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e strip pre
onditioner for domain de
ompositionmethods: appli
ation to hydrology.Rodrigo R. Paz� and Mario A. StortiCentro Interna
ional de M�etodos Computa
ionales en Ingenier��a (CIMEC)CONICET - INTEC - U.N.L.G�uemes 3450, (3000) Santa Fe, ArgentinaSUMMARYIn this paper, the eÆ
ien
y of a parallelizable pre
onditioner for Domain De
omposition Methodsin the 
ontext of the solution of non-symmetri
 linear equations arising from dis
retization of theSaint-Venant equations, is investigated. The proposed Interfa
e Strip Pre
onditioner (IS) is based onsolving a problem in a narrow strip around the interfa
e. It requires mu
h less memory and 
omputingtime than 
lassi
al Neumann-Neumann pre
onditioner, and handles 
orre
tly the 
ux splitting amongsub-domains that share the interfa
e. The performan
e of this pre
onditioner is assessed with ananalyti
al study of S
hur 
omplement matrix eigenvalues and numeri
al experiments 
ondu
ted in aparallel 
omputational environment (
onsisting of a Beowulf 
luster of twenty-nodes). Copyright 
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omputing, Saint-Venant eqs.1. INTRODUCTIONThe large spread in length s
ales present in hydrologi
al problems (like river, estuaries, lakes,open 
hannels, levees or dam breaks, et
.) requires a high degree of re�nement in the �niteelement mesh and, then, requires very large 
omputational resour
es. Also, in a 2D 
oupledsurfa
e-subsurfa
e 
ow problem, a typi
al multi-aquifer model, the number of unknowns persurfa
e node is, at least, equal to the number of aquifers and aquitards. Due to this fa
t, it isexpe
ted to have a very high demand of CPU 
omputation time, 
alling for parallel pro
essingte
hniques. Linear systems obtained from dis
retization of PDE's by means of Finite Di�eren
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2 R. R. PAZ AND M. A. STORTIor Finite Element Methods are normally solved in parallel by iterative methods [8, 6℄ be
ausethey require mu
h less 
ommuni
ation 
ompared to dire
t solvers.The S
hur 
omplement domain de
omposition method leads to a redu
ed system bettersuited for iterative solution than the global system, sin
e its 
ondition number is lower (/ 1=hvs. / 1=h2 for the global system, h being the mesh size) and the 
omputational 
ost periteration is not so high on
e the sub-domain matri
es have been fa
torized.Iterative substru
turing methods rely on a non-overlapping partition into sub-domains(substru
tures). The eÆ
ien
y of these methods 
an be further improved by usingpre
onditioners [5℄. On
e the degrees of freedom inside the substru
tures have been eliminatedby blo
k Gaussian elimination (or other algorithm), a pre
onditioner for the resulting S
hur
omplement system is built with matrix blo
ks relative to a de
omposition of interfa
e �niteelement fun
tions into subspa
es related to geometri
al obje
ts (verti
es, edges, fa
es, singlesubstru
tures) or simply by the 
oeÆ
ients of sub-domain matri
es near the interfa
e. Iterativemethods like Conjugate Gradient and GMRES are then employed. Early works, su
h as [10, 11℄,have in
uen
ed most of the later work in the �eld. They proposed two spa
es for the 
oarseproblem. One of their 
oarse spa
es is given in terms of the averages of the nodal values over theentire substru
ture boundaries �
i. The other spa
e is de�ned by extending the wire basket(we re
all that the wire basket is the union of the boundaries of the fa
es whi
h separate thesubstru
tures) values as a two dimensional dis
rete harmoni
 fun
tion onto the fa
es, and thenas dis
rete harmoni
 fun
tion into the interiors of the sub-domains.For auto-adjoint positive semide�nite problems, Neumann-Neumann pre
onditioner is themost 
lassi
al one. From a mathemati
al point of view, the pre
onditioner is de�ned byapproximating the inverse of the global S
hur 
omplement matrix by the weighted sum of lo
alS
hur 
omplement matri
es. From a physi
al point of view, Neumann-Neumann pre
onditioneris based on splitting the 
ux applied to the interfa
e in the pre
onditioning step and solvinglo
al Neumann problems in ea
h sub-domain. This strategy is good only for symmetri
operators.The pre
onditioner proposed here is based on solving a problem in a \strip" of nodes aroundthe interfa
e (�gure 1). When the width of the strip is narrow, the 
omputational 
ost andmemory requirements are low and the iteration 
ount is relatively high, when the strip is wide,the 
onverse is veri�ed.This pre
onditioner performs better for non-symmetri
 operators and does not have rigidbody modes for internal 
oating sub-domains, as is the 
ase for the Neumann-Neumannpre
onditioner. Re
all that for operators that involve only derivatives of the unknowns (asLapla
e equation, steady elasti
ity, steady adve
tion-di�usion, for instan
e) a portion of theboundary should have Diri
hlet or mixed boundary 
onditions. Otherwise, the problem isill-posed and the matrix is singular. When using the Neumann-Neumann pre
onditioner, sub-domains inherit the boundary 
ondition of the original problem in the external boundary,whereas Neumann boundary 
onditions are imposed at the internal sub-domain interfa
es. Sub-domains that have a non-empty interse
tion with a portion of the Diri
hlet part of the externalboundary do not have rigid modes. Sub-domains whose boundary has empty interse
tion withthe external Diri
hlet or mixed portion of the boundary, would have Neumann 
onditionimposed on their whole boundary and would have rigid modes for the kind of operatorsdes
ribed above.In 
ontrast with the wire-basket algorithms, the IS pre
onditioner is purely algebrai
, i.e. it
an be assembled from a subset of the matrix 
oeÆ
ients. There are no requirements on theCopyright 
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 3
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Figure 1. Domain De
omposition.topology of the mesh, and even it 
ould be applied to sparse matri
es 
oming from other kindof problems, not ne
essarily from PDE dis
retizations.2. THE OPEN CHANNEL FLOW MODEL [13, 17℄The equations for the 2D Saint-Venant open 
hannel 
ow are the well-known mass andmomentum 
onservation equations integrated in the verti
al dire
tion. If we write theseequations in the 
onservation matrix form (Einstein summation 
onvention is assumed), wehave �U�t + �Fi(U)�xi = Gi(U); i = 1; 2; on 
st � [0; t℄; (1)where 
st is the stream domain, U = (h; hu; hv)T is the state ve
tor and the adve
tive 
uxfun
tions in (1) are F1(U) = (hu; hu2 + gh22 ; huv)T ;F2(U) = (hv; huv; hv2 + gh22 )T ; (2)where h is the height of the water in the 
hannel with respe
t to the 
hannel bottom, �u = (u; v)Tis the velo
ity ve
tor and g is the a

eleration due to gravity. Gs represents the gain (or loss)of the river, the sour
e term isG(U) = (Gs; gh(S0x � Sfx); gh(S0y � Sfy))T (3)Copyright 
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4 R. R. PAZ AND M. A. STORTIwhere S0 is the bottom slope and Sf is the slope fri
tion.Sfx = 1C2hhuj�uj; Sfy = 1C2hhvj�uj Ch�ezy model.Sfx = n2h4=3 uj�uj; Sfy = n2h4=3 vj�uj; Manning model. (4)where Ch and n (the Manning roughness) are model 
onstants. In the 
ase of great lakes, widerivers and estuaries we should take into a

ount the e�e
t of Coriolis for
e (see [17℄).Initial and Boundary Conditions [14℄. To obtain a well-posed problem we add someinitial 
onditions Ujt=0 = ~U0; on 
st; (5)and boundary 
onditions on �
st (the stream boundary). We re
all that the type of a 
ow ina stream or in an open 
hannel depends on the value of the Froude number Fr = j�uj=
 (where
 = pgh is the wave 
elerity ). A 
ow is said 
uvial if j�uj < 
 and torrential if j�uj > 
.Fluvial Boundary.� in
ow boundary: �u spe
i�ed and h is extrapolated from interior points, for instan
e.� out
ow boundary: h spe
i�ed and velo
ity �eld extrapolated from interior points, forinstan
e.Torrential Boundary.� in
ow boundary: �u and the depth h are spe
i�ed.� out
ow boundary: all variables are extrapolated from interior points.Solid Wall Condition. We pres
ribe the simple slip 
ondition over �
slip (� �
st)�u � n = 0 (6)Upon using the SUPG stabilized �nite element dis
retization with linear triangles and/orbilinear re
tangular elements, and the trapezoidal rule for time integration we obtain thesystem to be solved at ea
h time step,R = K(U)[�U�+1 + (1� �)U� ℄ +B(U)U�+1 �U��t �Q�+1 = 0; (7)where � is the time-weighting fa
tor satisfying 0 � � � 1, �t is the time in
rement and �denotes the number of time steps. K and B are the sti�ness and mass matrix, respe
tively (Kand B depend on U), Q is the sour
e ve
tor and R is the residual ve
tor.3. SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHODWe 
onsider solving in ea
h time step a linearized form of system (7) (i.e Au = f) resultingfrom �nite element dis
retization as des
ribed in the previous se
tion. Let 
 denote the
omputational domain of the hydrologi
al problem, and f
igi=ni=1 its de
omposition into nCopyright 
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 5non-overlapping sub-domains. We shall re-order u and f as u = (uL; uI)T and f = (fL; fI)T ,numbering the global nodes su
h that the 
oeÆ
ient matri
es of hydrauli
 height and velo
itiesassume blo
k-ordered stru
ture A = � ALL ALIAIL AII � ; (8)where ALL = diag[A11; A22; :::; Ann℄ is a blo
k-diagonal with ea
h blo
k Aii, i = 1; 2; :::; n beingthe matrix 
orresponding to the unknowns belonging to the interior verti
es of sub-domain
i. ALI and AIL represents 
onne
tions between sub-domains to interfa
es.AII 
orresponds to the dis
retization of the di�erential operator restri
ted to the interfa
esand represents the 
oupling between lo
al interfa
e points.The numeri
al solution of Au = f is equivalent to solvingSuI = g on interfa
es �; (9)ALLuL = fL �ALIuI in 
i (10)where S = AII � nXi=1AILA�1LLALI; (11)and g = fI � nXi=1AILA�1LLfL; (12)where S is the well-known S
hur 
omplement matrix.The S
hur domain de
omposition method starts by �rst determining uI on the interfa
esbetween sub-domains by solving (9). Upon obtaining uI , the sub-domain problems (10)de
ouple and may be solved in parallel. The main 
omputational 
ost for the iterative solutionof (9) depends on the number of iteration, i.e. the 
ondition number, to a
hieve 
onvergen
eto a given a

ura
y 
riterion.4. PRECONDITIONERS FOR DOMAIN DECOMPOSITION METHODSIt is 
lear that knowing the eigenvalue spe
trum of the S
hur 
omplement matrix is one of themost important issues in order to develop suitable pre
onditioners.We start with the adve
tion-di�usion equation, whi
h is a simple model equation that 
aptures many of the 
hara
teristi
sof adve
tive systems like the Saint-Venant one (1). In this se
tion the null adve
tion 
ase(Poisson equation) is 
onsidered, while the full adve
tion-di�usion 
ase is studied in se
tion x6.This simpli�
ation allows us to 
ompute the eigenvalues in 
losed form and to assess theeÆ
ien
y of several pre
onditioners.The Poisson problem in a unit square is given by�� = g; in 
 = f0 < x; y < 1g; (13)and the boundary 
onditions � = ��; at � = fx; y = 0; 1g; (14)Copyright 
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6 R. R. PAZ AND M. A. STORTIwhere � is the unknown, g(x; y) is a given sour
e term and � is the boundary.Consider now the partition of 
 in Ns non-overlapping sub-domains 
1;
2; : : : ;
Ns , su
hthat 
 = 
1S
2S : : :S
Ns . For the sake of simpli
ity, we assume that the sub-domainsare re
tangles of unit height and width Lj . In pra
ti
e this is not the best partition, butit is used (see [2℄) to 
ompute the eigenvalues of the interfa
e problem in 
losed form. Let�int = �1S�2S : : :S�Ns�1 be the interior interfa
es among adja
ent sub-domains. Given aguess  j for the tra
e of � in the interior sub-domains �j�j , we 
an solve ea
h interior problemindependently as �� = g; in 
j ;� =8><>: j�1; at �j�1; j ; at �j ;��; at �up;j + �down;j ; (15)where  0 = ����x=0 and  Ns = ����x=1 are given.4.1. The Steklov operatorNot all 
ombinations of tra
e values f jg give the solution of the original problem (13). Indeed,the solution to (13) is obtained when the tra
e values are 
hosen in su
h a way that the 
uxbalan
e 
ondition at the internal interfa
es is satis�ed,fj = ���x ������j � ���x ����+�j = 0; (16)where the � supers
ripts stand for the derivative taken from the left and right sides ofthe interfa
e. We 
an think of the 
orresponden
e between the ensemble of interfa
e values = f 1; : : : ;  Ns�1g and the ensemble of 
ux imbalan
es f = ff1; : : : ; fNs�1g as an interfa
eoperator S su
h that S = f � f0; (17)where all inhomogeneities 
oming from the sour
e term and Diri
hlet boundary 
onditions are
on
entrated in the 
onstant term f0, and the homogeneous operator S is equivalent to solvingthe equation set (15) with sour
e term g = 0 and homogeneous Diri
hlet boundary 
onditions�� = 0 at the external boundary �.Here, S is the Steklov operator. In a more general setting, it relates the unknown valuesand 
uxes at boundaries when the internal domain is in equilibrium. In the 
ase of internalboundaries, it 
an be generalized by repla
ing the 
uxes by the 
ux imbalan
es. The S
hur
omplement matrix is a dis
rete version of the Steklov operator. In [2℄ the eigenvalues ofSteklov operator are 
omputed in a 
losed form for this simpli�ed 
ase. Hen
e, good estimatesfor the 
orresponding S
hur 
omplement matrix eigenvalues are obtained.4.2. Eigenvalues of Steklov operatorWe assume that only two sub-domains are present, one of them at the left of width L1 andthe other at the right of width L2, so that L = L1 + L2 = 1 is the side length.Copyright 
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 7We solve �rst the Lapla
e problem in ea
h sub-domain with homogeneous Diri
hlet boundary
ondition at the external boundary and  at the interfa
e,�� = 0; in 
1;2;� = (0; at �; ; at �1: (18)The 
ux imbalan
e resulting from the solution �n(x; y) of (18) on ea
h sub-domain is (see [2℄)fn = ��n�x ����x=L�1 � ��n�x ����x=L+1 == kn [
oth(knL1) + 
oth(knL2)℄ sin(kny); (19)where the wave number kn and the wavelength �n are de�ned askn = 2�=�n; �n = 2L=n; n = 1; : : : ;1: (20)A given interfa
e value fun
tion  is an eigenfun
tion of the Steklov operator if the
orresponding 
ux imbalan
e f = S is proportional to  , i.e. S = ! , ! being the
orresponding eigenvalue. The eigenfun
tions of the Steklov operator are n(y) = sin(kny) (21)with eigenvalues !n = eig(S)n = eig(S�)n + eig(S+)n == kn [
oth(knL1) + 
oth(knL2)℄ ; (22)where S� are the Steklov operators of the left and right sub-domains,S� = � ���x ����L�1 ; (23)and their eigenvalues are eig(S�)n = kn 
oth(knL1;2): (24)For large n, the hyperboli
 
otangents in (24) both tend to unity. This shows that theeigenvalues of the Steklov operator grow proportionally to n for large n, and then its 
onditionnumber is in�nity. However, when 
onsidering the dis
rete 
ase the wave number kn is limitedby the largest frequen
y that 
an be represented by the mesh, whi
h is kmax = �=h where h isthe mesh spa
ing. The maximum eigenvalue is!max = 2kmax = 2�h ; (25)whi
h grows proportionally to 1=h. As the lowest eigenvalue is independent of h, this meansthat the 
ondition number of the S
hur 
omplement matrix grows as 1=h. Note that the
ondition number of the dis
rete Lapla
e operator typi
ally grows as 1=h2. Of 
ourse, thisredu
tion in the 
ondition number is not dire
tly translated to total 
omputation time, sin
ewe have to take a

ount of fa
torization of sub-domain matri
es and forward and ba
kwardsubstitutions involved in ea
h iteration to solve internal problems. However, the overall balan
eis positive and redu
tion in the 
ondition number, beside being inherently parallel, turns outto be one of the main strengths of domain de
omposition methods.The eigenvalue magnitude is related to eigenfun
tion frequen
y along the inter-sub-domaininterfa
e, and the penetration of the eigenfun
tions toward sub-domains interiors de
aysstrongly for higher modes.Copyright 
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8 R. R. PAZ AND M. A. STORTI5. PRECONDITIONERS FOR THE SCHUR COMPLEMENT MATRIXIn order to further improve the eÆ
ien
y of iterative methods, a pre
onditioner has to be addedso that the 
ondition number of the S
hur 
omplement matrix is lowered. The most knownpre
onditioners for stru
tural (symmetri
 and positive semide�nite) problems are Neumann-Neumann and its variants [3, 12℄ for S
hur 
omplements methods, and Diri
hlet for FiniteElement Tearing and Inter
onne
ting (FETI) methods and its variants [1, 4, 7, 9℄. It 
an beproved that they redu
e the 
ondition number of the pre
onditioned operator to O(1) (i.e.independent of h) in some spe
ial 
ases.5.1. The Neumann-Neumann pre
onditionerConsider the Neumann-Neumann pre
onditionerPNNv = f; (26)where v(y) = 1=2[v1(L1; y) + v2(L1; y)℄; (27)and vi, i = 1; 2, are de�ned through the following problems�vi = 0 in 
i;vi = 0 at �0 + �up;i + �down;i;(�1)i�1 �vi�x = 1=2f at �1: (28)The pre
onditioner 
onsists in assuming that the 
ux imbalan
e f is applied on the interfa
e.Sin
e the operator is symmetri
 and the domain properties are homogeneous, this \load" isequally split among the two sub-domains. Then, we have a problem in ea
h sub-domain withthe same boundary 
onditions in the exterior boundaries, and a non-homogeneous Neumannboundary 
ondition at the inter-sub-domain interfa
e.Again, we will show that the eigenfun
tions of the Neumann-Neumann pre
onditionerare (21). E�e
tively, we 
an propose for v1 the formv1 = C sinh(knx) sin(kny); (29)where C is determined from the boundary 
ondition at the interfa
e in (28) and results inC = 12kn 
osh(knL1) ; (30)and similarly for v2, so thatv1(x; y) = 12kn sinh(knx)
osh(knL1) sin(kny);v2(x; y) = 12kn sinh(kn(L� x))
osh(knL2) sin(kny): (31)Then, the value of v = P�1NNf 
an be obtained from (27)v(y) = P�1NNf = 14kn [tanh(knL1) + tanh(knL2)℄ sin(kny); (32)Copyright 
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 9so that the eigenvalues of PNN areeig(PNN)n = 4kn [tanh(knL1) + tanh(knL2)℄�1 : (33)As its de�nition suggests, it 
an be veri�ed thateig(PNN)n = 4 [eig(S�)�1n + eig(S+)�1n ℄�1: (34)As the Neumann-Neumann pre
onditioner (26) and the Steklov operator (17) diagonalizein the same basis (21) (i.e., they \
ommute"), the eigenvalues of the pre
onditioned operatorare simply the quotients of respe
tive eigenvalues, i.e.eig(P�1NNS)n = 1=4[tanh(knL1) + tanh(knL2)℄ [
oth(knL1) + 
oth(knL2)℄: (35)We see that all tanh(knLj) and 
oth(knLj) fa
tors tend to unity for n!1, then we haveeig(P�1NNS)n ! 1 for n!1; (36)so that this means that the pre
onditioned operator P�1NNS has a 
ondition number O(1), i.e.it does not degrade with mesh re�nement. This is optimal, and is a well known feature of theNeumann-Neumann pre
onditioner. In fa
t, for a symmetri
 de
omposition of the domain (i.e.L1 = L2 = 1=2), we haveeig(P�1NNS)n = 14 2 tanh(kn=2) 2 
oth(kn=2) = 1; (37)so that the pre
onditioner is equal to the operator and 
onvergen
e is a
hieved in one iteration.Note that 
omparing (22) and (34) we 
an see that the pre
onditioning is good as long aseig(S�)n � eig(S+)n: (38)This is true for symmetri
 operators and symmetri
 domain partitions (i.e. L1 � L2). Evenfor L1 6= L2, if the operator is symmetri
, then (38) is valid for large eigenvalues. However,this fails for non-symmetri
 operators as in the adve
tion-di�usion 
ase, and also for irregularinterfa
es.Another aspe
t of the Neumann-Neumann pre
onditioner is the o

urren
e of inde�niteinternal Neumann problems, whi
h leads to the need of solving a 
oarse problem [3, 12℄ in orderto solve the \rigid body modes" for internal 
oating sub-domains. The 
oarse problem 
ouplesthe sub-domains and hen
e ensures s
alability when the number of sub-domains in
reases.However, this adds to the 
omputational 
ost of the pre
onditioner.5.2. The Interfa
e Strip (IS) Pre
onditionerA key point about the Steklov operator is that its high frequen
y eigenfun
tions de
ay verystrongly far from the interfa
e, so that a pre
onditioning that represents 
orre
tly the highfrequen
y modes 
an be 
onstru
ted if we solve a problem on a narrow strip around theinterfa
e. In fa
t, the n-th eigenfun
tion with wave number kn given by (21) de
ays far fromthe interfa
e as exp(�knjsj) where s is the distan
e to the interfa
e (the hyperboli
 sine fa
torsappearing in (19)). Then, this high frequen
y modes will be 
orre
tly represented if we solvea problem on a strip of width b around the interfa
e, provided that the interfa
e width is verylarge with respe
t to the mode wave length �n.Copyright 
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10 R. R. PAZ AND M. A. STORTIThe Interfa
e Strip pre
onditioner is de�ned asPISv = f; (39)where f = �w�x ����x=L�1 � �w�x ����x=L+1 (40)and �w = 0 in jx� L1j < b;w = 0 at jx� L1j = b and y = 0; 1;w = v at x = L1: (41)Please note that for high frequen
ies (i.e. knb large) the eigenfun
tions of the Steklov operatorare negligible at the border of the strip, so that the boundary 
ondition at jx � L1j = b isjusti�ed. The eigenfun
tions for this pre
onditioner are again given by (21) and the eigenvalues
an be taken from (22), repla
ing L1;2 by b, i.e.eig(PIS)n = 2 eig(Sb)n = 2kn 
oth(knb); (42)where Sb is the Steklov operator 
orresponding to a strip of width b.For the pre
onditioned Steklov operator, we haveeig(P�1IS S)n = 1=2 tanh(knb) [
oth(knL1) + 
oth(knL2)℄ : (43)We note that eig(P�1IS S)n ! 1 for n!1, so that the pre
onditioner is optimal, independentlyof b. Also, for b large enough we re
over the original problem so that the pre
onditioneris exa
t (
onvergen
e is a
hieved in one iteration). However, in this 
ase the use of thispre
onditioner is impra
ti
al, sin
e it implies solving the whole problem. Note that in orderto solve the problem for v, we need information from both sides of the interfa
e, while theNeumann-Neumann pre
onditioner solves the problem without 
ommuni
ation of informationbetween sub-domains. This is a disadvantage in terms of eÆ
ien
y, sin
e we have to waste
ommuni
ation time in sending the matrix 
oeÆ
ients in the strip from one side to the other orotherwise 
ompute them in both pro
essors. However, we will see that eÆ
ient pre
onditioning
an be a
hieved with few node layers and negligible 
ommuni
ation. Moreover, we 
an solvethe pre
onditioner problem by iteration, so that no migration of 
oeÆ
ients is needed.6. THE SCALAR ADVECTIVE-DIFFUSIVE CASEConsider now the adve
tive-di�usive 
ase,���� u�;x = g in 
; (44)where � is the thermal 
ondu
tivity of the medium and u the adve
tion velo
ity. The problem
an be treated in a similar way, and the Steklov operators are de�ned asS� = � �;xjL�1 ; (45)Copyright 
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 11where ���� u�;x = 0 in 
1;2;� = (0 at �; at �1: (46)The eigenfun
tions are still given by (21). Looking for solutions of the form v /exp(�x) sin(kny) we �nd that the eigenvalues areeig(S�)n = u2� + Æn 
oth(ÆnL1)eig(S+)n = � u2� + Æn 
oth(ÆnL2): (47)For low frequen
y modes, adve
tive e�e
ts are more pronoun
ed and the �rst eigenfun
tionis notably biased to the right. In 
ontrast, for high frequen
y modes the di�usive term prevailsand the eigenfun
tion is more symmetri
 about the interfa
e, and (as in the pure di�usive
ase) 
on
entrated around it (see [2℄). Note that now the eigenvalues for the right and leftpart of the Steklov operator may be very di�erent due to the asymmetry introdu
ed by theadve
tive term. This di�eren
e in splitting is more important for the lowest mode.In �gures 2 to 5 we see the eigenvalues as a fun
tion of the wave number kn. Note thatfor a given side length L only a 
ertain sequen
e of wave numbers, given by (21) should be
onsidered. However, it is perhaps easier to 
onsider the 
ontinuous dependen
e of the di�erenteigenvalues upon the wave number k.For a symmetri
 operator and a symmetri
 partition (see �gure 2), the symmetri

ux splitting is exa
t and the Neumann-Neumann pre
onditioner is optimal. The largestdis
repan
ies between the IS pre
onditioner and the Steklov operator o

ur at low frequen
iesand yield a 
ondition number less than two.If the partition is non-symmetri
 (see �gure 3) then the Neumann-Neumann pre
onditioneris no longer exa
t, be
ause S+ 6= S�. However, its 
ondition number is very low whereas theIS pre
onditioner 
ondition number is still under two.For a relatively important adve
tion term, given by a global P�e
let number of uL=2� = 5(see �gure 4), the asymmetry in the 
ux splitting is mu
h more evident, mainly for smallwave numbers, and this results in a large dis
repan
y between the Neumann-Neumannpre
onditioner and the Steklov operator. On the other hand, the IS pre
onditioner is stillvery 
lose to the Steklov operator.The di�eren
e between the Neumann-Neumann pre
onditioner and the Steklov operatorin
reases for larger Pe (see �gure 5).This behavior 
an be dire
tly veri�ed by 
omputing the 
ondition number of S
hur
omplement matrix and pre
onditioned S
hur 
omplement matrix for the di�erentpre
onditioners (see tables I and II). We 
an see that both the Neumann-Neumann and ISpre
onditioners give a similar pre
onditioned 
ondition number regardless of mesh re�nement(it almost doesn't 
hange from a mesh of 50� 50 to a mesh of 100� 100), whereas the S
hur
omplement matrix exhibits a 
ondition number roughly proportional to 1=h. However, theNeumann-Neumann pre
onditioner exhibits a large 
ondition number for high P�e
let numberswhereas the IS pre
onditioner performs better for adve
tion dominated problems.Copyright 
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k
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1
1 10 100 1000

�L1 L2u = 0

Figure 2. Eigenvalues of Steklov operators andpre
onditioners for the Lapla
e operator (Pe = 0) andsymmetri
 partitions (L1 = L2 = L=2, b = 0:1L).Table I. Condition number for the Steklov operator and severalpre
onditioners mesh: 50� 50 elements, strip: 5 layers of nodesPe 
ond(S) 
ond(P�1NNS) 
ond(P�1IS S)0 41.00 1.00 4.920.5 40.86 1.02 4.885 23.81 3.44 2.9225 5.62 64.20 1.08Table II. Condition number for the Steklov operator and severalpre
ond. (mesh: 100 � 100 elements, strip: 10 layers of nodes).u 
ond(S) 
ond(P�1NNS) 
ond(P�1IS S)0 88.50 1.00 4.920.5 81.80 1.02 4.885 47.63 3.44 2.9225 11.23 64.20 1.08Copyright 
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Figure 3. Eigenvalues of Steklov operators and pre
onditionersfor the Lapla
e operator (Pe = 0) and non-symmetri
 partitions(L1 = 0:75L, L2 = 0:25L, b = 0:1L).7. SOLUTION OF THE STRIP PROBLEMSome hints are given for an eÆ
ient implementation of the IS pre
onditioner in a parallelenvironment.Consider a sub-domain interfa
e with a strip of two element layers (nlay = 2), as shown in�gure 6. The pre
onditioning 
onsists in, given a ve
tor fI de�ned on the nodes at the interfa
e(I in the �gure) to 
ompute an approximate solution vI given by24 AII AIS AI;SBASI ASS AS;SBASB;I ASB;S ASB;SB 3524 vIvSvSB 35 = 24 fI00 35 ; (48)with \Diri
hlet boundary 
onditions" at the strip boundary vSB = 0, so that it redu
es to� AII AISASI ASS � � vIvS � = � fI0 � ; (49)On
e this equation is solved, vI is the value of the proposed pre
onditioner applied to fI , i.e.vI = P�1IS fI (50)A dire
t solution of this interfa
e problem is not easily parallelizable. This approa
h wouldinvolve transferring all the interfa
e matrix to a single pro
essor and solving the problemthere. So that, the possibility is to partition the strip problem among pro
essors, mu
h in theCopyright 
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Figure 4. Eigenvalues of Steklov operators and pre
onditionersfor the adve
tion-di�usion operator (Pe = 5) and symmetri
partitions (L1 = L2 = L=2, b = 0:1L).same way as the global problem is, and solving the strip problem by an iterative method. Theidea of an iterative method is also suggested by the fa
t that the pre
onditioning matrix (i.e.the matrix obtained by assembling on the strip domain with Diri
hlet boundary 
onditionsat the strip boundary) is highly diagonal dominant for narrow strips. Care must be taken toavoid nesting a non-stationarymethod like CG or GMRES inside another outer non-stationarymethod [15℄. We re
all that in a stationary method the solution x at the iteration k depends,only, on the solution at the previous step (i.e., xk = f(xk�1)), then we 
an �nd the guess xkafter k su

essive appli
ations of the same operator to the initial value x0. The problem hereis that a non-stationary method exe
uted a �nite number of times is not a linear operator,unless the inner iterative method is iterated enough and then approa
hes the inverse of thepre
onditioner. In this respe
t, relaxed Ri
hardson iteration is suitable.For the Ri
hardson interfa
e problem, a �xed predetermined number m of Ri
hardsoniterations are performed. If m is too low, then the pre
onditioner has no e�e
t, and if itis too large the eÆ
ien
y of the pre
onditioner tends to saturate, while the 
ost is roughlyproportional tom, so in general there is an optimal value form. We have found that adjustingmso that Ri
hardson iteration 
onverges one order of magnitude (relative to the initial residual)is �ne for most problems. Note that the number of iterations may depend on the intrinsi

onditioning of the interfa
e problem and also on the strip width. For small strip widths(nlay < 5) m was 
hosen in the range 5 � m � 10.A subsequent possibility is pre
onditioning the Interfa
e Strip pre
onditioner problem itselfwith blo
k Ja
obi. In general, in parallel implementation, ea
h pro
essor may have severalCopyright 
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Figure 5. Eigenvalues of Steklov operators and pre
onditionersfor the adve
tion-di�usion operator (Pe = 50) and symmetri
partitions (L1 = L2 = L=2, b = 0:1L).
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Figure 6. Strip Interfa
e problem.Copyright 
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16 R. R. PAZ AND M. A. STORTIsub-domains. In this way, the memory and time 
omputation requirements (i.e. the 
ost offa
torize smaller matri
es is redu
ed) are redu
ed. If the number of dof's in the interfa
esgrows toward the number of total dof's the method results in a fully iterative method.Even if the pre
onditioner has been des
ribed through �gures in terms of �nite elementstru
tured meshes, the implementation is purely algebrai
 (in 
ontrast to previous approa
hes,like, notably, the wire-basket one) based on the graph 
onne
tivity of the matrix. Thepre
onditioner has been implemented in a FEM produ
tion 
ode [16℄ and tested in larges
ale problems with unstru
tured tetrahedral meshes with up to one million tetras.8. SOME NUMERICAL EXAMPLES IN PARALLEL ENVIRONMENTIn this se
tion, we present numeri
al results for di�usive and adve
tive problems and somedis
ussions about these results. The tests were 
arried out on a Beowulf 
luster of PC's. The
luster at CIMEC laboratory has twenty (unipro
essor) nodes; where 10 nodes are PentiumIV - 2.4 GHz, 1 GB RAM (DDR, 333 MHz), 7 nodes Pentium IV - 1.7 GHz, 512 MB RAM(RIMM, 400/800 MHz) and 2 nodes Pentium IV 1.7 GHz, 256 MB RAM (RIMM, 400/800MHz). Usually, the �rst node works as server. The nodes are 
onne
ted through a swit
h FastEthernet (100 Mbit/se
, laten
y=O(100) �se
s).The iteration 
ounts of the IS and Neumann-Neumann pre
onditioners are shown, for asequential environment, in [2℄. In this paper, the performan
e of the proposed pre
onditioneris studied in a parallel environment. For this purpose, we 
onsider two di�erent problems. Thedomain 
 in both 
ases is the unit square dis
retized on an stru
tured mesh of 500 � 500nodes, and de
omposed in 4 re
tangular sub-domains. We 
ompare the residual norm versusiteration 
ount by using no pre
onditioner, Neumann-Neumann pre
onditioner, blo
k Ja
obipre
onditioner, global Ja
obi pre
onditioner and the IS pre
onditioner (with several stripwidths at the interfa
es). Global Ja
obi is a diagonal s
aling pre
onditioning algorithm. Blo
kJa
obi pre
onditioner is a blo
k-diagonal pre
onditioner and is obtained by (approximately)inverting the lo
al diagonal blo
ks on ea
h pro
essor (see [8℄ for a detailed des
ription of thesepre
onditioners).The �rst example is the Poisson's problem �� = g, where g = 1 and � = 0 on all theboundary �. The iteration 
ounts and the problem solution (obtained in a 
oarse mesh forvisualization purposes) are plotted in �gure 7. As it 
an be seen, the Neumann-Neumannpre
onditioner has a very low iteration 
ount, as it is expe
ted for a symmetri
 operator.The IS pre
onditioner has a larger iteration 
ount for thin strip widths, but it de
reases asthe strip is thi
kened. Regarding memory use, the required 
ore memory for thin strip ismu
h less than for the Neumann-Neumann pre
onditioner. The strip width a
ts in fa
t as aparameter that balan
es the required amount of memory and the pre
onditioner eÆ
ien
y.We split the system solution in two stages, the fa
torization stage (for the lo
al problems)and the GMRES iteration stage (in
luding the Ri
hardson iteration for the IS pre
onditioner),in order to 
ompute the time 
onsumed to a
hieve a given toleran
e in the residual ve
tor(see table III). CPU times for the iteration stage and memory requirements are not givenin Table III for Ja
obi pre
onditioning and not pre
onditioning at all be
ause these methodsfailed to 
onverge.The se
ond example is an adve
tive-di�usive problem at a global P�e
let number of Pe = 25,g = Æ(1=4; 3=4) + Æ(3=4; 1=4), and �(�0:5; y) = 0, where Æ is the Dira
's delta fun
tion. Therefore,Copyright 
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Figure 7. Solution of Poisson's problem (mesh 500� 500).Table III. Cpu time and memory requirements per pro
. for Poissonproblem (mesh 500� 500 elements). Note: * in table means iterationfailed to 
onverge to a spe
i�ed toleran
e in a maximum of 200 its.Pre
ond: none Ja
obi glob: blo
k Ja
obi N �N IS(nlay = 1) IS(nlay = 5)fa
toriz: [se
s℄ - - 1.9 4.7 2.3 2.3GMRES st: [se
s℄ * * * 1.51 5.4 4.9toleran
e 1.e-10 1.e-10 1.e-10 1.e-10 1.e-10 1.e-10mem:=pro
 [Mb℄ * * * 70 62 62.5the problem is strongly adve
tive. We 
ompare the iteration 
ounts in two di�erent meshesand two di�erent de
ompositions. The mesh of 500�500 nodes is de
omposed in 4 re
tangulardomains, one per pro
essor, and the mesh of 1000� 1000 is partitioned into 7 sub-domains.The iteration 
ount and the problem solution (interpolated in a 
oarse mesh for visualizationpurposes) are plotted in �gure 8 and 9. In this example, the adve
tive term introdu
esa strong asymmetry. CPU times and memory requirements are not given in Table IV forN-N pre
onditioner be
ause this method failed to 
onverge. However, only to give an idea,the required memory for N-N pre
onditioner (
oarse mesh) for 50/60 iterations (IS was
onverged at this point) is 73 Mb/pro
 (megabytes per pro
essor), whereas for 200 iterations(the maximum allowed) the 
onsumed memory was 120 Mb/pro
. For the re�ned mesh, theCopyright 
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Figure 8. Solution of adve
tive-di�usive problem (mesh 500� 500).
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Figure 9. Iteration 
ounts for adve
tive-di�usive problem (mesh 1000�1000).Copyright 
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 19Table IV. Cpu time and memory requirements per pro
. for adve
tive-di�usiveproblem (mesh 1000�1000 elements). Note: * in table means iteration failedto 
onverge to a spe
i�ed toleran
e in a maximum of 200 its.Pre
onditioner none Ja
obi glob: N �N IS(nlay = 1) IS(nlay = 5)fa
toriz: [se
s℄ - - 4.0 8.0 7.8GMRES st: [se
s℄ * * * 13.0 12.0toleran
e 0.25e-06 0.25e-06 0.25e-06 0.25e-06 0.25e-06mem:=pro
: [Mb℄ * * * 140 142memory used in 70/80 iterations is 210 Mb/pro
 and for the 200 iterations (the maximumallowed) was 320 Mb/pro
. Clearly, the Neumann-Neumann pre
onditioner is outperformedby IS pre
onditioner in iteration 
ount (and 
onsequently in 
omputing time) and memorydemands, even for thin strips. The CPU time and memory used (per pro
essor) are shown intable IV. 9. SAINT-VENANT NUMERICAL EXAMPLESThe example is a 2D Saint-Venant sub
riti
al 
ow over an impermeable unit square 
hannelwith a paraboli
 bump in the bottom and a sinusoidal wave-train perturbation in x�velo
ityat the in
ow boundary. The paraboli
 variation of the bottom has the form �(x; y) =minfh1; h2 + (h1 � h2)(r=R)2g, where r is the distan
e to the 
enter of the bump, lo
atedat (0; 0), h1 = 1, h2 = 0:5 and R = 0:3. The period of the plane in
iding wave is T = 0:1se
. Hen
e, roughly, �ve wave-lengths enter in the diameter of the bump. The initial globalFroude and Courant numbers (based in longitudinal velo
ity u) are Fr = u=pgh = 0:3 andC = u�t�x = 15. Null 
ux is 
onsidered in y = �0:5 and 
uvial boundary 
onditions at thein
ow/out
ow se
tions. For the 
omputations we use the Ch�ezy model with fri
tion 
oeÆ
ientCh = 110 m1=2=se
. The mesh of 105 linear triangles was partitioned with METIS into 5sub-domains (one per pro
essor).The iteration 
ounts for the linear system 
orresponding to a typi
al Newton iteration at agiven time step is plotted in �gure 10. Figure 11 shows the elevation for the steady periodi
alstate. In this example, the system of 
onservation laws (1) introdu
es a strong asymmetry. Asin the linear adve
tion-di�usion problem, the IS pre
onditioner improves the iteration 
ountsand memory demands. Although ea
h iteration is more expensive for the IS pre
onditioner,the 
onsumed time to rea
h a given toleran
e is smaller. The CPU 
onsumed time, toleran
esand 
onsumed memory are shown in table V.10. CONCLUSIONSWe have presented the parallel version of a new pre
onditioner for S
hur 
omplement domainde
omposition methods and the 
onvergen
e improvement for hydrologi
al problems. Thispre
onditioner is based on solving a problem posed in a narrow strip around the inter-Copyright 
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Figure 10. Iteration 
ounts for Saint-Venant system of equations (mesh 500 � 500).

Figure 11. Solution of Saint-Venant system of equations (mesh 500� 500).Copyright 
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AN INTERFACE STRIP PRECOND. FOR DDM: APP. TO HYDROLOGY 21Table V. Cpu time and memory requirements for Saint-Venant equations (mesh 500�500 elements). Note: * in table means iteration failed to 
onverge to a spe
i�edtoleran
e in a maximum of 400 iterations.Pre
onditioner none Ja
obi glob: blo
k Ja
obi IS(nlay = 1) IS(nlay = 5)fa
torization [se
s℄ - - 8.1 9.0 9.2GMRES stage [se
s℄ * * 522 68 43toleran
e 1.e-05 1.e-05 1.e-05 1.e-05 1.e-05memory=pro
: [Mb℄ * * 605 548 550subdomain interfa
es. Some analyti
al results have been derived to present its mathemati
albasis. Numeri
al experiments of several physi
al problems have been 
arried out to show its
onvergen
e properties and the 
omputation time.The IS pre
onditioner is easy to 
onstru
t as it does not require any spe
ial 
al
ulation(it 
an be assembled with a subset of sub-domain matrix 
oeÆ
ients). It is mu
h lessmemory-
onsuming than 
lassi
al optimal pre
onditioners su
h as Neumann-Neumann inprimal methods (or Diri
hlet in FETI methods). Moreover, it permits to de
ide how mu
hmemory to assign for pre
onditioning purposes.The IS pre
onditioner is well suited for hydrologi
al problems where adve
tive termsare present in governing equations, while it is 
apable to handle reasonably well di�usion-dominated regions. ACKNOWLEDGEMENTSThis work has re
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