time step,R = K(U)[�U�+1 + (1� �)U� ℄ +B(U)U�+1 �U��t �Q�+1 = 0; (7)where � is the time-weighting fator satisfying 0 � � � 1, �t is the time inrement and �denotes the number of time steps. K and B are the sti�ness and mass matrix, respetively (Kand B depend on U), Q is the soure vetor and R is the residual vetor.3. SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHODWe onsider solving in eah time step a linearized form of system (7) (i.e Au = f) resultingfrom �nite element disretization as desribed in the previous setion. Let 
 denote theomputational domain of the hydrologial problem, and f
igi=ni=1 its deomposition into nCopyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 5non-overlapping sub-domains. We shall re-order u and f as u = (uL; uI)T and f = (fL; fI)T ,numbering the global nodes suh that the oeÆient matries of hydrauli height and veloitiesassume blok-ordered struture A = � ALL ALIAIL AII � ; (8)where ALL = diag[A11; A22; :::; Ann℄ is a blok-diagonal with eah blok Aii, i = 1; 2; :::; n beingthe matrix orresponding to the unknowns belonging to the interior verties of sub-domain
i. ALI and AIL represents onnetions between sub-domains to interfaes.AII orresponds to the disretization of the di�erential operator restrited to the interfaesand represents the oupling between loal interfae points.The numerial solution of Au = f is equivalent to solvingSuI = g on interfaes �; (9)ALLuL = fL �ALIuI in 
i (10)where S = AII � nXi=1AILA�1LLALI; (11)and g = fI � nXi=1AILA�1LLfL; (12)where S is the well-known Shur omplement matrix.The Shur domain deomposition method starts by �rst determining uI on the interfaesbetween sub-domains by solving (9). Upon obtaining uI , the sub-domain problems (10)deouple and may be solved in parallel. The main omputational ost for the iterative solutionof (9) depends on the number of iteration, i.e. the ondition number, to ahieve onvergeneto a given auray riterion.4. PRECONDITIONERS FOR DOMAIN DECOMPOSITION METHODSIt is lear that knowing the eigenvalue spetrum of the Shur omplement matrix is one of themost important issues in order to develop suitable preonditioners.We start with the advetion-di�usion equation, whih is a simple model equation that aptures many of the harateristisof advetive systems like the Saint-Venant one (1). In this setion the null advetion ase(Poisson equation) is onsidered, while the full advetion-di�usion ase is studied in setion x6.This simpli�ation allows us to ompute the eigenvalues in losed form and to assess theeÆieny of several preonditioners.The Poisson problem in a unit square is given by�� = g; in 
 = f0 < x; y < 1g; (13)and the boundary onditions � = ��; at � = fx; y = 0; 1g; (14)Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



6 R. R. PAZ AND M. A. STORTIwhere � is the unknown, g(x; y) is a given soure term and � is the boundary.Consider now the partition of 
 in Ns non-overlapping sub-domains 
1;
2; : : : ;
Ns , suhthat 
 = 
1S
2S : : :S
Ns . For the sake of simpliity, we assume that the sub-domainsare retangles of unit height and width Lj . In pratie this is not the best partition, butit is used (see [2℄) to ompute the eigenvalues of the interfae problem in losed form. Let�int = �1S�2S : : :S�Ns�1 be the interior interfaes among adjaent sub-domains. Given aguess  j for the trae of � in the interior sub-domains �j�j , we an solve eah interior problemindependently as �� = g; in 
j ;� =8><>: j�1; at �j�1; j ; at �j ;��; at �up;j + �down;j ; (15)where  0 = ����x=0 and  Ns = ����x=1 are given.4.1. The Steklov operatorNot all ombinations of trae values f jg give the solution of the original problem (13). Indeed,the solution to (13) is obtained when the trae values are hosen in suh a way that the uxbalane ondition at the internal interfaes is satis�ed,fj = ���x ������j � ���x ����+�j = 0; (16)where the � supersripts stand for the derivative taken from the left and right sides ofthe interfae. We an think of the orrespondene between the ensemble of interfae values = f 1; : : : ;  Ns�1g and the ensemble of ux imbalanes f = ff1; : : : ; fNs�1g as an interfaeoperator S suh that S = f � f0; (17)where all inhomogeneities oming from the soure term and Dirihlet boundary onditions areonentrated in the onstant term f0, and the homogeneous operator S is equivalent to solvingthe equation set (15) with soure term g = 0 and homogeneous Dirihlet boundary onditions�� = 0 at the external boundary �.Here, S is the Steklov operator. In a more general setting, it relates the unknown valuesand uxes at boundaries when the internal domain is in equilibrium. In the ase of internalboundaries, it an be generalized by replaing the uxes by the ux imbalanes. The Shuromplement matrix is a disrete version of the Steklov operator. In [2℄ the eigenvalues ofSteklov operator are omputed in a losed form for this simpli�ed ase. Hene, good estimatesfor the orresponding Shur omplement matrix eigenvalues are obtained.4.2. Eigenvalues of Steklov operatorWe assume that only two sub-domains are present, one of them at the left of width L1 andthe other at the right of width L2, so that L = L1 + L2 = 1 is the side length.Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 7We solve �rst the Laplae problem in eah sub-domain with homogeneous Dirihlet boundaryondition at the external boundary and  at the interfae,�� = 0; in 
1;2;� = (0; at �; ; at �1: (18)The ux imbalane resulting from the solution �n(x; y) of (18) on eah sub-domain is (see [2℄)fn = ��n�x ����x=L�1 � ��n�x ����x=L+1 == kn [oth(knL1) + oth(knL2)℄ sin(kny); (19)where the wave number kn and the wavelength �n are de�ned askn = 2�=�n; �n = 2L=n; n = 1; : : : ;1: (20)A given interfae value funtion  is an eigenfuntion of the Steklov operator if theorresponding ux imbalane f = S is proportional to  , i.e. S = ! , ! being theorresponding eigenvalue. The eigenfuntions of the Steklov operator are n(y) = sin(kny) (21)with eigenvalues !n = eig(S)n = eig(S�)n + eig(S+)n == kn [oth(knL1) + oth(knL2)℄ ; (22)where S� are the Steklov operators of the left and right sub-domains,S� = � ���x ����L�1 ; (23)and their eigenvalues are eig(S�)n = kn oth(knL1;2): (24)For large n, the hyperboli otangents in (24) both tend to unity. This shows that theeigenvalues of the Steklov operator grow proportionally to n for large n, and then its onditionnumber is in�nity. However, when onsidering the disrete ase the wave number kn is limitedby the largest frequeny that an be represented by the mesh, whih is kmax = �=h where h isthe mesh spaing. The maximum eigenvalue is!max = 2kmax = 2�h ; (25)whih grows proportionally to 1=h. As the lowest eigenvalue is independent of h, this meansthat the ondition number of the Shur omplement matrix grows as 1=h. Note that theondition number of the disrete Laplae operator typially grows as 1=h2. Of ourse, thisredution in the ondition number is not diretly translated to total omputation time, sinewe have to take aount of fatorization of sub-domain matries and forward and bakwardsubstitutions involved in eah iteration to solve internal problems. However, the overall balaneis positive and redution in the ondition number, beside being inherently parallel, turns outto be one of the main strengths of domain deomposition methods.The eigenvalue magnitude is related to eigenfuntion frequeny along the inter-sub-domaininterfae, and the penetration of the eigenfuntions toward sub-domains interiors deaysstrongly for higher modes.Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



8 R. R. PAZ AND M. A. STORTI5. PRECONDITIONERS FOR THE SCHUR COMPLEMENT MATRIXIn order to further improve the eÆieny of iterative methods, a preonditioner has to be addedso that the ondition number of the Shur omplement matrix is lowered. The most knownpreonditioners for strutural (symmetri and positive semide�nite) problems are Neumann-Neumann and its variants [3, 12℄ for Shur omplements methods, and Dirihlet for FiniteElement Tearing and Interonneting (FETI) methods and its variants [1, 4, 7, 9℄. It an beproved that they redue the ondition number of the preonditioned operator to O(1) (i.e.independent of h) in some speial ases.5.1. The Neumann-Neumann preonditionerConsider the Neumann-Neumann preonditionerPNNv = f; (26)where v(y) = 1=2[v1(L1; y) + v2(L1; y)℄; (27)and vi, i = 1; 2, are de�ned through the following problems�vi = 0 in 
i;vi = 0 at �0 + �up;i + �down;i;(�1)i�1 �vi�x = 1=2f at �1: (28)The preonditioner onsists in assuming that the ux imbalane f is applied on the interfae.Sine the operator is symmetri and the domain properties are homogeneous, this \load" isequally split among the two sub-domains. Then, we have a problem in eah sub-domain withthe same boundary onditions in the exterior boundaries, and a non-homogeneous Neumannboundary ondition at the inter-sub-domain interfae.Again, we will show that the eigenfuntions of the Neumann-Neumann preonditionerare (21). E�etively, we an propose for v1 the formv1 = C sinh(knx) sin(kny); (29)where C is determined from the boundary ondition at the interfae in (28) and results inC = 12kn osh(knL1) ; (30)and similarly for v2, so thatv1(x; y) = 12kn sinh(knx)osh(knL1) sin(kny);v2(x; y) = 12kn sinh(kn(L� x))osh(knL2) sin(kny): (31)Then, the value of v = P�1NNf an be obtained from (27)v(y) = P�1NNf = 14kn [tanh(knL1) + tanh(knL2)℄ sin(kny); (32)Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 9so that the eigenvalues of PNN areeig(PNN)n = 4kn [tanh(knL1) + tanh(knL2)℄�1 : (33)As its de�nition suggests, it an be veri�ed thateig(PNN)n = 4 [eig(S�)�1n + eig(S+)�1n ℄�1: (34)As the Neumann-Neumann preonditioner (26) and the Steklov operator (17) diagonalizein the same basis (21) (i.e., they \ommute"), the eigenvalues of the preonditioned operatorare simply the quotients of respetive eigenvalues, i.e.eig(P�1NNS)n = 1=4[tanh(knL1) + tanh(knL2)℄ [oth(knL1) + oth(knL2)℄: (35)We see that all tanh(knLj) and oth(knLj) fators tend to unity for n!1, then we haveeig(P�1NNS)n ! 1 for n!1; (36)so that this means that the preonditioned operator P�1NNS has a ondition number O(1), i.e.it does not degrade with mesh re�nement. This is optimal, and is a well known feature of theNeumann-Neumann preonditioner. In fat, for a symmetri deomposition of the domain (i.e.L1 = L2 = 1=2), we haveeig(P�1NNS)n = 14 2 tanh(kn=2) 2 oth(kn=2) = 1; (37)so that the preonditioner is equal to the operator and onvergene is ahieved in one iteration.Note that omparing (22) and (34) we an see that the preonditioning is good as long aseig(S�)n � eig(S+)n: (38)This is true for symmetri operators and symmetri domain partitions (i.e. L1 � L2). Evenfor L1 6= L2, if the operator is symmetri, then (38) is valid for large eigenvalues. However,this fails for non-symmetri operators as in the advetion-di�usion ase, and also for irregularinterfaes.Another aspet of the Neumann-Neumann preonditioner is the ourrene of inde�niteinternal Neumann problems, whih leads to the need of solving a oarse problem [3, 12℄ in orderto solve the \rigid body modes" for internal oating sub-domains. The oarse problem ouplesthe sub-domains and hene ensures salability when the number of sub-domains inreases.However, this adds to the omputational ost of the preonditioner.5.2. The Interfae Strip (IS) PreonditionerA key point about the Steklov operator is that its high frequeny eigenfuntions deay verystrongly far from the interfae, so that a preonditioning that represents orretly the highfrequeny modes an be onstruted if we solve a problem on a narrow strip around theinterfae. In fat, the n-th eigenfuntion with wave number kn given by (21) deays far fromthe interfae as exp(�knjsj) where s is the distane to the interfae (the hyperboli sine fatorsappearing in (19)). Then, this high frequeny modes will be orretly represented if we solvea problem on a strip of width b around the interfae, provided that the interfae width is verylarge with respet to the mode wave length �n.Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



10 R. R. PAZ AND M. A. STORTIThe Interfae Strip preonditioner is de�ned asPISv = f; (39)where f = �w�x ����x=L�1 � �w�x ����x=L+1 (40)and �w = 0 in jx� L1j < b;w = 0 at jx� L1j = b and y = 0; 1;w = v at x = L1: (41)Please note that for high frequenies (i.e. knb large) the eigenfuntions of the Steklov operatorare negligible at the border of the strip, so that the boundary ondition at jx � L1j = b isjusti�ed. The eigenfuntions for this preonditioner are again given by (21) and the eigenvaluesan be taken from (22), replaing L1;2 by b, i.e.eig(PIS)n = 2 eig(Sb)n = 2kn oth(knb); (42)where Sb is the Steklov operator orresponding to a strip of width b.For the preonditioned Steklov operator, we haveeig(P�1IS S)n = 1=2 tanh(knb) [oth(knL1) + oth(knL2)℄ : (43)We note that eig(P�1IS S)n ! 1 for n!1, so that the preonditioner is optimal, independentlyof b. Also, for b large enough we reover the original problem so that the preonditioneris exat (onvergene is ahieved in one iteration). However, in this ase the use of thispreonditioner is impratial, sine it implies solving the whole problem. Note that in orderto solve the problem for v, we need information from both sides of the interfae, while theNeumann-Neumann preonditioner solves the problem without ommuniation of informationbetween sub-domains. This is a disadvantage in terms of eÆieny, sine we have to wasteommuniation time in sending the matrix oeÆients in the strip from one side to the other orotherwise ompute them in both proessors. However, we will see that eÆient preonditioningan be ahieved with few node layers and negligible ommuniation. Moreover, we an solvethe preonditioner problem by iteration, so that no migration of oeÆients is needed.6. THE SCALAR ADVECTIVE-DIFFUSIVE CASEConsider now the advetive-di�usive ase,���� u�;x = g in 
; (44)where � is the thermal ondutivity of the medium and u the advetion veloity. The probleman be treated in a similar way, and the Steklov operators are de�ned asS� = � �;xjL�1 ; (45)Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls



AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 11where ���� u�;x = 0 in 
1;2;� = (0 at �; at �1: (46)The eigenfuntions are still given by (21). Looking for solutions of the form v /exp(�x) sin(kny) we �nd that the eigenvalues areeig(S�)n = u2� + Æn oth(ÆnL1)eig(S+)n = � u2� + Æn oth(ÆnL2): (47)For low frequeny modes, advetive e�ets are more pronouned and the �rst eigenfuntionis notably biased to the right. In ontrast, for high frequeny modes the di�usive term prevailsand the eigenfuntion is more symmetri about the interfae, and (as in the pure di�usivease) onentrated around it (see [2℄). Note that now the eigenvalues for the right and leftpart of the Steklov operator may be very di�erent due to the asymmetry introdued by theadvetive term. This di�erene in splitting is more important for the lowest mode.In �gures 2 to 5 we see the eigenvalues as a funtion of the wave number kn. Note thatfor a given side length L only a ertain sequene of wave numbers, given by (21) should beonsidered. However, it is perhaps easier to onsider the ontinuous dependene of the di�erenteigenvalues upon the wave number k.For a symmetri operator and a symmetri partition (see �gure 2), the symmetriux splitting is exat and the Neumann-Neumann preonditioner is optimal. The largestdisrepanies between the IS preonditioner and the Steklov operator our at low frequeniesand yield a ondition number less than two.If the partition is non-symmetri (see �gure 3) then the Neumann-Neumann preonditioneris no longer exat, beause S+ 6= S�. However, its ondition number is very low whereas theIS preonditioner ondition number is still under two.For a relatively important advetion term, given by a global P�elet number of uL=2� = 5(see �gure 4), the asymmetry in the ux splitting is muh more evident, mainly for smallwave numbers, and this results in a large disrepany between the Neumann-Neumannpreonditioner and the Steklov operator. On the other hand, the IS preonditioner is stillvery lose to the Steklov operator.The di�erene between the Neumann-Neumann preonditioner and the Steklov operatorinreases for larger Pe (see �gure 5).This behavior an be diretly veri�ed by omputing the ondition number of Shuromplement matrix and preonditioned Shur omplement matrix for the di�erentpreonditioners (see tables I and II). We an see that both the Neumann-Neumann and ISpreonditioners give a similar preonditioned ondition number regardless of mesh re�nement(it almost doesn't hange from a mesh of 50� 50 to a mesh of 100� 100), whereas the Shuromplement matrix exhibits a ondition number roughly proportional to 1=h. However, theNeumann-Neumann preonditioner exhibits a large ondition number for high P�elet numberswhereas the IS preonditioner performs better for advetion dominated problems.Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 2. Eigenvalues of Steklov operators andpreonditioners for the Laplae operator (Pe = 0) andsymmetri partitions (L1 = L2 = L=2, b = 0:1L).Table I. Condition number for the Steklov operator and severalpreonditioners mesh: 50� 50 elements, strip: 5 layers of nodesPe ond(S) ond(P�1NNS) ond(P�1IS S)0 41.00 1.00 4.920.5 40.86 1.02 4.885 23.81 3.44 2.9225 5.62 64.20 1.08Table II. Condition number for the Steklov operator and severalpreond. (mesh: 100 � 100 elements, strip: 10 layers of nodes).u ond(S) ond(P�1NNS) ond(P�1IS S)0 88.50 1.00 4.920.5 81.80 1.02 4.885 47.63 3.44 2.9225 11.23 64.20 1.08Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 3. Eigenvalues of Steklov operators and preonditionersfor the Laplae operator (Pe = 0) and non-symmetri partitions(L1 = 0:75L, L2 = 0:25L, b = 0:1L).7. SOLUTION OF THE STRIP PROBLEMSome hints are given for an eÆient implementation of the IS preonditioner in a parallelenvironment.Consider a sub-domain interfae with a strip of two element layers (nlay = 2), as shown in�gure 6. The preonditioning onsists in, given a vetor fI de�ned on the nodes at the interfae(I in the �gure) to ompute an approximate solution vI given by24 AII AIS AI;SBASI ASS AS;SBASB;I ASB;S ASB;SB 3524 vIvSvSB 35 = 24 fI00 35 ; (48)with \Dirihlet boundary onditions" at the strip boundary vSB = 0, so that it redues to� AII AISASI ASS � � vIvS � = � fI0 � ; (49)One this equation is solved, vI is the value of the proposed preonditioner applied to fI , i.e.vI = P�1IS fI (50)A diret solution of this interfae problem is not easily parallelizable. This approah wouldinvolve transferring all the interfae matrix to a single proessor and solving the problemthere. So that, the possibility is to partition the strip problem among proessors, muh in theCopyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 4. Eigenvalues of Steklov operators and preonditionersfor the advetion-di�usion operator (Pe = 5) and symmetripartitions (L1 = L2 = L=2, b = 0:1L).same way as the global problem is, and solving the strip problem by an iterative method. Theidea of an iterative method is also suggested by the fat that the preonditioning matrix (i.e.the matrix obtained by assembling on the strip domain with Dirihlet boundary onditionsat the strip boundary) is highly diagonal dominant for narrow strips. Care must be taken toavoid nesting a non-stationarymethod like CG or GMRES inside another outer non-stationarymethod [15℄. We reall that in a stationary method the solution x at the iteration k depends,only, on the solution at the previous step (i.e., xk = f(xk�1)), then we an �nd the guess xkafter k suessive appliations of the same operator to the initial value x0. The problem hereis that a non-stationary method exeuted a �nite number of times is not a linear operator,unless the inner iterative method is iterated enough and then approahes the inverse of thepreonditioner. In this respet, relaxed Rihardson iteration is suitable.For the Rihardson interfae problem, a �xed predetermined number m of Rihardsoniterations are performed. If m is too low, then the preonditioner has no e�et, and if itis too large the eÆieny of the preonditioner tends to saturate, while the ost is roughlyproportional tom, so in general there is an optimal value form. We have found that adjustingmso that Rihardson iteration onverges one order of magnitude (relative to the initial residual)is �ne for most problems. Note that the number of iterations may depend on the intrinsionditioning of the interfae problem and also on the strip width. For small strip widths(nlay < 5) m was hosen in the range 5 � m � 10.A subsequent possibility is preonditioning the Interfae Strip preonditioner problem itselfwith blok Jaobi. In general, in parallel implementation, eah proessor may have severalCopyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 5. Eigenvalues of Steklov operators and preonditionersfor the advetion-di�usion operator (Pe = 50) and symmetripartitions (L1 = L2 = L=2, b = 0:1L).
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16 R. R. PAZ AND M. A. STORTIsub-domains. In this way, the memory and time omputation requirements (i.e. the ost offatorize smaller matries is redued) are redued. If the number of dof's in the interfaesgrows toward the number of total dof's the method results in a fully iterative method.Even if the preonditioner has been desribed through �gures in terms of �nite elementstrutured meshes, the implementation is purely algebrai (in ontrast to previous approahes,like, notably, the wire-basket one) based on the graph onnetivity of the matrix. Thepreonditioner has been implemented in a FEM prodution ode [16℄ and tested in largesale problems with unstrutured tetrahedral meshes with up to one million tetras.8. SOME NUMERICAL EXAMPLES IN PARALLEL ENVIRONMENTIn this setion, we present numerial results for di�usive and advetive problems and somedisussions about these results. The tests were arried out on a Beowulf luster of PC's. Theluster at CIMEC laboratory has twenty (uniproessor) nodes; where 10 nodes are PentiumIV - 2.4 GHz, 1 GB RAM (DDR, 333 MHz), 7 nodes Pentium IV - 1.7 GHz, 512 MB RAM(RIMM, 400/800 MHz) and 2 nodes Pentium IV 1.7 GHz, 256 MB RAM (RIMM, 400/800MHz). Usually, the �rst node works as server. The nodes are onneted through a swith FastEthernet (100 Mbit/se, lateny=O(100) �ses).The iteration ounts of the IS and Neumann-Neumann preonditioners are shown, for asequential environment, in [2℄. In this paper, the performane of the proposed preonditioneris studied in a parallel environment. For this purpose, we onsider two di�erent problems. Thedomain 
 in both ases is the unit square disretized on an strutured mesh of 500 � 500nodes, and deomposed in 4 retangular sub-domains. We ompare the residual norm versusiteration ount by using no preonditioner, Neumann-Neumann preonditioner, blok Jaobipreonditioner, global Jaobi preonditioner and the IS preonditioner (with several stripwidths at the interfaes). Global Jaobi is a diagonal saling preonditioning algorithm. BlokJaobi preonditioner is a blok-diagonal preonditioner and is obtained by (approximately)inverting the loal diagonal bloks on eah proessor (see [8℄ for a detailed desription of thesepreonditioners).The �rst example is the Poisson's problem �� = g, where g = 1 and � = 0 on all theboundary �. The iteration ounts and the problem solution (obtained in a oarse mesh forvisualization purposes) are plotted in �gure 7. As it an be seen, the Neumann-Neumannpreonditioner has a very low iteration ount, as it is expeted for a symmetri operator.The IS preonditioner has a larger iteration ount for thin strip widths, but it dereases asthe strip is thikened. Regarding memory use, the required ore memory for thin strip ismuh less than for the Neumann-Neumann preonditioner. The strip width ats in fat as aparameter that balanes the required amount of memory and the preonditioner eÆieny.We split the system solution in two stages, the fatorization stage (for the loal problems)and the GMRES iteration stage (inluding the Rihardson iteration for the IS preonditioner),in order to ompute the time onsumed to ahieve a given tolerane in the residual vetor(see table III). CPU times for the iteration stage and memory requirements are not givenin Table III for Jaobi preonditioning and not preonditioning at all beause these methodsfailed to onverge.The seond example is an advetive-di�usive problem at a global P�elet number of Pe = 25,g = Æ(1=4; 3=4) + Æ(3=4; 1=4), and �(�0:5; y) = 0, where Æ is the Dira's delta funtion. Therefore,Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 7. Solution of Poisson's problem (mesh 500� 500).Table III. Cpu time and memory requirements per pro. for Poissonproblem (mesh 500� 500 elements). Note: * in table means iterationfailed to onverge to a spei�ed tolerane in a maximum of 200 its.Preond: none Jaobi glob: blok Jaobi N �N IS(nlay = 1) IS(nlay = 5)fatoriz: [ses℄ - - 1.9 4.7 2.3 2.3GMRES st: [ses℄ * * * 1.51 5.4 4.9tolerane 1.e-10 1.e-10 1.e-10 1.e-10 1.e-10 1.e-10mem:=pro [Mb℄ * * * 70 62 62.5the problem is strongly advetive. We ompare the iteration ounts in two di�erent meshesand two di�erent deompositions. The mesh of 500�500 nodes is deomposed in 4 retangulardomains, one per proessor, and the mesh of 1000� 1000 is partitioned into 7 sub-domains.The iteration ount and the problem solution (interpolated in a oarse mesh for visualizationpurposes) are plotted in �gure 8 and 9. In this example, the advetive term introduesa strong asymmetry. CPU times and memory requirements are not given in Table IV forN-N preonditioner beause this method failed to onverge. However, only to give an idea,the required memory for N-N preonditioner (oarse mesh) for 50/60 iterations (IS wasonverged at this point) is 73 Mb/pro (megabytes per proessor), whereas for 200 iterations(the maximum allowed) the onsumed memory was 120 Mb/pro. For the re�ned mesh, theCopyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 8. Solution of advetive-di�usive problem (mesh 500� 500).
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 19Table IV. Cpu time and memory requirements per pro. for advetive-di�usiveproblem (mesh 1000�1000 elements). Note: * in table means iteration failedto onverge to a spei�ed tolerane in a maximum of 200 its.Preonditioner none Jaobi glob: N �N IS(nlay = 1) IS(nlay = 5)fatoriz: [ses℄ - - 4.0 8.0 7.8GMRES st: [ses℄ * * * 13.0 12.0tolerane 0.25e-06 0.25e-06 0.25e-06 0.25e-06 0.25e-06mem:=pro: [Mb℄ * * * 140 142memory used in 70/80 iterations is 210 Mb/pro and for the 200 iterations (the maximumallowed) was 320 Mb/pro. Clearly, the Neumann-Neumann preonditioner is outperformedby IS preonditioner in iteration ount (and onsequently in omputing time) and memorydemands, even for thin strips. The CPU time and memory used (per proessor) are shown intable IV. 9. SAINT-VENANT NUMERICAL EXAMPLESThe example is a 2D Saint-Venant subritial ow over an impermeable unit square hannelwith a paraboli bump in the bottom and a sinusoidal wave-train perturbation in x�veloityat the inow boundary. The paraboli variation of the bottom has the form �(x; y) =minfh1; h2 + (h1 � h2)(r=R)2g, where r is the distane to the enter of the bump, loatedat (0; 0), h1 = 1, h2 = 0:5 and R = 0:3. The period of the plane iniding wave is T = 0:1se. Hene, roughly, �ve wave-lengths enter in the diameter of the bump. The initial globalFroude and Courant numbers (based in longitudinal veloity u) are Fr = u=pgh = 0:3 andC = u�t�x = 15. Null ux is onsidered in y = �0:5 and uvial boundary onditions at theinow/outow setions. For the omputations we use the Ch�ezy model with frition oeÆientCh = 110 m1=2=se. The mesh of 105 linear triangles was partitioned with METIS into 5sub-domains (one per proessor).The iteration ounts for the linear system orresponding to a typial Newton iteration at agiven time step is plotted in �gure 10. Figure 11 shows the elevation for the steady periodialstate. In this example, the system of onservation laws (1) introdues a strong asymmetry. Asin the linear advetion-di�usion problem, the IS preonditioner improves the iteration ountsand memory demands. Although eah iteration is more expensive for the IS preonditioner,the onsumed time to reah a given tolerane is smaller. The CPU onsumed time, toleranesand onsumed memory are shown in table V.10. CONCLUSIONSWe have presented the parallel version of a new preonditioner for Shur omplement domaindeomposition methods and the onvergene improvement for hydrologial problems. Thispreonditioner is based on solving a problem posed in a narrow strip around the inter-Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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Figure 10. Iteration ounts for Saint-Venant system of equations (mesh 500 � 500).

Figure 11. Solution of Saint-Venant system of equations (mesh 500� 500).Copyright  2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1{22Prepared using nmeauth.ls
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