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A Finite Element Method for Surfae Di�usion 2surfae of the �lm. This morphologial instability of the free surfae may even-tually lead to rak formation and frature, an issue of paramount importanein Materials Siene; see for instane [1, 9, 25℄ and the list of referenes in [7℄.The dynamis of the free surfae �(t) � Rd is governed by the highly non-linear PDE V = ��S(�+ "); (1.1)where d = 2; 3, V and � are the (salar) normal veloity and mean urvature of �,respetively, �S = divS rS is the Laplae-Beltrami operator and " is the elastienergy density of the bulk 
(t) enlosed by �(t). In this paper we onsider theredued purely geometri model for whih " is a given foring funtion. Our goalis to present a novel variational formulation for parametri surfaes based on asemi-impliit time disretization, whih requires no expliit parametrization ofthe surfae and yields a linear system of ellipti PDE to approximate at eahtime step. We then develop a �nite element method (FEM) and disuss meshdistortion and adaptivity. This endeavor may be viewed as a building bloktowards solving the fully oupled system.We reall now two fundamental properties of motion by surfae di�usion.The �rst one is onservation of volume for losed surfaes:ddt j
(t)j = Z�(t) V = � Z�(t)�S(�+ ") = Z�(t)rS(�+ ") � rS1 = 0: (1.2)The seond property is area derease for " = 0 and suitable boundary onditions:ddt j�(t)j = � Z�(t) V � = � Z�(t) jrS�j2: (1.3)In fat motion by surfae di�usion is formally the H�1 gradient ow for the areafuntional (see [9℄). It is desirable to preserve these essential properties underdisretization, as the proposed FEM below does. This method also handles twostriking features whih an our for surfae di�usion in �nite time: a surfaewhih starts as a graph may ease to be so [17℄ (see Figure 1.1), and a losedembedded hypersurfae may sel�nterset [19℄ (see Figure 1.2).
Figure 1.1: Evolution of a urve that eases to be a graph in �nite time.A number of issues arise, from existene, well posedness and regularity toalgorithm design for simulating (1.1), perhaps enforing (1.2) and (1.3). In [18℄,Esher et. al. proved (loal) existene, regularity, and uniqueness of solutionsprovided � = 0 and the initial surfae is suÆiently smooth. They also provedthat if the initial surfae is embedded and lose to a sphere, the solution exists
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Figure 1.2: Evolution of an embedded urve whih sel�ntersets in �nite time.globally and onverges exponentially fast to a sphere. A fundamental math-ematial obstrution to further progress arises from the 4th order nonlinearoperator �S�, whih rules out maximum priniple tehniques.A spae-time �nite element method for axially symmetri surfaes is pre-sented by Coleman et al. in [11℄, along with several stability properties and veryinteresting dynamis, some not predited by linearized stability. More reently,Dekelnik et al. provided an error analysis [15℄ for the axially symmetri ase.The graph ase was onsidered by B�ansh et al. [7℄ where an error analysis isderived for the spae disretization, and this analysis was extended by Dek-elnik et al. [14℄ to a fully disrete method for anisotropi surfae di�usion ofgraphs.In this artile we present a novel �nite element formulation for surfae dif-fusion of more general surfaes, whih requires no expliit parametrization. Inontrast to �nite di�erene approahes [10, 24℄, we exploit the underlying vari-ational struture and derive an intrinsi formulation, whih avoids writing (1.1)in loal oordinates.Basi di�erential geometry reveals that the surfae Laplaian of the positionvetor ~X on a surfae �(t) is the vetor urvature ~�, namely �S ~X = ~� and~� is a vetor normal to �(t) with magnitude equal to the sum of the prinipalurvatures. This identity is the hief idea of [16℄ for designing a �nite elementmethod for mean urvature ow of parametri surfaes. However, we also needto deal with the salar urvature � in the present ontext and annot workdiretly with the urvature vetor ~�. We propose instead to use four unknowns,namely salar urvature �, urvature vetor ~�, normal veloity ~V , and (salar)normal veloity V . Multipliation by the unit normal vetor ~� to �(t), pointingoutward of the bulk enlosed by �(t) is further used to onvert from salar tovetor quantities and vie versa, thereby leading to the following four equations:~� = �S ~X; � = ~� � ~�; V = ��S(�+ "); ~V = V ~�: (1.4)This onversion, trivial when �(t) is smooth, annot be enfored pointwise when



A Finite Element Method for Surfae Di�usion 4�(t) is polyhedral beause ~� is disontinuous and so would be � aording to(1.4). The relation between salars and vetors will later be imposed weakly (orin average), whih turns out to be essential. To relate position ~X and veloity~V , we resort to a semi-impliit time disretization: all the geometri quantitiesand the di�erential operator �S are evaluated on the urrent boundary �n,whereas the unknowns ~�, �, V , and ~V are treated impliitly. If �n := tn+1 � tndenotes the (variable) time-step from time tn to tn+1, then we ould write~Xn+1 = ~Xn + �n~V n+1: (1.5)Consequently, (1.4) beomes the following system of linear ellipti PDE on �n:~�n+1 � �n�S ~V n+1 = �S ~X n;�n+1 � ~�n+1 � ~� n = 0;V n+1 +�S�n+1 = ��S"n;~V n+1 � V n+1~�n = 0: (1.6)We now list several properties of and issues pertinent to this system.� Mixed method: the operator splitting of (1.6) an be viewed as a mixed for-mulation involving only seond and zero order operators.� Parametrization: the formulation of (1.6), and thereby its spae disretiza-tion, does not require an expliit parametrization of �n; one ~V n+1 has beenomputed then (1.5) an be used to update the surfae to �n+1.� Avoiding C1 elements: sine the operators involved are of either order 2 or 0,we an use C0 pieewise polynomials of any degree to approximate (1.6); seex2. Therefore, we do not need C1 elements even to approximate urvature �.This simpli�es the implementation without ompromising auray� Boundary onditions: in the present artile we onsider either losed sur-faes or natural boundary onditions for whih integration by parts yields noboundary terms. This restrition is for ease of presentation only, and helpshighlight the novel variational formulation of the problem. But using theexibility of �nite elements, other boundary onditions an be onsidered aswell, with slight hanges in the implementation. Di�erent, physially relevantboundary onditions will be addressed in a forthoming artile, where we willalso takle the oupling of surfae di�usion with elastiity in the bulk.� Conservation: testing the third equation in (1.6) with � = 1, and integratingby parts we realize that volume is preserved in the sense that R�n V n+1 = 0,whih mimis (1.2) (observe that also R�n ~�n+1 = 0.) Multiplying the sameequation by � = �n+1 we prove a disrete analog of (1.3); see Theorem 2.1.� Solvability: we show in x4 that the linear algebrai system ensuing from (1.6)is uniquely solvable by examining a Shur omplement approah for the sin-gle unknown V . This yields a symmetri and positive de�nite matrix, thusallowing for an eÆient solution tehnique via preonditioned CG; see x5.



A Finite Element Method for Surfae Di�usion 5� Mesh smoothing: the geometri ow by surfae di�usion may lead to meshdistortions. We propose in x5.2 a proedure to maintain shape regularitywhih is volume preserving. This proedure has some independent interest.� Time adaptivity: large timesteps may yield large hanges of nodal positionswith respet to neighboring nodes, and thus ontribute to mesh distortion.On the other hand, large timesteps may be desirable when urvature hangesslowly and the evolution is thus slow. We propose in x5.3 an e�etive timestepontrol mehanism.� Spae adaptivity: aurate desription of a surfae with minimal number ofdegrees of freedom �ts quite naturally within the �nite element framework.We propose in x5.4 a simple strategy to equidistribute pointwise errors in anintrinsi metri.� Topologial hanges: the formulation (1.6) annot handle topologial hangeswithout an a priori lassi�ation of possible singularities, whih is not yetavailable for surfae di�usion. The proposed method provides an eÆientmeans for studying singularities as well as basi properties of the geometriow, as explored in x5. We refer to [10, 24℄ for level set methods and to [8℄ forCahn-Hilliard models with degenerate mobility, whih are in general apableof handling topologial hanges. EÆient omputation of surfae di�usion isstill under investigation for level set methods [24℄, and is muh less developedfor di�use interfae models. Both approahes are rather sti�, whih justi�esthe searh for suitable semi-impliit time disretizations [24℄.The rest of this paper is organized as follows. We present a �nite element dis-retization of (1.6) in x 2, together with disrete versions of (1.2) and (1.3). Wedisuss the ensuing linear algebrai problem in x 3 along with a Shur omple-ment approah to its solution in x 4. We doument the performane of our FEMin x 5 via several simulations, some exhibiting pinh-o�, sel�ntersetions, andmushroom formation in �nite time. We disuss along key numerial issues suhas mesh regularization to avoid mesh distortion, and time and spae adaptivityto inrease auray while reduing omplexity. We �nally draw onlusions inx 6.2 Finite Element Disretization and StabilityWe now disuss the �nite element disretization of (1.6) along with a ouple ofproperties. To simplify the notation we hereafter drop the sripts n and n+ 1.Let T be a regular but possibly graded mesh of triangular �nite elementsover the surfae � whih, from now on, is assumed to be polyhedral. Let T 2 Tbe a typial triangle and let ~�T = (�iT )di=1 be the unit normal to T pointingoutwards. We denote by ~� the outward unit normal to �, whih satis�es ~�jT =~�T for all T 2 T , and is thus disontinuous aross interelement boundaries. Letf�igIi=1 be the set of anonial basis funtions of the �nite element spae V(�)of ontinuous pieewise polynomials Pk of degree � k over T (k � 1); we thus



A Finite Element Method for Surfae Di�usion 6have a onforming approximation of V(�). We note that V(�) � H1(�) andalso set ~V(�) := V(�)d.To derive a weak formulation, we multiply the equations (1.6) by test fun-tions � 2 V(�) and ~' 2 ~V(�) and use integration by parts for the seond orderoperator �S . Denoting by h�; �i the L2-inner produt over �, we arrive at thefully disrete problem: seek ~V ;~� 2 ~V(�), V; � 2 V(�), suh thath~�; ~'i+ � DrS ~V ;r~'E = �DrS ~X;rS ~'E 8 ~' 2 ~V(�); (2.1)h�; �i � h~� � ~�; �i = 0 8 � 2 V(�); (2.2)hV; �i � hrS�;rS�i = hrS";rS�i 8 � 2 V(�); (2.3)D~V ; ~'E� hV; ~' � ~�i = 0 8 ~' 2 ~V(�): (2.4)We �rst note that the relations (2.2) and (2.4) between salars and vetorsare imposed weakly and not pointwise; this allows for the 4 unknowns to be on-tinuous whereas ~� is disontinuous. This is a distintive aspet of our approah.Seondly, we see that taking � = 1 in (2.3) yields volume onservation:Z�n V n+1 = 0 8 0 � n � N � 1: (2.5)Sine the integral in omputed over �n, and not �n+1, the volume hangesslightly due to trunation error. The hange relative to the initial volume neverexeeds 1.3% in our simulations, some rather singular (see Figure 5.11). Wethirdly establish a result onerning the unonditional stability of the sheme,whih mimis the area derease expression (1.3) for " = 0.Theorem 2.1 (Unonditional Stability). Let (V n; �n; ~V n; ~�n)Nn=1 be the solu-tion of either the semidisrete equations (1.6) or of the fully disrete equations(2.1){(2.4) and let �n be the orresponding embedded surfaes. Then for all1 � m � N we havej�mj+ 12 m�1Xn=0 �n Z�n jrS�n+1j2 � j�0j+ 12 m�1Xn=0 �n Z�n jrS"(tn)j2: (2.6)Proof. We start by testing (2.3) with � = �n+1, thereby obtaining
V n+1; �n+1� = 
rS�n+1;rS�n+1�+ 
rS"(tn);rS�n+1� :Combining (2.4) with ~' = ~�n+1 and (2.2) with � = V n+1, we easily arrive atD~V n+1; ~�n+1E = 
V n+1; ~�n+1 � ~�n� = 
�n+1; V n+1� ;whene D~V n+1; ~�n+1E = 
rS�n+1;rS�n+1�+ 
rS"(tn);rS�n+1� : (2.7)



A Finite Element Method for Surfae Di�usion 7On the other hand, testing (2.1) with ~' = �n~V n+1 and observing that, aordingto (1.5), �n~V n+1 = ~Xn+1 � ~Xn yields�n D~V n+1; ~�n+1E+ DrS ~Xn+1;rS( ~Xn+1 � ~Xn)E = 0: (2.8)Multiplying (2.7) by �n and substituting into (2.8) we infer thatDrS ~Xn+1;rS( ~Xn+1 � ~Xn)E+ �n 
rS�n+1;rS�n+1� = ��n 
rS"(tn);rS�n+1�Applying Lemma 2.2 below, we an further estimatej�n+1j � j�nj+ �n Z�n jrS�n+1j2 � �n Z�n jrS"(tn)j2:Summing up over n, from 0 to m� 1, yields the asserted result.Lemma 2.2 (Area inequality [2℄). Let d = 2; 3 and � be a d� 1{dimensional,losed, regular C0;1{manifold embedded in Rk , k 2 N. Moreover let ~Y : � !rg(�) � IRk be a homeomorphism with D~Y ; (D~Y )�1 2 L1. Then, if ~X denotesthe position vetor of the integration variable, the following inequality holds:Z� rS ~Y � rS(~Y � ~X) � j~Y (�)j � j�j:The proof of the above lemma is rather tehnial and an be found in [2℄.3 Matrix FormulationWe now turn our attention to an equivalent matrix formulation to the fullydisrete problem (2.1){(2.4). Given the matrix entriesMij := h�i; �ji ; ~Mij :=Mij ~Id; ~Nij := 
�i; �j�k�dk=1 ; (3.1)Aij := hrS�i;rS�ji ; ~Aij := Aij ~Id; (3.2)with ~Id 2 Rd�d being the identity matrix and (~ek)dk=1 the anonial basis of Rd ,the mass and sti�ness matries areM := (Mij)Ii:j=1; ~M := ( ~Mij)Ii:j=1; ~N := ( ~Nij)Ii:j=1; (3.3)A := (Aij)Ii:j=1; ~A := ( ~Aij)Ii:j=1: (3.4)We point out that ~M; ~A and ~N possess matrix-valued entries and therefore thematrix-vetor produt is understood in the following sense~M ~V = � IXj=1 ~Mij ~Vj�Ii=1;



A Finite Element Method for Surfae Di�usion 8eah omponent ~Vi of ~V , as well as eah of ~M ~V , is itself a vetor in Rd .We use the onvention that a vetor of nodal values of a �nite elementfuntion is written in bold fae: V = (Vi)Ii=1 2 V := RI is equivalent toV = PIi=1 Vi�i 2 V(�). We introdue the subspae X (�) of V(�) of funtionswith mean value zero, and the orresponding subspae X of V of vetors Vsatisfying V �M1 = 0 with 1 := (1)Ii=1. We then note thatV = IXi=1 Vi�i 2 X (�) , V = (Vi)Ii=1 2 X: (3.5)We are now in a position to write the matrix formulation of (2.1){(2.4).Upon expanding the unknown salar funtions V 2 X (�); � 2 V(�) and vetorfuntions ~V 2 ~V(�); ~� 2 ~X (�) in terms of the basis funtions and setting � = �iand ~' = �~ek, we easily arrive at(2.1)  � ~A~V + ~M ~K = � ~A ~X; (3.6)(2.2)  MK � ~NT ~K = 0; (3.7)(2.3)  �AK +MV = E; (3.8)(2.4)  ~M ~V � ~NV = ~0; (3.9)where E = (hrS�i;rS"i)Ii=1. This system an be written equivalently in blok-matrix form as follows: �nd ~V 2 ~V;K 2 V; ~K 2 ~X;V 2 X suh that2664� ~A 0 ~M 00 �A 0 M~M 0 0 � ~N0 M � ~NT 0 37752664 ~VK~KV 3775 = 2664� ~A ~XE~00 3775 : (3.10)We disuss the solvability of (3.10) and propose an algorithm for its solution inx4. We point out that the mesh T an be suitably graded and the polynomialdegree k � 1 is arbitrary, even though we restrit ourselves to pieewise linearsin the simulations of x5. This exibility is quite important to handle ompliatedgeometries and possible pinh-o� singularities. We also stress that ~A, ~M neednot be formed and stored in pratie sine they an be easily obtained from A,M .4 Shur Complement ApproahConsider the following generi vetor equation with a (possibly singular) squareblok A: �A BC D��UQ� = �FG� :Let A be symmetri with (nontrivial) kernel ker(A). Then the range Y of Ais the orthogonal omplement of ker(A). Let S : Y ! Y be the inverse of A



A Finite Element Method for Surfae Di�usion 9restrited to Y: SA = AS = Id on Y. If P denotes the orthogonal projetiononto ker(A), we haveSAV = V � PV = (Id� P )V 8V 2 RI = V; (4.1)where Id � P is the orthogonal projetion onto Y. The Shur omplementequation for Q then reads(�CSB +D)Q+ CPU =G� CSF : (4.2)Solvability of this system depends on the struture of the two terms on the lefthand-side of (4.2). We intend to apply this splitting to (3.10), whih involvesdealing with the upper left blok ontaining ~A and A on the diagonal.Sine the kernel Z of A in (3.4) is the one dimensional subspae of V =RI spanned by 1 = (1)Ii=1, then the range Y = Z? of A is the orthogonalomplement of Z with respet to the standard Eulidean inner produt in RI .If X denotes the spae de�ned in (3.5), X and Y are related as follows:V 2 X , MV 2 Y: (4.3)Let S : Y ! Y be the inverse of A restrited to Y, and let P : V ! Z be theorthogonal projetion into Z, thereby satisfying (4.1) withPV = 11T11TV 1 = 1
 1I V 8 V 2 V: (4.4)We now would like to apply (4.2) to (3.10) with vetors U = [~V ;K℄Tand Q = [ ~K;V ℄T . Let us assume momentarily that there exists a solution[~V ;K; ~K;V ℄T to (3.10). Then from (4.2) ~V , K, ~K, V satisfy� 1� ~M ~S ~M ~N~NT �MSM� � ~KV � = �� 1� ~M ~S ~A ~X + ~M ~P ~VMPK �MSE � : (4.5)We observe that both ~S ~A ~X and SE make sense beause ~A ~X 2 ~Y and E =(hrS�i;rS"i)Ii=1 2 Y; this ould be viewed as a ompatibility ondition. Multi-plying (3.6) and (3.8) by ~1 and 1, respetively we see that both omponents ofQ satisfy ~K 2 ~X and V 2 X or, in view of (4.3),~M ~K 2 ~Y; MV 2 Y: (4.6)Sine the upper left blok of (4.5), ~M ~S ~M : ~X ! ~M~Y, is nonsingular withinverse ~M�1 ~A ~M�1, we an apply (4.2) again to arrive at�� ~NT ~M�1 ~A ~M�1 ~N +MSM�V +MPK = � ~NT ~M�1 ~A ~X +MSE: (4.7)To deouple (4.7) we �rst eliminate the term MPK whih ats like a La-grange multiplier to the onstraint V 2 X. We ahieve this by the orthogonalprojetion � onto X: � = Id� M1
M1M1T �M1 : (4.8)



A Finite Element Method for Surfae Di�usion 10Sine MPK 2 spanfM1g = X?, upon multiplying (4.7) by � we obtain the�nal form of the Shur omplement, namely the redued equation��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = ��� ~NT ~M�1 ~A ~X +MSE�; (4.9)beause �V = V . This reasoning leads to the following solvability result.Theorem 4.1 (Solvability). There exists a unique solution [~V ;K; ~K;V ℄T ofsystem (3.10), the omponents of whih an be obtained by sequentially solvingthe following (uniquely solvable) systems:V 2 X : ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = �F ; (4.10)~V 2 V : ~M ~V = ~NV ; (4.11)~K 2 V : ~M ~K = � ~A ~X � � ~A~V ; (4.12)K 2 V : MK = ~NT ~K; (4.13)where F = � ~NT ~M�1 ~A ~X +MSE.Proof. By the argument preeding the statement of the theorem we onludethat if [~V ;K; ~K;V ℄T is a solution to (3.10) then ~V , K, ~K, V are solutionsto (4.10){(4.13), respetively.The reiproal part of the proof onsists of proving that systems (4.10){(4.13) have unique solutions and they onstitute a solution of (3.10).Let us �rst hek the solvability of systems (4.10){(4.13). It is easy to verifythat the operator �MSM� : X ! X is symmetri and positive de�nite, and� ~NT ~M�1 ~A ~M�1 ~N� : X! X is symmetri and positive semide�nite. Thereforethe matrix ensuing from (4.10) is positive de�nite and sine the right handside of the equation belongs to X, this symmetri system has a unique solutionV 2 X. Systems (4.11){(4.13) involve mass matries, whih are positive de�nitein V = RI , existene and uniqueness are thus ensured.Let us now verify that the solutions to (4.10){(4.13) onstitute a solutionto (3.10). Sine �V = V , by (4.10) and (4.11) we have that�� ~NT ~M�1 ~A~V +�MSMV = ��� ~NT ~M�1 ~A ~X +MSE�;or �MSMV = ��� ~NT ~M�1� ~A ~X + � ~A~V �+MSE�:Hene (4.12) implies �MSMV = �� ~NT ~K +MSE�, and (4.13) yields�MSMV = �M�K + SE�:Sine � is the projetion onto X, MSMV �M�K + SE� 2 X? = spanfM1g,we infer thatM�1(MSMV �M�K + SE�) = SMV � �K + SE� 2 Y? = spanf1g:



A Finite Element Method for Surfae Di�usion 11Therefore, sine Y? = ker(A),A�SMV � �K + SE�� =MV �AK �E = 0;whih oinides with the seond equation in (3.10). The rest of the equationsin (3.10) are immediately dedued from (4.11){(4.13).The method atually implemented in ALBERT onsists of �rst solving forV using (4.10), next solving (4.11) for ~V and �nally updating ~X via ~X + � ~V .5 Implementation and SimulationsIn this setion we desribe the implementation of (2.1){(2.4) together with sev-eral enhanements. The latter are mesh regularization, spae-time adaptivityand ontrol of element angles. They are motivated through examples showingthe neessity of takling suh issues, and the bene�ial e�et of our approahto solving them. Throughout this setion, we take " � 0 in the simulations,beause for the time being we are mainly interested in the e�et of plain surfaedi�usion. Computations with given ", as well as the oupling with elastiity inthe bulk 
, will be the subjet of future work.5.1 ImplementationThe implementation was performed within the �nite element toolbox ALBERT[22, 23℄, after adding suitable data strutures to handle surfaes in R3 and urvesin R2 . The basi algorithm onsists of the following steps:Algorithm 5.1 (Basi Algorithm).1. Take a mesh representing the initial surfae2. Choose a timestep �3. Build the matries A, M and ~N ( ~A, and ~M are notreally neessary)4. Solve (4.10) and (4.11)5. Update ~X  ~X + � ~V .6. Go to step 3Notie that the matries need to be re-built in eah timestep beause theydepend on the urrent surfae. In step 4 we solve the following linear systems:V 2 X : ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��V = �� ~NT ~M�1 ~A ~X;~V 2 RI : ~M ~V = ~NV :We solve both of them by a onjugate gradient (CG) method. Solving theseond one is trivial sine we only have to invert a mass matrix whih has



A Finite Element Method for Surfae Di�usion 12bounded ondition number. To solve the �rst one, in eah iteration of CGwe have to ompute a matrix-vetor produt for the matrix ensuing from thissystem, namely ��� ~NT ~M�1 ~A ~M�1 ~N +MSM��, where the matrix S is theinverse of A restrited to ker(A)?. We do not ompute this inverse expliitly,but we solve a system of the form A� = b using another CG iteration (innerloop). Sine A is a disretization of a Laplae operator, we use a hierarhialbasis preonditioner whih greatly improves the performane of the inner loop.The design and study of e�etive preonditioners for the full system is still openand we leave it for a forthoming artile. This issue is ruial to speed up theomputations.As a �rst example we show in Figure 5.1 the evolution of a unit ube towarda ball with the same volume. As an be seen in Figure 5.1 the geometri ow by
t = 0 t = 2� 10�4 t = 4� 10�4 t = 8� 10�4 t = 16� 10�4Figure 5.1: Evolution of a unit ube by surfae di�usion. All the surfaes are repre-sented by 768 triangles and 386 verties. The (uniform) timestep used in the ompu-tations is � = 1� 10�4.surfae di�usion is not as gentle as the orresponding mean urvature ow [16℄,and leads to severe mesh distortions. Even if our formulation of x2 allows ornersand edges, whih are rather singular for surfae di�usion, they give rise to fastnode motion and mesh distortion. This is illustrated by the reation of ears
t = 0 t = 2� 10�4 t = 4� 10�4 t = 8� 10�4 t = 16� 10�4Figure 5.2: Pathologial ear formation in the evolution of a unit ube by surfaedi�usion. All the surfaes are represented by 3072 triangles and 1538 verties. Earformation is the fatal manifestation of mesh distortion and is aused by lustering ofnodes, rossing of element sides and folding, and is due to an inadequate tangentialmotion. It is ured with mesh regularization and timestep ontrol. The (uniform)timestep � = 1� 10�4 used in the omputations is too large for the underlying mesh.during the evolution of the same ube when represented with a �ner mesh; seeFigures 5.2 and 5.3. This is learly a numerial artifat and annot be ured bymesh re�nement and/or oarsening.
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t = 0 t = 1� 10�4 t = 2� 10�4 t = 3� 10�4 t = 4� 10�4Figure 5.3: Steps toward the pathologial formation of ears. Zoom into a vertex ofthe initial ube. After 6 timesteps some triangles ollapse into points and others intosegments, thereby making the mesh degenerate and produing numerial artifats. Thesurfaes are represented by 3072 triangles and 1538 verties. The (uniform) timestep� = 1�10�4 used in the omputations is too large for the underlying mesh resolution.There are two reasons that ontribute to mesh distortion: lustering of nodesin regions of high veloity (along with rossing of elements sides and folding),and large timesteps. The �rst issue is due to the absene, in our formulation ofx 2, of a geometri law for tangential ow to maintain mesh quality; the ureis thus mesh regularization and is disussed in x5.2. On the other hand, largetimesteps yield hanges of nodal positions tangential to the surfae whih mayexeed the loal meshsize and also lead to mesh distortion; a ure is timestepontrol and is disussed in x5.3.5.2 Mesh RegularizationMesh regularization is a proedure to maintain mesh quality, namely to keepall angles on element stars approximately of the same size; a star !z is thesupport of a basis funtion orresponding to node z. It is known that goodapproximability of the surfae and the PDE on it hinges on avoiding meshdistortion. Mesh regularization is thus a redistribution of nodes on the surfae,whih entails a tangential ow and does not a�et the normal motion.Sine surfae di�usion is a geometri evolution that preserves the volume ofthe bulk 
(t) enlosed by �(t), we present a volume preserving mesh regular-ization algorithm whih onsists of a Gauss-Seidel type iteration:Algorithm 5.2 (Regularization sweep).For eah node z of the mesh do the following:1. Compute a normal ~�z to the node z.2. Compute a weighted average ẑ of all the verties thatbelong to the star entered at z.3. Consider the line that passes through ẑ in thediretion of the normal ~�z. Replae the node z by theonly point belonging to this line that keeps unhangedthe volume of the bulk.We now desribe eah step of this proedure in detail. In the �rst step, wetake the normal to the node to be the weighted average of the normals of the



A Finite Element Method for Surfae Di�usion 14elements sharing that node. The weight is given by the size jT j of the elementover the size of the star. That is, for eah node z, the normal ~�z is de�ned by~�z = 1PT2Tz jT j XT2Tz ~�T jT j;where Tz denotes the set of all the elements of the mesh that ontain z, andthus form the star !z, and ~�T is the outer normal of the element T .In the seond step, we take ẑ to be the average of the baryenters of all theelements in the star !z: ẑ = 1#(Tz) XT2Tz Pdi=1 ziTdwhere ziT denotes the i-th node of the element T . The result thus oinideswith a weighted average of all the nodes in !z.PSfrag replaements bulkmidpoint ofmidpoint of the elementthe element ẑ new vertex ~zvertex toupdate z diretion of normal ~�z
Figure 5.4: Volume preservingmesh regularization in 2d. Thearea of the shaded triangle o-inides with that of the trianglemarked with thik lines. Then thearea of the whole bulk remains un-hangedThe implementation of the third step depends on the dimension. In 2dthe situation is simple. Given that the bulk is the interior of a losed polygonalurve (mesh), onsider a node z and its two adjaent nodes as depited in Figure5.4. The diretion ~�z turns out to be perpendiular to the segment joining theadjaent nodes. The idea is then to ompute the new vertex ~z = ẑ + t~�z,that will replae z, in suh a way that the area of the triangles with verties z(triangle with thik lines) and ~z (shaded triangle) is the same (see Figure 5.4).To perform the third step in 3d we �rst observe the fat that, given a �xedpoint �z, the volume of the enlosed region is proportional to the sum of elementontributions vT de�ned as follows:vT = (z1T � �z)� (z2T � �z) � (z3T � �z);where ziT , i = 1; 2; 3 denote the verties of the (surfae) element T followinga positive orientation with respet to the outer normal. The idea is now toompute the new vertex ~z = ẑ+ t~�z, that will replae z, in suh a way that theontribution to the volume of the modi�ed star is the same as that of the originalstar. We take �z := ẑ in the de�nition of vT above, and number the verties ofeah element in suh a way that z = z1T . Then the volume ontributions of theold and the new star will be equal ifXT2Tz(z � ẑ)� (z2T � ẑ) � (z3T � ẑ) = XT2Tz(~z � ẑ)� (z2T � ẑ) � (z3T � ẑ):



A Finite Element Method for Surfae Di�usion 15Sine ~z � ẑ = t~�z, this equation will hold fort = PT2Tz (z � ẑ)� (z2T � ẑ) � (z3T � ẑ)PT2Tz ~�z � (z2T � ẑ) � (z3T � ẑ) :The bene�ial e�et of this mesh regularization is reeted in the simulationdepited in Figure 5.5, whih displays the evolution of the unit ube representedinitially by the same �ne mesh of Figure 5.2. No ear formation is now observed.
t = 0 t = 2� 10�4 t = 4� 10�4 t = 8� 10�4 t = 16� 10�4Figure 5.5: Evolution of a unit ube by surfae di�usion using mesh regularization.After eah timestep, the mesh regularization sweep is applied twie to the surfae toure mesh distortions. All the surfaes are represented by 3072 triangles and 1538verties. The timestep used in the omputations is � = 1� 10�4, as in Figure 5.2.This simple minded mesh smoothing algorithm has some intrinsi meritswhih, in partiular, make it instrumental for mesh improvement and updateeven in dealing with the volume enlosed by �n (the bulk).5.3 Timestep ControlThe timestep ontrol is twofold. First it is meant to prevent large timesteps forwhih the position hange of a node, tangential to the surfae and relative to thatof neighboring nodes, is larger than the element size. This may be responsiblefor mesh distortion and even node rossing. The seond objetive is to allowlarge timesteps when the normal veloity does not exhibit large variations, andto fore small timesteps otherwise. The very disparate time sales that anbe observed in all the evolutions presented in this setion, whih are typial offourth order problems, suggest that timestep ontrol represents an importantimprovement in auray while maintaining a moderate number of timesteps.To determine a riterion for timestep ontrol, we argue as follows. Let z0be a generi node and let z be an adjaent node, both belonging to an elementT . In view of (1.5), their relative position hange is �(~V (z0) � ~V (z)). If ~�T isany unit tangent vetor to T , then the relative position hange tangential to �is given by � ��(~V (z0)� ~V (z)) � ~�T �� � C�hT jrS ~VT j;with C > 0 a mesh independent onstant. We would like this quantity not toexeed a fration of the loal meshsize hT , whih thereby leads to� jrS ~VT j � �t 8 T 2 T :
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t = 0 t = 0:784 � 10�5 t = 0:3496 � 10�4

t = 0:26722 � 10�3 t = 0:26168 � 10�2 t = 0:47378 � 10�1
t = 0:10891 t = 0:17272 t = 0:25706Figure 5.6: Evolution of a 4�1�1 prism toward a ball with equal volume using meshregularization and timestep ontrol. Solutions obtained every 9 adaptive timesteps.All the surfaes are represented by 2304 triangles and 1154 verties. The mesh reg-ularization sweep was run two times after eah timestep, and the parameters of thetimestep ontrol routine were �t = 0:1, �min = 1� 10�7, �max = 5� 10�3.This gives rise to the following algorithm, whih uses input parameters �t; �minand �max > 0 (in all our simulations �t = 10�1; �min = 10�7; �max = 5� 10�3).Algorithm 5.3 (Timestep Control).1. Compute the quantity � = �tmax jrS ~V j2. If � � � update ~X  ~X + � ~V3. Otherwise neglet the omputation and keep ~X as is.4. In any ase let the andidate for � be�� = (� if 0:9� � � � �0:9� otherwise5. Set � =8><>:�min if �� < �min�� if �min � �� � �max�max if �max < ��:In Figure 5.6 we show the ombined e�et of mesh regularization together



A Finite Element Method for Surfae Di�usion 17with timestep ontrol in the evolution of a 4 � 1 � 1 prism. The pitures or-respond to the solution obtained every 9 adaptive timesteps. It is apparentfrom the pitures that the timestep ontrol not only prevented mesh distortion,but also allowed for big timesteps where the evolution was slow, and foredsmall timesteps at the beginning, when the surfae was too rough and thetimesale very fast. Sine the pitures orrespond to the solution obtainedevery 9 timesteps, we observe that the timestep ontrol mehanism was able toapture the very disparate timesales present due to the fourth order nature ofthis problem.On the other hand, Figure 5.6 reveals unneessary lustering of nodes insmooth regions and lak of resolution in other regions. This is takled by spaeadaptivity and is disussed next.5.4 Spae AdaptivityIn this setion we present a method for re�ning/oarsening meshes that de�ne asurfae �, with the purpose of having an aurate representation of � in the sensethat the density of nodes should orrelate with the loal variation (regularity) of�. We annot rely on parametrizations to quantify regularity of � beause thisonept would not be invariant under reparametrization. Therefore, we need anintrinsi measure of regularity suh as the seond fundamental form rS~� andnot just its trae, namely the mean urvature � whih is at our disposal.We thus argue as follows. Let T1; T2 2 T be two adjaent elements with unitnormals ~�1; ~�2, whih share the side (node in 2d) S. We ould ompute rS~� as��rS~��� � ��~�1 � ~�2��hS � �ShS ;where hS stands for the loal meshsize at S and �S for the angle between ~�1 and~�2. Sine the pointwise auray of the mesh in representing � is proportionalto h2S jrS~���, we end up with the following test for mesh qualityhS�S � �s;where �s is a given parameter. If we add re�nement and oarsening parametersR; C > 0, we end up with the following algorithm.Algorithm 5.4 (Mesh Adaptation).1. Compute all �S and let AT :=PS�T hS�S, 8T 2 T .2. Let Amax be the maximum AT.3. If Amax > �s, mark for refinement all the elements Thaving AT > RAmax.4. Perform d� 1 bisetions to every marked element.5. Mark for oarsening all the elements T havingAT < C Amax.6. Coarsen the marked elements.7. If the mesh was modified go to step 1.



A Finite Element Method for Surfae Di�usion 18The e�et of mesh adaptation is twofold: �rst, it helps us get a betterresolution lose to edges and angles, and seondly, it redues the omputingtime by dereasing the number of degrees of freedom in smooth regions. InFigure 5.7 we show the evolution of the 4� 1� 1 prism presented before usingnow this adaptation routine; we took �s = 0:1, C = 0:3, R = 0:7. The initialmesh is that of Figure 5.6 after applying Algorithm 5.4. We used the same meshregularization and timestep ontrol as before. Additionally, after eah timestep,we ran the adaptation algorithm followed by two mesh regularizations. Thesaving in spatial degrees of freedom is apparent by omparing Figure 5.7 withFigure 5.6, for whih 1154 verties were employed throughout.
t = 0 (1250) t = 0:09710�10�3 (1090) t = 0:72838 � 10�3 (634)

t = 0:02079 (1178) t = 0:16740 (754) t = 0:31914 (520)Figure 5.7: Evolution of a 4 � 1 � 1 using timestep ontrol, mesh regularizationand mesh re�nement/oarsening. Between parentheses we indiate the number ofdegrees of freedom (verties) used to represent the surfae and should be omparedwith 1154 for Figure 5.6 without spae adaptivity. The parameters for the meshre�nement/oarsening routine were �s = 0:1, C = 0:3, R = 0:7.To further investigate the nonlinear dynamis of surfae di�usion we om-pute the evolution of a longer prism, and we verify numerially that surfaedi�usion an lead to pinh-o� depending on the aspet ratio of the initial sur-fae, see Figures 5.8{5.10. During the evolution toward this topology hange ofthe surfae, some elements degenerate, espeially those lose to the pinh-o�,produing in turn some loss of auray. Sine it is known that wide angles areresponsible for loss of auray, we introdue in x5.5 a proedure to ontrol wideangles.5.5 Angle Width ControlThe routine for ontrolling the size of the widest angles is very simple, and itonsists of a single splitting of those elements with angles wider than a ertainthreshold �max, followed by nMR mesh regularization sweeps.
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t = 0 (2178) t = 0:39501 (1624)

t = 0:6487 � 10�4 (1906) t = 0:40762 (1528)
t = 0:00129 (2170) t = 0:41316 (1528)
t = 0:12536 (1962) t = 0:41346 (1200)
t = 0:30538 (1632) t = 0:41349 (1004)Figure 5.8: Pinh-o� in �nite time. Evolution of an 8 � 1 � 1 prism at various timeinstants leading to a dumbbell and usp formation (between parentheses we indiatethe number of verties used to represent the surfae.) The evolution was omputedusing timestep ontrol, mesh regularization, mesh re�nement/oarsening, and a routinefor ontrolling wide angles.



A Finite Element Method for Surfae Di�usion 20Algorithm 5.5 (Angle Width Control).1. Mark all the elements having at least one angle biggerthan �max.2. If there are elements marked,(a) Halve (one bisetion) all the marked elements.(b) Perform nMR regularization sweeps.() Go to 1.3. If there are no elements marked, ontinue.Here, �max, nMR are �xed parameters. The element halving is done follow-ing the newest-vertex bisetion rule, whih keeps the number of elements in astar uniformly bounded, but may not neessarily split the widest angle. Thesubsequent mesh regularization takes are of this issue. It is important to pointout that only one bisetion is done to the elements at this stage: two bise-tions would lead to elements having the same angles as the original! Figure 5.9shows a detailed view of the evolution of the 8� 1� 1-prism when approahingthe pinh-o�. The ontrol of wide angles, oupled with mesh regularization,re�nement and oarsening produe very good meshes, even very lose to thepinh-o�.
t = 0:399123(1568) t = 0:411839(1512) t = 0:413154(1528) t = 0:413400(1368) t = 0:413464(1200)Figure 5.9: Detailed view of the pinh-o� for the 8 � 1 � 1 prism. The ontrol ofwide angles, oupled with mesh regularization, re�nement and oarsening ure meshdistortion until the very moment of pinh-o�, when the elements are rather elongatedbut not degenerate. An angle is onsidered to be wide when bigger than 120o.5.6 Full Adaptive AlgorithmWe start this setion by desribing the �nal version of our adaptive algorithmfor surfae di�usion.
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t = 0 (4034)

t = 0:000248 (3434)
t = 0:098140 (4074)
t = 0:444604 (3608)
t = 0:634604 (3556)
t = 0:663204 (3156)
t = 0:668743 (2486)Figure 5.10: Evolution of a 16�1�1 prism toward two simultaneous usps revealingthat the number of singularities depends on the aspet ratio of the initial prism. Allthe parameters used for this simulation are the same as those for the 8� 1� 1 prism.



A Finite Element Method for Surfae Di�usion 22Algorithm 5.6 (Final Version of Surfae Di�usion).1. Start with an initial mesh, and let ~X be the vetorof oordinates. Let � be the initial timestep.2. Set the values for the following parameters:Mesh regularization: nMR 2 Z+ (number of sweeps)Timestep ontrol: 0 < �min < �max, �t > 0Spae adaptivity: �s > 0, 0 < C < R < 1Control of angles width: 60o < �max < 180o.3. Perform nMR regularization sweeps (Algorithm 5.2).4. Run the mesh adaptation routine (Algorithm 5.4).5. If d = 3, run the routine for ontrolling wide angles(Algorithm 5.5).6. Solve (4.10) for V and (4.11) for ~V .7. Apply timestep ontrol and update ~X (Algorithm 5.3).8. Go to 3
 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 1.014

 0  0.2  0.4  0.6  0.8  1

PSfrag replaements Cube4 � 1 � 1-Prism8 � 1 � 1-Prism16 � 1 � 1-Prism
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1

PSfrag replaements Cube4 � 1 � 1-Prism8 � 1 � 1-Prism16 � 1 � 1-Prism
Volume AreaFigure 5.11: Relative volume and surfae area with respet to the initial values vs.normalized time (t=T�nal). The omputations were performed with the full adaptivealgorithm (Algorithm 5.6).In order to obtain quantitative information of our algorithm we omparedthe behavior using the full adaptive algorithm in four test ases: a ube, a4 � 1 � 1-prism, an 8 � 1 � 1-prism, and a 16 � 1 � 1-prism. In all of theexperiments we used the same parameters:� Mesh regularization: nMR = 2 (number of sweeps).� Timestep ontrol: �t = 0:1 (tolerane), �min = 1�10�7 (minimum timestep),�max = 5� 10�3 (maximum timestep).� Spae adaptivity: �s = 0:1 (tolerane), R = 0:7 (re�nement threshold),C = 0:3 (oarsening threshold).� Control of angles width: �max = 120o (widest angle allowed).



A Finite Element Method for Surfae Di�usion 23Figure 5.11 shows volume and surfae area vs. time. Volume hange isminimal (less than 1.3%), and thus onsistent with (2.5). Surfae areas arealways dereasing with t as predited by (2.6).Figure 5.12 provides information about the behavior of the timesteps due tothe timestep ontrol routine: it shows histograms with the number of timestepsused in every tenth of the whole time interval. In all the experiments, and dueto the sharp sides of the initial prisms, whih imply a fast motion of points,the timestep size was �min at the beginning. This situation hanges due to thesmoothing e�et of surfae di�usion. For the ases where singularities our(8� 1� 1- and 16� 1� 1-prism) the timesteps are again very small at the enddue to the in�nite veloity of those points of the surfae whih are lose to thepinh-o�.
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Figure 5.12: Timestep ontrol: Number of timesteps used in eah tenth of the wholetime interval of omputation. In all the experiments, and due to the sharp sides ofthe initial prisms, the timestep size was �min at the beginning. For the ases wheresingularities our (8� 1� 1- and 16� 1� 1-prism) the timesteps are again very smallat the end due to the in�nite veloity of the points of the surfae lose to the pinh-o�.To end this setion we present in Figure 5.13 the evolution of the ornerof a ube using natural boundary onditions. Here we an observe in detailthe evolution of sharp edges that, being rather singular for surfae di�usion arehandled transparently by our method.
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t = 0 t = 0:113 � 10�5 t = 0:932 � 10�5
t = 0:4300 � 10�4 t = 0:35039 � 10�3 t = 0:31211 � 10�2

t = 0:02545 t = 0:07545 t = 0:12545Figure 5.13: Evolution of the orner of a ube using the full adaptive algorithm andnatural boundary onditions.



A Finite Element Method for Surfae Di�usion 255.7 Simulations of Curves in R2We �nally illustrate the behavior of urves in R2 . Figure 5.14 shows the evolu-
t = 0 t = 0:685� 10�5 t = 0:235� 10�4 t = 0:580� 10�4

t = 0:120� 10�3 t = 0:232� 10�3 t = 0:406� 10�3 t = 0:710� 10�3
t = 0:112� 10�2 t = 0:143� 10�2 t = 0:165� 10�2 t = 0:197� 10�2Figure 5.14: Bubble formation during the evolution of a urve by surfae di�usion.Solution obtained every 60 adaptive timestesps. The urve de�nes initially an almostslit domain, next develops a mushroom shape before sel�nterseting and rossing, and�nally opens up. It is important to observe the very disparate time sales of thisevolution. This purely geometri motion might be a mehanism for the reation ofinlusions (or islands).tion of a 2� 2-square from whih a very thin retangle (0:02� 1:8) is missing;we all it an almost slit domain. We observe here a pinh-o�, followed by aurve rossing, whih in ontrast to 3d does not reate a problem beause bothparts of the urve are evolving separately and do not see eah other. The �gure�nally evolves to a irle, the stable asymptoti on�guration in 2d.In Figure 5.15 we show the evolution of a four-leafed rose, whih was om-puted previously by Esher et. al. using a �nite di�erene sheme [18℄. We plotthe solutions obtained with our full adaptive algorithm for our values of t los-est to those shown in [18℄. The qualitative agreement of both omputations isexellent.
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t = 0 t = 0:01965 t = 0:05017 t = 0:07517Figure 5.15: Evolution of the rose given in polar oordinates by r(�) = sin(2�).The stable asymptoti limit is a irle on whih the urve winds three times. Thequalitative agreement with the results presented in [18℄ is exellent.6 ConlusionsWe have devised and implemented a new FEM for the purely geometri motionof parametri surfaes (or urves) by surfae di�usion. The sheme hinges on� an operator splitting into seond and zero order equations;� dealing with both ontinuous salar and vetor veloities and urvatures,whih relate weakly with the disontinuous unit normals;� a semi-impliit time disretization, whih leads to linear PDE to be solvedat eah time step, allows for relatively large time steps, and requires noexpliit parametrization of the surfae;� an e�etive Shur omplement approah for the solution of the ensuinglinear systems;� mesh smoothing to avoid mesh distortions, as well as spae adaptivity andtimestep ontrol to optimize the omputational e�ort.We doumented the performane of the new FEM with an extensive list ofsimulations, some exhibiting pinh-o�, rossing, and mushroom formation in�nite time. The algorithm is well suited for the study of surfae di�usion aswell as the oupling of it with other physial proesses suh as elastiity. In thepresent paper we restrited ourselves to onsidering losed surfaes or naturalboundary onditions. The exibility of �nite elements, however, allows for otherboundary onditions via slight hanges in the implementation. Animations ofthe omputational results presented above an be found inhttp://www.math.umd.edu/~rhn/SurfDiff/MoviesWemention [3, 4℄ whih uses the 2d version of our sheme for island dynamiswith adatom di�usion and adsorption-desorption, where the dynamis of theisland boundaries is governed by a two-sided ux together with surfae di�usion.
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