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SUMMARY

In this paper, the efficiency of a parallelizable preconditioner for Domain Decomposition Methods
in the context of the solution of non-symmetric linear equations arising from discretization of the
Saint-Venant equations, is investigated. The proposed Interface Strip Preconditioner (IS) is based on
solving a problem in a narrow strip around the interface. It requires much less memory and computing
time than classical Neumann-Neumann preconditioner, and handles correctly the flux splitting among
sub-domains that share the interface. The performance of this preconditioner is assessed with an
analytical study of Schur complement matrix eigenvalues and numerical experiments conducted in a
parallel computational environment (consisting of a Beowulf cluster of twenty-nodes). Copyright ©
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The large spread in length scales present in hydrological problems (like river, estuaries, lakes,
open channels, levees or dam breaks, etc.) requires a high degree of refinement in the finite
element mesh and, then, requires very large computational resources. Also, in a 2D coupled
surface-subsurface flow problem, a typical multi-aquifer model, the number of unknowns per
surface node is, at least, equal to the number of aquifers and aquitards. Due to this fact, it is
expected to have a very high demand of CPU computation time, calling for parallel processing
techniques. Linear systems obtained from discretization of PDE’s by means of Finite Difference
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2 R. R. PAZ AND M. A. STORTI

or Finite Element Methods are normally solved in parallel by iterative methods [8, 6] because
they require much less communication compared to direct solvers.

The Schur complement domain decomposition method leads to a reduced system better
suited for iterative solution than the global system, since its condition number is lower (x 1/h
vs. < 1/h? for the global system, h being the mesh size) and the computational cost per
iteration is not so high once the sub-domain matrices have been factorized.

Iterative substructuring methods rely on a non-overlapping partition into sub-domains
(substructures). The efficiency of these methods can be further improved by using
preconditioners [5]. Once the degrees of freedom inside the substructures have been eliminated
by block Gaussian elimination (or other algorithm), a preconditioner for the resulting Schur
complement system is built with matrix blocks relative to a decomposition of interface finite
element functions into subspaces related to geometrical objects (vertices, edges, faces, single
substructures) or simply by the coefficients of sub-domain matrices near the interface. Iterative
methods like Conjugate Gradient and GMRES are then employed. Early works, such as [10, 11],
have influenced most of the later work in the field. They proposed two spaces for the coarse
problem. One of their coarse spaces is given in terms of the averages of the nodal values over the
entire substructure boundaries 912;. The other space is defined by extending the wire basket
(we recall that the wire basket is the union of the boundaries of the faces which separate the
substructures) values as a two dimensional discrete harmonic function onto the faces, and then
as discrete harmonic function into the interiors of the sub-domains.

For auto-adjoint positive semidefinite problems, Neumann-Neumann preconditioner is the
most classical one. From a mathematical point of view, the preconditioner is defined by
approximating the inverse of the global Schur complement matrix by the weighted sum of local
Schur complement matrices. From a physical point of view, Neumann-Neumann preconditioner
is based on splitting the flux applied to the interface in the preconditioning step and solving
local Neumann problems in each sub-domain. This strategy is good only for symmetric
operators.

The preconditioner proposed here is based on solving a problem in a “strip” of nodes around
the interface (figure 1). When the width of the strip is narrow, the computational cost and
memory requirements are low and the iteration count is relatively high, when the strip is wide,
the converse is verified.

This preconditioner performs better for non-symmetric operators and does not have rigid
body modes for internal floating sub-domains, as is the case for the Neumann-Neumann
preconditioner. Recall that for operators that involve only derivatives of the unknowns (as
Laplace equation, steady elasticity, steady advection-diffusion, for instance) a portion of the
boundary should have Dirichlet or mixed boundary conditions. Otherwise, the problem is
ill-posed and the matrix is singular. When using the Neumann-Neumann preconditioner, sub-
domains inherit the boundary condition of the original problem in the external boundary,
whereas Neumann boundary conditions are imposed at the internal sub-domain interfaces. Sub-
domains that have a non-empty intersection with a portion of the Dirichlet part of the external
boundary do not have rigid modes. Sub-domains whose boundary has empty intersection with
the external Dirichlet or mixed portion of the boundary, would have Neumann condition
imposed on their whole boundary and would have rigid modes for the kind of operators
described above.

In contrast with the wire-basket algorithms, the IS preconditioner is purely algebraic, i.e. it
can be assembled from a subset of the matrix coefficients. There are no requirements on the
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Figure 1. Domain Decomposition.

topology of the mesh, and even it could be applied to sparse matrices coming from other kind
of problems, not necessarily from PDE discretizations.

2. THE OPEN CHANNEL FLOW MODEL [13, 17]

The equations for the 2D Saint-Venant open channel flow are the well-known mass and
momentum conservation equations integrated in the vertical direction. If we write these
equations in the conservation matrix form (Einstein summation convention is assumed), we
have oU  OFi(U)
LR GuU),  i=1,2, on Qy x[0,1], 1
e LY} L on D x[0,1] (1)
where Q,; is the stream domain, U = (h, hu, hv)” is the state vector and the advective flux
functions in (1) are
. h?
Fi(U) = (hu, hu® + g;,huv)T,
. (2)
. h?
F>(U) = (hv, huv, hv* +g?)T
where h is the height of the water in the channel with respect to the channel bottom, 4 = (u, v)
is the velocity vector and g is the acceleration due to gravity. G represents the gain (or loss)
of the river, the source term is

G(U) = (Gs. gh(Soz — Syz), gh(Soy — Spy))" (3)

T
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4 R. R. PAZ AND M. A. STORTI

where Sy is the bottom slope and Sy is the slope friction.

1 1
n? n? @
St = ﬁu\u\, Sty = %UM, Manning model.

where C}, and n (the Manning roughness) are model constants. In the case of great lakes, wide
rivers and estuaries we should take into account the effect of Coriolis force (see [17]).
Initial and Boundary Conditions [14]. To obtain a well-posed problem we add some
initial conditions
Ul,_,=10"% onQy, (5)

and boundary conditions on 9 (the stream boundary). We recall that the type of a flow in
a stream or in an open channel depends on the value of the Froude number F, = |u|/c¢ (where
c = \/gh is the wave celerity ). A flow is said fluvial if |u| < ¢ and torrential if |u| > c.

Fluvial Boundary.

e inflow boundary: @ specified and h is extrapolated from interior points, for instance.
e outflow boundary: h specified and velocity field extrapolated from interior points, for
instance.

Torrential Boundary.

e inflow boundary: # and the depth h are specified.
e outflow boundary: all variables are extrapolated from interior points.

Solid Wall Condition. We prescribe the simple slip condition over 98, (C 0€Qs:)
u-n=>0 (6)

Upon using the SUPG stabilized finite element discretization with linear triangles and/or
bilinear rectangular elements, and the trapezoidal rule for time integration we obtain the
system to be solved at each time step,

UT+1 .
At

where 6 is the time-weighting factor satisfying 0 < 6 < 1, At is the time increment and 7
denotes the number of time steps. K and B are the stiffness and mass matrix, respectively (K
and B depend on U), Q is the source vector and R is the residual vector.

R =K(U)[fU™' + (1 -6)U"] + B(U) -Q ' =0, (7)

3. SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD

We consider solving in each time step a linearized form of system (7) (i.e Au = f) resulting
from finite element discretization as described in the previous section. Let ) denote the
computational domain of the hydrological problem, and {Q'}!=} its decomposition into n
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 5

non-overlapping sub-domains. We shall re-order u and f as u = (uz,u;)” and f = (f1,, f1)7,
numbering the global nodes such that the coefficient matrices of hydraulic height and velocities
assume block-ordered structure

A= [ A Arr } _ (8)

AIL AIT

where Ay j, = diag[A11, Aaa, ..., Ann] is a block-diagonal with each block A;;,i = 1,2, ..., n being
the matrix corresponding to the unknowns belonging to the interior vertices of sub-domain
Q;. Arr and Ajg, represents connections between sub-domains to interfaces.

Ay corresponds to the discretization of the differential operator restricted to the interfaces
and represents the coupling between local interface points.

The numerical solution of Au = f is equivalent to solving

Su; =g¢ on interfaces I, (9)
Avvur = fr — Apur in (10)

where .
S=Au-> AnArfAwu (11)

i=1

and .
g9=1fr =Y AwA; L, (12)

i=1

where S is the well-known Schur complement matrix.

The Schur domain decomposition method starts by first determining u; on the interfaces
between sub-domains by solving (9). Upon obtaining uj, the sub-domain problems (10)
decouple and may be solved in parallel. The main computational cost for the iterative solution
of (9) depends on the number of iteration, i.e. the condition number, to achieve convergence
to a given accuracy criterion.

4. PRECONDITIONERS FOR DOMAIN DECOMPOSITION METHODS

It is clear that knowing the eigenvalue spectrum of the Schur complement matrix is one of the
most important issues in order to develop suitable preconditioners. We start with the advection-
diffusion equation, which is a simple model equation that captures many of the characteristics
of advective systems like the Saint-Venant one (1). In this section the null advection case
(Poisson equation) is considered, while the full advection-diffusion case is studied in section §6.
This simplification allows us to compute the eigenvalues in closed form and to assess the
efficiency of several preconditioners.
The Poisson problem in a unit square is given by

Ap=g, ImQ={0<uzy<1}, (13)

and the boundary conditions
¢p=¢, atT ={z,y=0,1}, (14)
Copyright @ 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22

Prepared using nmeauth.cls



6 R. R. PAZ AND M. A. STORTI

where ¢ is the unknown, g(z,y) is a given source term and T" is the boundary.

Consider now the partition of € in Ny non-overlapping sub-domains 4, Q, ..., Qxn_, such
that @ = Q; JQ ... UQn,. For the sake of simplicity, we assume that the sub-domains
are rectangles of unit height and width L;. In practice this is not the best partition, but
it is used (see [2]) to compute the eigenvalues of the interface problem in closed form. Let
Fint =T UT2U-.-UTN.—1 be the interior interfaces among adjacent sub-domains. Given a
guess v; for the trace of ¢ in the interior sub-domains ¢\F]_ , we can solve each interior problem
independently as

Ad) =g, in Qj,
i1, at g, (15)
d), at FUDJ + I‘down,ja

where 1y = g{)|m:0 and YN, = (Z)‘mzl are given.

4.1. The Steklov operator

Not all combinations of trace values {1;} give the solution of the original problem (13). Indeed,
the solution to (13) is obtained when the trace values are chosen in such a way that the flux
balance condition at the internal interfaces is satisfied,

_ 99
- Oz

o¢

+
r, - 6’1’? = 07 (16)

Lj

fi

where the + superscripts stand for the derivative taken from the left and right sides of
the interface. We can think of the correspondence between the ensemble of interface values
¥ = {¢1,...,¥n,—1} and the ensemble of flux imbalances £ = {f;,..., fn._1} as an interface
operator S such that

Sy =f — fy, (17)

where all inhomogeneities coming from the source term and Dirichlet boundary conditions are
concentrated in the constant term fy, and the homogeneous operator S is equivalent to solving
the equation set (15) with source term g = 0 and homogeneous Dirichlet boundary conditions
¢ = 0 at the external boundary T.

Here, S is the Steklov operator. In a more general setting, it relates the unknown values
and fluxes at boundaries when the internal domain is in equilibrium. In the case of internal
boundaries, it can be generalized by replacing the fluxes by the flux imbalances. The Schur
complement matrix is a discrete version of the Steklov operator. In [2] the eigenvalues of
Steklov operator are computed in a closed form for this simplified case. Hence, good estimates
for the corresponding Schur complement matrix eigenvalues are obtained.

4.2. FEigenvalues of Steklov operator
We assume that only two sub-domains are present, one of them at the left of width L; and
the other at the right of width Ly, so that L = Ly + Ly = 1 is the side length.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 7

We solve first the Laplace problem in each sub-domain with homogeneous Dirichlet boundary
condition at the external boundary and 1 at the interface,

A(]S == 07 in Q]’2=

0, atT, (18)
¢= {d), at I'q.

The flux imbalance resulting from the solution ¢,,(z,y) of (18) on each sub-domain is (see [2])
T B R

S P L B (19)

= ky, [coth(k,L1) + coth(k,Lo)] sin(kny),
where the wave number k,, and the wavelength \,, are defined as
kn,=2w/An, An=2L/n, n=1,...,00. (20)

A given interface value function v is an eigenfunction of the Steklov operator if the
corresponding flux imbalance f = S is proportional to ¢, i.e. S¥ = wiy, w being the
corresponding eigenvalue. The eigenfunctions of the Steklov operator are

Yn(y) = sin(k,y) (21)
with eigenvalues
w, = €ig(S), = eig(S ), + eig(ST), =

22
= k,, [coth(k, L) + coth(k, L2)], (22)
where ST are the Steklov operators of the left and right sub-domains,
0
STy =+ ¢ , (23)
8.7: LF
1
and their eigenvalues are
eig(ST), = ky coth(k, L o). (24)

For large n, the hyperbolic cotangents in (24) both tend to unity. This shows that the

eigenvalues of the Steklov operator grow proportionally to n for large n, and then its condition
number is infinity. However, when considering the discrete case the wave number k,, is limited
by the largest frequency that can be represented by the mesh, which is kpy.x = 7/h where h is
the mesh spacing. The maximum eigenvalue is
27
h/ )
which grows proportionally to 1/h. As the lowest eigenvalue is independent of h, this means
that the condition number of the Schur complement matrix grows as 1/h. Note that the
condition number of the discrete Laplace operator typically grows as 1/h%. Of course, this
reduction in the condition number is not directly translated to total computation time, since
we have to take account of factorization of sub-domain matrices and forward and backward
substitutions involved in each iteration to solve internal problems. However, the overall balance
is positive and reduction in the condition number, beside being inherently parallel, turns out
to be one of the main strengths of domain decomposition methods.

The eigenvalue magnitude is related to eigenfunction frequency along the inter-sub-domain
interface, and the penetration of the eigenfunctions toward sub-domains interiors decays
strongly for higher modes.

(25)

Wmax = 2kmax =

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22
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8 R. R. PAZ AND M. A. STORTI

5. PRECONDITIONERS FOR THE SCHUR COMPLEMENT MATRIX

In order to further improve the efficiency of iterative methods, a preconditioner has to be added
so that the condition number of the Schur complement matrix is lowered. The most known
preconditioners for structural (symmetric and positive semidefinite) problems are Neumann-
Neumann and its variants [3, 12] for Schur complements methods, and Dirichlet for Finite
Element Tearing and Interconnecting (FETI) methods and its variants [1, 4, 7, 9]. It can be
proved that they reduce the condition number of the preconditioned operator to O(1) (i.e.
independent of h) in some special cases.

5.1. The Neumann-Neumann preconditioner

Consider the Neumann-Neumann preconditioner

Pxnv = f, (26)
where
v(y) = lvr (L1, y) +va (L, y)], (27)
and v;, i = 1,2, are defined through the following problems
Av; =0 in Q;,
v; =0 at I'o + L'up,i + Ddown,i; (28)

: a’l)i
(—1)“]% =yf atT.

The preconditioner consists in assuming that the flux imbalance f is applied on the interface.
Since the operator is symmetric and the domain properties are homogeneous, this “load” is
equally split among the two sub-domains. Then, we have a problem in each sub-domain with
the same boundary conditions in the exterior boundaries, and a non-homogeneous Neumann
boundary condition at the inter-sub-domain interface.

Again, we will show that the eigenfunctions of the Neumann-Neumann preconditioner
are (21). Effectively, we can propose for v; the form

vy = C sinh(k,x) sin(k,y), (29)

where C is determined from the boundary condition at the interface in (28) and results in

1

C=———86/—— 30
2k,, cosh(k, L1)’ (30)
and similarly for vy, so that
1 sinh(k,z) |
= kny),
U1 (‘,'E7y) an COSh(knLl) Sln( y); (31)
(2.9) 1 sinh(k,(L — z)) . (k)
=————— “¢in(k,y).
v2i®, Y 2k,  cosh(k,Ls) s y
Then, the value of v = Pyx f can be obtained from (27)
1
v(y) = Panf = o [tanh(kn L) + tanh(k, Lo)] sin(kny), (32)
Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 9

so that the eigenvalues of Pyn are
eig(Pnn)n = 4k, [tanh(k, L1) + tanh(k, L2)] . (33)
As its definition suggests, it can be verified that
eig(Pxn)n = 4 [eig(S7), " +eig(87), 17" (34)

As the Neumann-Neumann preconditioner (26) and the Steklov operator (17) diagonalize
in the same basis (21) (i.e., they “commute”), the eigenvalues of the preconditioned operator
are simply the quotients of respective eigenvalues, i.e.

eig(PxxS)n = Yultanh(k, L) + tanh(k,Ly)] [coth(k, L) + coth(k, L»)]. (35)
We see that all tanh(k,L;) and coth(k,L;) factors tend to unity for n — oo, then we have
eig(PanS)n — 1 for n — oo, (36)

so that this means that the preconditioned operator PyS has a condition number O(1), i.e.
it does not degrade with mesh refinement. This is optimal, and is a well known feature of the

Neumann-Neumann preconditioner. In fact, for a symmetric decomposition of the domain (i.e.
L, = Ly, = 1,), we have

eig(PynS)n = iQtanh(kn /2) 2 coth(k, /2) = 1, (37)

so that the preconditioner is equal to the operator and convergence is achieved in one iteration.
Note that comparing (22) and (34) we can see that the preconditioning is good as long as

eig(S™)n ~ €ig(ST)n. (38)

This is true for symmetric operators and symmetric domain partitions (i.e. L1 & Ls). Even
for Ly # Lo, if the operator is symmetric, then (38) is valid for large eigenvalues. However,
this fails for non-symmetric operators as in the advection-diffusion case, and also for irregular
interfaces.

Another aspect of the Neumann-Neumann preconditioner is the occurrence of indefinite
internal Neumann problems, which leads to the need of solving a coarse problem [3, 12] in order
to solve the “rigid body modes” for internal floating sub-domains. The coarse problem couples
the sub-domains and hence ensures scalability when the number of sub-domains increases.
However, this adds to the computational cost of the preconditioner.

5.2. The Interface Strip (IS) Preconditioner

A key point about the Steklov operator is that its high frequency eigenfunctions decay very
strongly far from the interface, so that a preconditioning that represents correctly the high
frequency modes can be constructed if we solve a problem on a narrow strip around the
interface. In fact, the n-th eigenfunction with wave number k,, given by (21) decays far from
the interface as exp(—ky|s|) where s is the distance to the interface (the hyperbolic sine factors
appearing in (19)). Then, this high frequency modes will be correctly represented if we solve
a problem on a strip of width b around the interface, provided that the interface width is very
large with respect to the mode wave length A,,.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22
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10 R. R. PAZ AND M. A. STORTI

The Interface Strip preconditioner is defined as
Prsv = f, (39)

where

and
Aw=0 1in |z —Li| <b,

w=0 at|r—Li]=band y=0,1, (41)

w=uv atx=1L.

Please note that for high frequencies (i.e. k,,b large) the eigenfunctions of the Steklov operator
are negligible at the border of the strip, so that the boundary condition at |z — Li| = b is
justified. The eigenfunctions for this preconditioner are again given by (21) and the eigenvalues
can be taken from (22), replacing L 5 by b, i.e.

eig(PIS)n =2 elg(sb)n = an COth(knb): (42)

where Sy is the Steklov operator corresponding to a strip of width b.
For the preconditioned Steklov operator, we have

eig(Pig'S)n = Y tanh(k,b) [coth(k,L1) + coth(k, La)] . (43)

We note that eig(P{S]S)n — 1 for n — o0, so that the preconditioner is optimal, independently
of b. Also, for b large enough we recover the original problem so that the preconditioner
is exact (convergence is achieved in one iteration). However, in this case the use of this
preconditioner is impractical, since it implies solving the whole problem. Note that in order
to solve the problem for v, we need information from both sides of the interface, while the
Neumann-Neumann preconditioner solves the problem without communication of information
between sub-domains. This is a disadvantage in terms of efficiency, since we have to waste
communication time in sending the matrix coefficients in the strip from one side to the other or
otherwise compute them in both processors. However, we will see that efficient preconditioning
can be achieved with few node layers and negligible communication. Moreover, we can solve
the preconditioner problem by iteration, so that no migration of coefficients is needed.

6. THE SCALAR ADVECTIVE-DIFFUSIVE CASE
Consider now the advective-diffusive case,
kAp —up, =g inQ, (44)

where & is the thermal conductivity of the medium and u the advection velocity. The problem
can be treated in a similar way, and the Steklov operators are defined as

S¥'¢J =+ ¢,m|L1¥ ; (45)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 11

where

EAG —up, =0 in Qo

b= 0 at T, (46)
B ’I/J at F].

The eigenfunctions are still given by (21). Looking for solutions of the form v
exp(ux) sin(k,y) we find that the eigenvalues are

eig(S )n

eig(ST), = _QU_,.; + 0, coth(d, La).

2y 0 coth(6,L1)
26 (47)

For low frequency modes, advective effects are more pronounced and the first eigenfunction
is notably biased to the right. In contrast, for high frequency modes the diffusive term prevails
and the eigenfunction is more symmetric about the interface, and (as in the pure diffusive
case) concentrated around it (see [2]). Note that now the eigenvalues for the right and left
part of the Steklov operator may be very different due to the asymmetry introduced by the
advective term. This difference in splitting is more important for the lowest mode.

In figures 2 to 5 we see the eigenvalues as a function of the wave number k,. Note that
for a given side length L only a certain sequence of wave numbers, given by (21) should be
considered. However, it is perhaps easier to consider the continuous dependence of the different
eigenvalues upon the wave number k.

For a symmetric operator and a symmetric partition (see figure 2), the symmetric
flux splitting is exact and the Neumann-Neumann preconditioner is optimal. The largest
discrepancies between the IS preconditioner and the Steklov operator occur at low frequencies
and yield a condition number less than two.

If the partition is non-symmetric (see figure 3) then the Neumann-Neumann preconditioner
is no longer exact, because ST # S~. However, its condition number is very low whereas the
IS preconditioner condition number is still under two.

For a relatively important advection term, given by a global Peclet number of uwL/2k = 5
(see figure 4), the asymmetry in the flux splitting is much more evident, mainly for small
wave numbers, and this results in a large discrepancy between the Neumann-Neumann
preconditioner and the Steklov operator. On the other hand, the IS preconditioner is still
very close to the Steklov operator.

The difference between the Neumann-Neumann preconditioner and the Steklov operator
increases for larger Pe (see figure 5).

This behavior can be directly verified by computing the condition number of Schur
complement matrix and preconditioned Schur complement matrix for the different
preconditioners (see tables T and IT). We can see that both the Neumann-Neumann and IS
preconditioners give a similar preconditioned condition number regardless of mesh refinement
(it almost doesn’t change from a mesh of 50 x 50 to a mesh of 100 x 100), whereas the Schur
complement matrix exhibits a condition number roughly proportional to 1/h. However, the
Neumann-Neumann preconditioner exhibits a large condition number for high Peclet numbers
whereas the IS preconditioner performs better for advection dominated problems.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22
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12 R. R. PAZ AND M. A. STORTI
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Figure 2. Eigenvalues of Steklov operators and
preconditioners for the Laplace operator (Pe = 0) and
symmetric partitions (L1 = Ly = L/2, b =0.1L).

Table I. Condition number for the Steklov operator and several
preconditioners mesh: 50 x 50 elements, strip: 5 layers of nodes

Pe cond(S) cond(PyxS) cond(Prg'S)

0 41.00 1.00 4.92
0.5 40.86 1.02 4.88
5 23.81 3.44 2.92
25 5.62 64.20 1.08

Table II. Condition number for the Steklov operator and several
precond. (mesh: 100 x 100 elements, strip: 10 layers of nodes).

u  cond(S) cond(PyyS) cond(Pg'S)

0 88.50 1.00 4.92
0.5 81.80 1.02 4.88
5 47.63 3.44 2.92
25 11.23 64.20 1.08
Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1 22
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Figure 3. Eigenvalues of Steklov operators and preconditioners
for the Laplace operator (Pe = 0) and non-symmetric partitions
(Ly = 0.75L, Ly = 0.25L, b= 0.1L).

7. SOLUTION OF THE STRIP PROBLEM

Some hints are given for an efficient implementation of the IS preconditioner in a parallel
environment.
Consider a sub-domain interface with a strip of two element layers (niyy = 2), as shown in

figure 6. The preconditioning consists in, given a vector f; defined on the nodes at the interface
(I in the figure) to compute an approximate solution v; given by

Arr Ars Ar sB vy fr
Asr Ass  Assa vs | =1 0 |, (48)
Asp,r Asp,s Ass,ss USB 0

with “Dirichlet boundary conditions” at the strip boundary vgp = 0, so that it reduces to

Air Ars Ur _ fl
{ Asr Ass vs | | 0 | (49)
Once this equation is solved, v; is the value of the proposed preconditioner applied to fy, i.e.
vi =P fi (50)

A direct solution of this interface problem is not easily parallelizable. This approach would
involve transferring all the interface matrix to a single processor and solving the problem
there. So that, the possibility is to partition the strip problem among processors, much in the
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Figure 4. Eigenvalues of Steklov operators and preconditioners
for the advection-diffusion operator (Pe = 5) and symmetric
partitions (L1 = Ly = L/2, b= 0.1L).

same way as the global problem is, and solving the strip problem by an iterative method. The
idea of an iterative method is also suggested by the fact that the preconditioning matrix (i.e.
the matrix obtained by assembling on the strip domain with Dirichlet boundary conditions
at the strip boundary) is highly diagonal dominant for narrow strips. Care must be taken to
avoid nesting a non-stationary method like CG or GMRES inside another outer non-stationary
method [15]. We recall that in a stationary method the solution x at the iteration k depends,
only, on the solution at the previous step (i.e., zx = f(xk_1)), then we can find the guess zy
after k successive applications of the same operator to the initial value zy. The problem here
is that a non-stationary method executed a finite number of times is mot a linear operator,
unless the inner iterative method is iterated enough and then approaches the inverse of the
preconditioner. In this respect, relaxed Richardson iteration is suitable.

For the Richardson interface problem, a fixed predetermined number m of Richardson
iterations are performed. If m is too low, then the preconditioner has no effect, and if it
is too large the efficiency of the preconditioner tends to saturate, while the cost is roughly
proportional to m, so in general there is an optimal value for m. We have found that adjusting m
so that Richardson iteration converges one order of magnitude (relative to the initial residual)
is fine for most problems. Note that the number of iterations may depend on the intrinsic
conditioning of the interface problem and also on the strip width. For small strip widths
(n1ay < 5) m was chosen in the range 5 < m < 10.

A subsequent possibility is preconditioning the Interface Strip preconditioner problem itself
with block Jacobi. In general, in parallel implementation, each processor may have several
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sub-domains. In this way, the memory and time computation requirements (i.e. the cost of
factorize smaller matrices is reduced) are reduced. If the number of dof’s in the interfaces
grows toward the number of total dof’s the method results in a fully iterative method.

Even if the preconditioner has been described through figures in terms of finite element
structured meshes, the implementation is purely algebraic (in contrast to previous approaches,
like, notably, the wire-basket one) based on the graph connectivity of the matrix. The
preconditioner has been implemented in a FEM production code [16] and tested in large
scale problems with unstructured tetrahedral meshes with up to one million tetras.

8. SOME NUMERICAL EXAMPLES IN PARALLEL ENVIRONMENT

In this section, we present numerical results for diffusive and advective problems and some
discussions about these results. The tests were carried out on a Beowulf cluster of PC’s. The
cluster at CIMEC laboratory has twenty (uniprocessor) nodes; where 10 nodes are Pentium
IV - 2.4 GHz, 1 GB RAM (DDR, 333 MHz), 7 nodes Pentium IV - 1.7 GHz, 512 MB RAM
(RIMM, 400/800 MHz) and 2 nodes Pentium IV 1.7 GHz, 256 MB RAM (RIMM, 400/800
MHz). Usually, the first node works as server. The nodes are connected through a switch Fast
Ethernet (100 Mbit/sec, latency=0(100) psecs).

The iteration counts of the IS and Neumann-Neumann preconditioners are shown, for a
sequential environment, in [2]. In this paper, the performance of the proposed preconditioner
is studied in a parallel environment. For this purpose, we consider two different problems. The
domain  in both cases is the unit square discretized on an structured mesh of 500 x 500
nodes, and decomposed in 4 rectangular sub-domains. We compare the residual norm versus
iteration count by using no preconditioner, Neumann-Neumann preconditioner, block Jacobi
preconditioner, global Jacobi preconditioner and the IS preconditioner (with several strip
widths at the interfaces). Global Jacobi is a diagonal scaling preconditioning algorithm. Block
Jacobi preconditioner is a block-diagonal preconditioner and is obtained by (approximately)
inverting the local diagonal blocks on each processor (see [8] for a detailed description of these
preconditioners).

The first example is the Poisson’s problem A¢ = g, where ¢ = 1 and ¢ = 0 on all the
boundary T'. The iteration counts and the problem solution (obtained in a coarse mesh for
visualization purposes) are plotted in figure 7. As it can be seen, the Neumann-Neumann
preconditioner has a very low iteration count, as it is expected for a symmetric operator.
The IS preconditioner has a larger iteration count for thin strip widths, but it decreases as
the strip is thickened. Regarding memory use, the required core memory for thin strip is
much less than for the Neumann-Neumann preconditioner. The strip width acts in fact as a
parameter that balances the required amount of memory and the preconditioner efficiency.
We split the system solution in two stages, the factorization stage (for the local problems)
and the GMRES iteration stage (including the Richardson iteration for the IS preconditioner),
in order to compute the time consumed to achieve a given tolerance in the residual vector
(see table IIT). CPU times for the iteration stage and memory requirements are not given
in Table III for Jacobi preconditioning and not preconditioning at all because these methods
failed to converge.

The second example is an advective-diffusive problem at a global Péclet number of Pe = 25,
g = 0(Y, %) + 6(%,, 1), and ¢(—0.5,y) = 0, where § is the Dirac’s delta function. Therefore,
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Figure 7. Solution of Poisson’s problem (mesh 500 x 500).
Table III. Cpu time and memory requirements per proc. for Poisson
problem (mesh 500 x 500 elements). Note: * in table means iteration
failed to converge to a specified tolerance in a maximum of 200 its.
Precond. none Jacobi glob. block Jacobi N — N  IS(niay =1) I1S(niay =5)
factoriz. [secs] - - 1.9 4.7 2.3 2.3
GMRES st. [secs] * * * 1.51 5.4 4.9
tolerance 1l.e-10 1.e-10 1.e-10 1.e-10 1.e-10 1.e-10
* *

mem. [proc [Mb] * 70 62 62.5

the problem is strongly advective. We compare the iteration counts in two different meshes
and two different decompositions. The mesh of 500 x 500 nodes is decomposed in 4 rectangular
domains, one per processor, and the mesh of 1000 x 1000 is partitioned into 7 sub-domains.
The iteration count and the problem solution (interpolated in a coarse mesh for visualization
purposes) are plotted in figure 8 and 9. In this example, the advective term introduces
a strong asymmetry. CPU times and memory requirements are not given in Table IV for
N-N preconditioner because this method failed to converge. However, only to give an idea,
the required memory for N-N preconditioner (coarse mesh) for 50/60 iterations (IS was
converged at this point) is 73 Mb/proc (megabytes per processor), whereas for 200 iterations
(the maximum allowed) the consumed memory was 120 Mb/proc. For the refined mesh, the
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Figure 9. Iteration counts for advective-diffusive problem (mesh 1000 x 1000).
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Table IV. Cpu time and memory requirements per proc. for advective-diffusive
problem (mesh 1000 x 1000 elements). Note: * in table means iteration failed
to converge to a specified tolerance in a maximum of 200 its.

Preconditioner none  Jacobi glob. N—-N 1IS(niay =1) IS(niay =5)
factoriz. [secs] - - 4.0 8.0 7.8
GMRES st. [secs] * * * 13.0 12.0
tolerance  0.25e-06 0.25e-06  0.25e-06 0.25e-06 0.25e-06

* * *

mem./proc. [Mb] 140 142

memory used in 70/80 iterations is 210 Mb/proc and for the 200 iterations (the maximum
allowed) was 320 Mb/proc. Clearly, the Neumann-Neumann preconditioner is outperformed
by IS preconditioner in iteration count (and consequently in computing time) and memory
demands, even for thin strips. The CPU time and memory used (per processor) are shown in
table IV.

9. SAINT-VENANT NUMERICAL EXAMPLES

The example is a 2D Saint-Venant subcritical flow over an impermeable unit square channel
with a parabolic bump in the bottom and a sinusoidal wave-train perturbation in z—velocity
at the inflow boundary. The parabolic variation of the bottom has the form n(z,y) =
min{hy, ha + (h1 — h2)(r/R)?}, where r is the distance to the center of the bump, located
at (0,0), hy = 1, ho = 0.5 and R = 0.3. The period of the plane inciding wave is T' = 0.1
sec. Hence, roughly, five wave-lengths enter in the diameter of the bump. The initial global
Froude and Courant numbers (based in longitudinal velocity u) are Fr = u/y/gh = 0.3 and
C = uﬁ—; = 15. Null flux is considered in y = £0.5 and fluvial boundary conditions at the
inflow /outflow sections. For the computations we use the Chézy model with friction coefficient
Cp = 110 m'/?/sec. The mesh of 10° linear triangles was partitioned with METIS into 5
sub-domains (one per processor).

The iteration counts for the linear system corresponding to a typical Newton iteration at a
given time step is plotted in figure 10. Figure 11 shows the elevation for the steady periodical
state. In this example, the system of conservation laws (1) introduces a strong asymmetry. As
in the linear advection-diffusion problem, the IS preconditioner improves the iteration counts
and memory demands. Although each iteration is more expensive for the IS preconditioner,
the consumed time to reach a given tolerance is smaller. The CPU consumed time, tolerances
and consumed memory are shown in table V.

10. CONCLUSIONS
We have presented the parallel version of a new preconditioner for Schur complement domain
decomposition methods and the convergence improvement for hydrological problems. This

preconditioner is based on solving a problem posed in a narrow strip around the inter-
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Figure 10. Iteration counts for Saint-Venant
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Table V. Cpu time and memory requirements for Saint-Venant equations (mesh 500 x
500 elements). Note: * in table means iteration failed to converge to a specified
tolerance in a maximum of 400 iterations.

Preconditioner  none  Jacobi glob. block Jacobi 1S(niay =1) IS(niay =5)

factorization [secs] - - 8.1 9.0 9.2
GMRES stage [secs] * * 522 68 43
tolerance 1.e-05 1.e-05 1.e-05 1.e-05 1.e-05

* *

memory/proc. [Mb] 605 548 550

subdomain interfaces. Some analytical results have been derived to present its mathematical
basis. Numerical experiments of several physical problems have been carried out to show its
convergence properties and the computation time.

The IS preconditioner is easy to construct as it does not require any special calculation
(it can be assembled with a subset of sub-domain matrix coefficients). It is much less
memory-consuming than classical optimal preconditioners such as Neumann-Neumann in
primal methods (or Dirichlet in FETI methods). Moreover, it permits to decide how much
memory to assign for preconditioning purposes.

The IS preconditioner is well suited for hydrological problems where advective terms
are present in governing equations, while it is capable to handle reasonably well diffusion-
dominated regions.
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