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1. Abstract

The iterative solution of linear systems arsing from panel method discretiza-
tion of three-dimensional (313) exterior potential problems coming mainly from
aerc-hydrodynamic engineering problems, 1= discussed. We propose an original
preconditioning based on an approximate eigenspace decomposition, that corrects
bad conditioning arising from pair of surfaces that are very closs [rom each other,
which iz a very common situation in slender wings and other asrodyvoamic profiles,
This preconditioning has been tested with the standard Bi-Conjugate Gradient

(BCG) and Conjugate Gradient Squared (CGS) iterative methods.
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3. Imtroduction

The Panel Method 1= a well established numerical techmique for the solution of
potential Aow problems, especially in exterior acro and hydrodynamics doe to its
ability to cope with complex geometries and the lack of artificial infinite boundaries
[1-4]. Our wark is based on Morinag's farmulation [5-8] with plane low order panels
for the potential feld. A characteristic of such formulation is that it gives a full
non-symmetric matrix with relatively low condition numbers. o be more specific,
the condition oumber does not degrade under refinement az it 15 common in the
“In volume"discretization methods, like FDM, FEM, FVM or the relatively voung
“mesh-les=" methods. T'his advantage 15 somewhat compensated by the fact that
Lhe system matrix is full and a definitive assessment of the efficiency of the method,
comparad to the “in voluome™ ones 1= rather involved., However, a clear advantage
of the method, mainly from the practical poinot of view, s the lack of domain
interior meshing, specially in 31,

Application of iterative solvers to papel/BEM (from “Boundary Element
Methad™) problems is described in marny papers [%14|. A rough list of parameter-
[res iterative solvers for non svmmetric systems of lnear equations 1= given by
Natchigal et al [17], where three basic types are considered as follows, First, those
methods based on the normal equations: OGN CONR (Hestnes and Stiefel
52 [22], CONE (Craig’sh, LSQR [Paige and Saunders "82 [23|. Second, those
ones based on erthogonalization: GCG [Concus and Golub 76, Widlund "78),
ORTHOMIN (Vinsome "76), ORTHORES and ORTHODIR (Young and Jea "0,
FOM [Saad "81), GCR (Elman 22, Eisenstat et al. [24], GMRES [Saad and
Schultz [25]. Third, those ones basad on biorthogonalization: BOG = BIOMIN
(Lanczos [18], Fletcher [18], BIORES BO [Lanceos "50, Jea and Young "E3,
BIODIR (Jea and Young "83), OGS BIOMIN® (Sonneveld |20)], BIORES® and
RIODIR? (Gutknecht [26], BICGSTAB (van der Varst [27). QMR (Freund |28).
We also have the USYMLEG and USYMOR methods (Saunders et al [28]. These
terminalogy approximately follows Nachtigal et al. and Gutknecht |26 and others
references can be found in [28] and [30]. lterative solvers are based on repetitive
ralculation of matrix-vector mualtiplication. As the matrices coming from panel
discretizations are full, it is not possible to store the matrix coefficients in core
memory, as it 15 usual in the “in volume” methods, where the matrix s sparse.

Then, the interaction coefBicients have to be recomputed at esch matrix-vector
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operation and the overall cost 1= roughly the number of matrix-vector operations
tirmes the cost of evaluating one of them. Global efficiency 1= controlled thus by: a
a cholce of the iterative solver and preconditioning in order to improve the conver-
gence rate and reduce the number of matrix-vector operations, and b) an efficient

computation of the interaction coefMicients.

Bome preconditioners are purely algebraic, as those based on incomplete fac-
torization [see |9 for instance), whereas others take into account the underlying
phvsics. Most of the phvsically bassd preconditionings for the panel method are
bazed on some kind of multi polar expansion of the field produced by a “clus
ter” of panels [13, 14,15]. The advantage of the algebraic preconditionings are
that thev can be applied to a broader range of problems, whereas physical based

preconditionings vield better performances at the expense of being more specihic,

Preconditioners in a general BEM context are extensively reviewead by Prazad
et al |10], where some success has been reported with the conjugate gradient
and GMEES when they are used 10 conjunction with preconditioning approaches,
Also Hribersak et al [11] have considered Jacobi, incomplete factorization and row-
sum type preconditioners for the BEM solution of viscous flow problems, showing
improved convergence rates with the first two ones. Yan [21] obtained sparse
preconditioners for dense system matrix in 210 BEM analy=is through condensation
by discrete Fourier transforms, whereas Vavasis [15] treats the panel [BEM case
which is rather near to our case, e, solving the Laplace equation in a exterior 312
domain, =0 we will give a brief account of his approach. Yawasis considers thres
basic preconditioners: the mesh neighbor, the malric endries and the hierarchical
clustering which have the following idea in common. From the system matrix A
a small index list L is chosen, drawn from {1.2, .., Ni} such that the variables in
I. have the most infAuence on the variable @0 Next, a small system of equations
ETEF 8; is solved, where the bars dencote that all the rows and the columns of
A are deleted except [or those in the index list L. Once this solution s known, it
expands back to entries of the preconditioner and this procedure 1= done for all its
rows, On one hand, in the mesh negghbor preconditioner we take into account that
the matrix coeflicient relating the control points ¢ and § comes up roughly from a
term like 1/|x; — x|, Therefore, the further apart two control points are, the less
influence it would expect a change at one control point to have on the other, [t s

zaid that two control points are “neighbors” (i they border a common panel side.

a
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Since neighboring control points are the most interrelated, then they are put in
the mesh neighbor preconditioner. Alsn we note that this strategy leads a sparse
preconditioner where its sparsivity pattern will micror the mesh connectivity, On
the other hand, the mesh entries preconditionsr constructs the index list L with
the following criterion: if ayy, ay; satisly ||:'1|"|E_|i|'| = I|r1,-,-f1_li_.|;|, then the control point
7 1= included 10 the index list L. where ¢ denotes some user-specified tolerance,
or “magic number”. For instance, when ag 1/2 and |aij| < aw. with ¢ 1,0
a diagonal and full populated preconditioner are obtained, respectively, whereas
middle values of ¢ does not offer any regular or predictable sparsivity pattern. In
an algebraic context, Jemmings 21| proposed to adopt 001 < ¢ < 010, As it
can be noted, this type of preconditioner does not depend on any panel/BEM
[ormulation, hence it can be applied to an arbitrary svstem matrix, Finally the
hiermarchical clustering preconditioner classifies the control points according to how
far away they lie from the control point 4. The first step in its construction is to
make a hierarchy of clusters, next to the center and radn r [or each cluster ©
are obtained., Onee the clusters, centers and radii are computed, the hierarchy
preconditioner 15 constructed with the aid of the index list L obtained as the
acceptable clusters of each control point. It 5 =zaid that cluster O 5 acceptabls
b the control point # when the distance from the control point @ to the center
of 7 s at least &r, where § = 1 1= a user-specilied number. Vavasis reports good
improvements with the first two types [or rather thick 31D geometries on industrial
applications. Further details about these thres types of preconditioners adapted
for a dense and unsymmetric matrix svstem can be found in the Yavasis's work

and the reference listed there,

However, for thin wings we found that the performance of thess kind of pre-
conditioners 1= rather restricted. On one hand, the mesh neighbor preconditioner
azzumes that the importance of the influence matrix coeflicient 1= only related with
the mesh topology, e, neighbor panels have a strong interaction and remote ones
a wealer interaction. However, this assumption 1= not alwavs the case for dipolar
matrices, which are proportional also to a view factor, so that neighbor panels
{in a topological sense) that are nearly coplanar have weak interaction, which is

actually the case of well refined meshes on smooth surfaces. Moreover, remote
panels (again in a topology =ens=) on opposite sides of thin wing geometries and

[acing each other. have a strong interaction. In other words, the mesh noeighbor
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preconditioner strategy conduces to rather lower performances in such case=s. On
the other hand, the malriz endries preconditioner 15 a good alternative for thick
geometries, with usually low rate in the filling of the preconditioner (ie, its non
zero entries). But, for thin wing configurations [similar to the considered in the
numerical examples) we had to use § > 0.8, with filling ratios greater than 80
5. Finallv, the hierarchical clustering preconditioner shares similar characteristics

with the mesh neighbor one.

For most iterative solvers, the convergence rate 15 closely related to the con-
dition number of the linear svstem, which highly depends on the geometey, 1o
be more specific, high condition numbers arise whenever two surlaces are closs
together, so that the distance between them is smaller than the average size of the
panels. Mote that this implies that, in contrast with the “in volume™ methods,
the condition number is reduced after refinement, since, eventually the average
sige of the panels will get smaller than the distance between the surfaces. Now,
supposs for a moment that the prohlz 5 svmmetric and with a small thickness e,
and we are interested in € — 0. Any distribution of double layer density g given
by gy o on each side of the wing can be decomposad as the sum of 8 svmmetric
one gt oand a skew-symmetric one p= where j.rﬂ: LGy & pz). Wow in the limit
of vanishing thicknes=, the held produced by a skew-svmmetric density on both
sides of the wing are added and the result 15 a flat surface at the plane of symme-
try with a distribution of 2p™, whereas for the svmmetric distribution the helds
tend to cancel each other and the result is also a flat surface but with null doubls
laver density distribution. This shows that the sell interaction coefficient for the
skew-symmetric distribution behaves like ©(1) whereas those for the svmmetric
one behaves like €3(e) for € — 0. This explains why the condition number degrades
as ¢ — [ and sugoests that a phvsically bassd preconditioning based on making
the change of variables and scaling appropriately the svmmetric parct will correct
thiz degradation. We call this the "modal preconditioning” and i=, in our opinion.

the main contribution of this paper.

One may argue that, if the preconditioning is efficient for profiles that are too
thin, then it would be better to handle thoss case specially, e modeling them
as plain flat surfaces. Firstly, we will show in the examples that interesting gains
are obtained for profiles of & % and even 25 % relative thickness. Secondly, even

if the airfoil 15 not too thin, the thickness s smaller near the trailing edge and
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thiz iz a cause of slower convergence., Thirdly and last, using the preconditioning
allows us to solve arbitrarily thin airfoils without worrving about the degres of the
approximation of replacing by a zero thickness airfoil.

With respect to an efficient evaluation of the interaction coefficients, it is a
common practice to use approximated expressions based on Ffar-field expansions,
valid when both panels are separated by a distance that exceeds some threshold
value scaled by the panel size. vpically, the cost of the Er-held expression 1= faster
than the exact evaluation in a ratio 1:5 However, this introduces a consistency
error, and in order to eliminate it, we iterated an outer loop where a residual with
the exact coeflicients 15 computed and a correction 15 added. It i= clear that if too
much iterations of the outer loop (= &) are performed, then it is cheaper to iterate
directly on the exact coeflicients, but it can be shown that this exterior problem
is very well conditioned and, typically, 2 iterations are needed to reduce the error
by a factor 1077, This issue is discussed in depth elsewhere |16).

4. Panel discretization overview

Let I' be a closed surface, and 2% the corresponding interior {exterior)

domain. The governing equations for potential flow are the Laplacse equation in

{1 with =lip condition on [ which, in terms of the perturbation potential can be

written as=:
Ab =0,  in 0
g . ) (1.a,b)
— = —ll. - I, at 1
ol

where 1., 15 the undisturbed velocity and & the perturbation potential defined by
U= U, |} Vi (2)

where u i= the total velocity, This problem can be rewritten as a Fredholm integral

erquation in terms of the single and double layer densities & and p as:

1 3 1 L1 1 ,,
_ A B - 3
pix) EJT_I::PEI::IUH (|x—x"|) : 2#_[,15{1}|x—x’| (3)

for x belonging to the surface I', and 1 is the normal pointing into 82, Por the slip
or inlet foutlet boundary condition as in (1b) it turns out to be that o is simply
& = —0 - Ua and then, the right hand side of (3] is known., Moreover, g is equal
to the perturbation potential & at the surface. The pansl method 1= based on

approximating I by a polyhedral surface, composed of a certain number Npan of

[F]
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. L 1N
non-overlapping fAat panels {175}, F,‘".

i Assuming that g and & are constant over

each panel and impesing (3) by collocation at the centroids of the panels, a linear
svetem of the form:

Ap— Co (4)

is obtained, where g = [p pg |T i= the vector of panel potentials, & the single

laver densities per panel, computed as:

=

)

l=r) —Ure - 11§ I::

and 1; is the normal to paneal i The interaction coelficients are computed from:

]
Oy f—rﬂ'
r, 1% —

4 1
Aij f L{—} AT
! r, on |2 — 2]

where x; 15 the centroid of the -panel.

()

8. T'he modal preconditioning

We will show that, for thin airfoils a symmetric/skew-symmetric decompo-
zition reveals a conditioning which grows inversely proportional to the thickness.
Then, a preconditioning based on this symmetric/skew-symmetric decomposition
i5 proposed. We will show how the preconditioning corrects the bad scaling for a
simple geometry consisting of two facing panels, then for two pairs of panels on a
svmmelric airfoll, and two pairs of pansls on a non-symmetric airfoll. Finally the
expression for the preconditioning in the general case 1= shown.
f. A pair of panels:

Consider first two identical flat square panels of side i, parallel to each other
as in Ogure 1 separated by a distance d = He. We should regard this as a very
crude idealization of a slender airfoil, so that we take the normals as shown in the

figure. The matrix of interaction coefflicients is:

A ['& —ale)

e
=]
i

—ale) e

where we replaced Ay = Azs = 15, as is usual for the sell-interaction coeflicients,

and by symmetry Ag Az = —gle), where g(z) is the potential produced by a

unit distribution of double layer potential at a distance z on an axis perpendicular
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tor the panel and passing through its centroid, z 15 taken as positive if the point 15
on the side with positive charge. The qualitative behavior for g(z) is like that in
figure 2, it i= antisymmetric with respect to z =10, it has a jump of unit magnituds

(i.e. equal to the double layer density) and continuous derivative at z = O

EI.l; o+ II"E
] p— —la (&)

dg dg
iz D4 dz

==

Then for small € we can put, to AOrst order:

o —Ya + ge ‘
.."1 |:_|ll||':E b g 1;,"'3 qf] {J::I

A= the problem is symmetric abont the center plane, it decouples in a svmmet-

ric/antisymmetric basis. Let:

SEREN

be the change of basis matrix, then the translormed matrix is a diagonal one:

A-5'AS
e 0 (1l.a.b)
0 1 —ge

and the bad conditioning is clear since for ¢ — 0 the first diagonal entry vanishes:

1 — 1
L large ¢ (12}
e

cond| A L'und.[;i]

Let us take a closer look at what matrix S represent=. 1f we take its columns as
double-layer density distributions, then the first column corresponds to oy 2 = 1,
and the second one to — iz 1 [==e figure .'*3]. We must recall that a
double-layer density distribution can be thought of as two single laver distribu-
tions of equal strength but opposite sign in the limit when the distance between
the single laver distributions tends to zero, keeping the product of the distanos
and the strength of the single layer distributions constant. By convention, the nor-
mal vector points from the negative charge side to the positive one for a positive

double layer distribution. Note that this distribution corresponds to a svmmetnc

5
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arrangement of charge about the symmetry plane, whereas the szcond column,
corresponds to a skew-svmmetric one. The coefBicients in matrix A are the in-
teraction coefBcient between these two distributions. It is clear from symmetry
arguments that the symmetric arrangement can not have a non zero interaction
with the skew-symmetric one, and this explains why the off-diagonal entries in A
are null, Now, regarding the diagonal entries, for ¢ — 0 the double laver distribu-
tion of panel 1 tends to cancel that one of panel 2, =0 that the held vanishes to zero.
The Arst diagonal entry in A see equation [11.h), represents the self-interaction
coefficient of this arrangement, and then, vanishes for ¢ — 0. In contrast, in the
skew-symmetric arrangement., the Oeld of each panel tends to reinforce that of the
other and, in the limit, a single panel with the original distribution which i= twice
a= much 15 obtained. The second diagonal entry corresponds to the szli-interaction

coelficient for this charmge distribution and then, it approaches a non-null value for

£ — (0. A= for this very simple I[J"'-.’Fm,., 2) case S—L AS i= diagonal, then:
A — 8 diag(s~ ' As)5™! (13)

where diagiX) stands for a diagonal matrix with the same diagonal entries of X:

Xy o ...
| 0 Xeg 0 .
diag{X) : 0 Xsz 0O .. (14)

It 15 well known that the best preconditioning €@ is that one that most resembles A

for a given computational effort noinverting a linear system for the preconditioning

matrix. [n this simple case we can take Q = A, and from [13):
Q — 8 diag(5~' AS) 57! (15)

and this preconditioning will give a preconditioned matrix which is the identity.
and then i= optimal.

In the next section we will extend this preconditioning to the case with large
number of panels and we will show that it has good preconditioning properties.
Note that the computational effort in solving a system for Q as in [13) is negli-
gible since the change of basis 15 performed by J"'u’w“l.-"ﬁ sums and differences, and
the imversion of the diagonal part of the transformed matrix involves € Npan)

operablons.
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7. Symmetric airfoil:

Consider now the case of a symmetric airfoll discretized with a large number
of panels. It 1= easy to sse that it sufhices to consider the interaction coefhicients
between two pair of panels as shown in Agure 4. As the airfoil s symmetric, panels
2 and 4 are obtained from panels 1 and 3 by reflection about the center plane of
the airfoil. For simplicity, we will assume also that all the panels are parallel to
the svmmetry plane, and that panels 1 and 3 are identical [and then 2 and 4}, but

these assumptions are not essential. T'he structure of the matrix is then:

— L5+ e L —pE 0
i _pe L, — U th (16)
—p 0 —Lha + e L

15 — s} qe 0 — P
A
l

Of course, the 2 % 2 disagonal matrix blocks, are the the same as in the 2-panel
example. Regarding the off-diagonal terms, the in-plane coeflicients like Az, Ag.
Aay and Ays are null, which can be easily shown from (6). whereas the others, like

Ay are Of¢) and negative, sav —pe. Now, we write the change of basis matrix as:

[] 01 0 "
| -
q [] o 1 0 (17)

MNote that, again, the first two columns correspond to symmetric (with respect to
the horizontal plane of symmetry)] distribution of potentials, whereas the last two

correspond to skew-symmetric ones. The tranpsformed matrix is

qE  —p 0 0

- - 0 0
A 0 0 1 — ge il (18)

0 0 Fils 1 — e

and it is verified that the off diagonal 2 % 2 blocks are null. In addition, the
first. block diagonal entry corresponding to interaction coefficients between the
svmmetric distributions has terms ((¢), whereas the second block diagonal entry

corresponding to the skew-symmetric mode is €2{1). The condition number is again

10
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3[1/e) and can be corrected with the preconditioning defined by {15). Effectively:

cond [AQ ') = cond (A8 diag(37' A8 s
cond [ A di.t:np__[‘i]l_ljl

1 —p/fla 1] ]
[—m’rr 1 0 0 w (19)

i [] 1 pef(1 — e
|_ i i pef (1 — qe) 1 J
(1) for e—0

B Non-symmetric airfoil:

In this case the change of basi=s does not decoupls the problem as cleanly a= in
the svmmetric case, but we can still show how the propossd preconditioner gives
an (1) condition number, which is verified afterwards with numerical examples.
A= before, we will consider only two pair of panels. For convenience we make the
following block decomposition of A

- A A,
A e (20
A, A__
where each of the sub-matrices are 2 % 2, and we will assess the order with respect

to € of each of the elements in each of the blocks. This is done in the Appendix

and the conclusions are:

Ay =AY, O (21)
Ay = EAY O (22)
A =AY+ O[] (23)
A =AY | O (24]

where ;54.". 31},
9. Efficiency of the preconditioning:
From (21}, (22), (23) and {24) we can write:

- eA* At n
A~ [:Eilil, ii_] (25)
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It is clear from this expression that cond(A) ~ 1/e {or worse). In contrast, il it is
preconditioned with [15):
AQ" = A [Sdisg(ST'AS)S ']
ASdiag(8 A8 57!
SA diag(A)~!8™

A%, A ding(A* 0 !
s t:e_l‘l _J_:| [E I-.‘"-n-l:: | I:] . - :| E_I I::EEEL—[::I
_-f._ﬁt_l A:_ _[] d_legl::ﬁu__]
[ J-‘n.l p disg{ A%, ! A% dieLnle"__]_| -
e B . —1 " —1 S
uﬂL ldlmn[,"-'h ] A diagiAY_)
s (A% diag(AY ]-' il‘i_dleml[il‘__]_l g1
i 0 A? _diag(Ar )™

and then:

cond [AQ™Y) = O(1) (27)

provided that the argument matrix in (26.d) is non-singular.  Again, the bad
conditioning is causad by the symmetric modes. Due to the tendency to cancel the
feld of the facing panel when ¢ — 0,the field produced by these modes is () and
=0 are the interaction coeflicients [the first matrix column in (25)). The diagonal
preconditioning (in the transformed hasis) successfully corrects this behavior,

10. Explicit expression for real (Npan = 2) meshes:

We give now the explicit expression for the change of basis matrix for the
rage where Ny, = 4. We assume that the panels are numbered so that panel
2n — 1 and 2r are on opposite sides of the airfoill and they collapss to each other
for ¢ — 00, The change of basis matrix 15 [ormed by putting Grst all the 1"'..’1,,1,,"'2

svmmetric modes and after the skew-symmetric ones:

= [er (2]

where I stands [or the identity matrix of [Npan/2) % (Npan/2) and the Kronecker
product @ of two matrices 1= defined by

BiA BpA HBisA -|

A= B [ffg”’h HooA  Hog A {gg}

With respect to the limits of applicability, the mesh on both surfaces have to be

congruent, e, for € — 0 the nodes and elements have to ooincide with each other

12
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and the relative shilt has to normal to the surlace. Bmall deviation or distortions
are acceptable provided that they are small with respect to the average element
size (see figure G).

11. Multipolar preconditioning

This preconditioning somewhat follows the lines of the modal one previously
presented, but it s oriented towards to a single surface, instead. It also has some
resamblance to multignd methods, We will see in the next section how to combine
it with the modal preconditioning. Consider. [or instance, two pair of panels as
shown in figure 7 and let us start with the same change of basis as before eq. {17).
We assume that both panels are coplanar and have the same area. "T'his = true or
nearly true for highly structured meshes, We will discuss later how to extend the
multipolar preconditioning for unstructured ones. We make the same block split
as in (20) and we will analyze each block at a time. Consider an off-diagonal term
in A__ lile:

Azg = Yol Az — Aze — Aay + Auz) (30)

As before, Agy— Ags is the potential produced by a double layer density distribution
of g t1 on panel 1 and g = —1 on panel 2. Suppose now that panels 3 and 4

are [ar from panels 1 and 2, e
| x| = |2a4 — 12| 3= K (31)

where xg4 15 the centroid of the “panel cluster” composed of panels 53 and 4 and

s0 on. Then, we can approximate Ag — Az by a quadrupole expansion:
Iz
Az — Ago = —3ah — r.‘ug[.':.y..z]l I::?ﬂ::l
T

where a i the area of the panels, the system zyz i=s chosen as in igure B, and
2=y 3,!2 I 22, Now, let & be a unit vector going from the centroid of panel 3

tor that of panel 4. Then:
Azq = — Yo[da(xas + Vahs) + Pra(xar — Yohi)]
== Whh(s . Vieag) (33)
Ok fr?)
Note that this is @[{k/r)%] smaller than the typical interaction coefficient between

two panels, which has tvpically a decav rate of a dipole I’J'[]frzj. [n contrast,

13
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the disgonal elements are (2{1). In a similar way, it can be shown that the off-
diagonal elements in ﬁ_u_| and A {— are l’__,-'[f.ll.l"r'i:l. I'he diagonal elements vanish
by symmetry. Finally the element= in ..5” v are basically the same as if we added
each pair of panels in a single larger panel, with two points of collocation, e it
has the same structure of the original matrix & buat it has a dimension which is
smaller by hall. In briasl

A ['U':I}' FO(1/77) Ofh/r5) ] (34)

O R/ QI+ (R
where O(I) + O{1/r*) means that the disgonal elements are O(1) whereas the
other off-diagonal terms are E[ll."'rzjl. The preconditioning we propose is obtained

retaining only the ..EL| ¢ block and the diagonal part of A
Q-5 [A[!I | die:g_l:[‘]d_t__]] s~ (35)
The computational effort in ioverting this conditioning corresponds to inverting
the A i+ block. As this has hall the dimension of the full matrix, the core memory
requirement i one fourth smaller and the CPU time one eight smaller than thoss
for the [ull matrix, which i=s a significant saving., However, panel applications are
limited strongly by the matrix size, and then, we are interested in preconditionings
requiting smaller amounts of memory at the expenss of higher CPL times. This 15
achieved using larger clusters. Conzider a cluster of four panels [bwo such clusters

are shown 1in hgure 9], The change of basis we consider s now:

-1 o0 1 1 1 0 0 07
1 o0 -1 1 -1 o 0
1 o 1 -1 -1 o 0
1 0 -1 -1 1 o 0
S =1 o1 0o o o 1 1 1 (36)
o1 0 o 0 -1 1 -1
o1 0 o o0 1 =1 =1
o0 1 0o o 0o -1 -1 1.

Columns 1, 3, 4 and 5 correspond to double layver distributions on cluster 1 whereas
the others correspond to cluster 2. Column 1 represents a constant distribution
of double layer density so its far feld expansion i=s a dipole, whereas columns 3, 4
and 5 have a null total sum of doubls layer density and their far held expansion

are therefore at least of the order of a quadrapale, see Ogure 10, T'he same ooours,
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respectively, for columns 2, 6, ¥ and 8 for cluster 2. IF we call the Orst two
columns as the “ modes™ and the rest as the “— modes”, and a block split in the
transformed matrix is induced. "'he matrices ..d_l| . ..d_l_| CA p— and A__ have,
respactively, sises of 2 X 2, 22 6, 6 % 2 and 6 x 6. "T'he behavior with respect to
h/r are as before or higher: for instance ,-'L,g corresponds to the interaction of an
octupole on cluster 2 double differentiated at the center of cluster 1. ''his is then
E[F.l.1l.|"rn]. The size of the Ay block in the preconditioning given by (35) is now
2 x 2, one [ourth the size of A

In this way, by recursion, larger and larger clusters can be used and the
dimen=ion of the matrix to be inverted 1= D[J"'u"pm.l,-"r?a:l where m = 2" iz the number
of panelz in a cluster. Consider a cluster of 27 panelzs, then the “in-clusfer” change

of basis matrix Sopsier 15 delined recursively as:

Sc'lua-lr'riﬁnj 5I:‘|IJHlI."|'[E:] = EI:'|IJHI.I."F[2"_I::|
Sumen(2) - L[ 11 (37)
cluster '.,-"'E 1 —1

We split Busier in its first column representing a constant distribution of

double layer density and all the rest representing higher order distributions:

Sciuster | 5 I 5,

cluster cluster |

(38)

where:

5! a=in=biry 1 L1 (39)

oluster

and 8, e 5 a matrix of 2" = (2" — 1) with the rest of the columns. The

change of basis matrix is, then:

E1|1'|:- | 5 I

eluster

I 8, ®I] (40

eluster

where I is an identity matrix of =size J"I."]m,,l.-"iir". Finally we would like to say
a few words on the implementation of the change of basis for large clusters. As
long as not =0 large clusters are usad, the cost of a change of basis is negligible.
If very large clusters are vsed, and a “paive” implementation {i.e. as a literal

matrix-vector product) is used, the cost could affect performance. However, this
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