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Convergence of adaptive finite element methods

for eigenvalue problems

Eduardo M. Garau∗ Pedro Morin∗ Carlos Zuppa†

Abstract

In this article we prove convergence of adaptive finite element methods for second order elliptic

eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence

for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all

reasonable marking strategies, and starting from any initial triangulation.

1 Introduction and main result

In many practical applications it is of interest to find or approximate the eigenvalues and eigenfunctions of
elliptic problems. Finite element approximations for these problems have been widely used and analyzed
under a general framework. Optimal a priori error estimates for the eigenvalues and eigenfunctions have
been obtained (see [BO91, BO89, RT83, SF73] and the references therein).

Adaptive finite element methods are an effective tool for making an efficient use of the computational
resources; for certain problems, it is even indispensable to their numerical resolvability. A quite popular,
natural adaptive version of classical finite element methods consists of the loop

Solve → Estimate → Mark → Refine,

that is: solve for the finite element solution on the current grid, compute the a posteriori error estimator,
mark with its help elements to be subdivided, and refine the current grid into a new, finer one. The
ultimate goal of adaptive methods is to equidistribute the error and the computational effort obtaining
a sequence of meshes with optimal complexity. Historically, the first step to prove optimality has always
been to understand convergence of adaptive methods. A general result of convergence for linear problems
has been obtained in [MSV07], where very general conditions on the linear problems and the adaptive
methods that guarantee convergence are stated. Optimality for adaptive methods using Dörfler’s [Dör96]
marking strategy has been proved in [CKNS07, Ste07] for linear problems.

The goal of this article is to analyze the convergence of adaptive finite element methods for the
eigenvalue problem consisting in finding λ ∈ R, and u 6≡ 0 such that

−∇ · (A∇u) = λBu in Ω, u = 0 on ∂Ω,

under general assumptions on A, B and Ω that we state precisely in Section 2.1.
As we mentioned before, adaptive methods are based on a posteriori error estimators, that are

computable quantities depending on the discrete solution and data, and indicate a distribution of the
error. A posteriori error estimators for eigenvalue problems have been constructed by using different
approaches in [Ver96, Ver94, DPR03, Lar00], they have been developed for A ≡ I and B ≡ 1, but
the same proofs can be carried over to the general case considered here; see [GG07] and Section 2.3.
An important aspect to be mentioned here is that the upper bound holds for sufficiently fine meshes.
However, our proof will not rely on this bound, allowing us to prove convergence from any initial mesh.
The first result (and only up to now) about convergence of adaptive finite elements for eigenvalue problems
has been presented in [GG07].

The following is the main result of this article.
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Grant CAI+D 12/H421

†Partially supported by Universidad Nacional de San Luis through Grant 22/F730-FCFMyN.
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Theorem 1.1 (Main Result). Let λk and uk be the discrete eigenvalues and eigenfunctions obtained with
the adaptive algorithm stated in Section 2.4 below. Then there exists an eigenvalue λ of the continuous
problem such that

lim
k→∞

λk = λ and lim
k→∞

distH1
0
(Ω)(uk, M(λ)) = 0,

where M(λ) denotes the set of all eigenfunctions of the continuous problem corresponding to the eigen-
value λ.

Remark 1. Before proceeding with the details of the statement and the proof of this result, we make
some remarks:

• An important difference with previous works is that we do not require the initial mesh T0 to be
fine enough. Any initial mesh that captures the discontinuities of A will guarantee convergence.

• The result holds for any of the popular marking strategies, not only Dörfler’s [Dör96]. The only
assumption is that non-marked elements have error estimators smaller than marked ones, see
condition (2.17) in Section 2.4 below.

• The marking is done according to the residual type a posteriori error estimators presented in
Section 2.3. Even though there are some oscillation terms in the lower bound, we do not require
any marking due to these terms. We only need to mark according to the error estimators, which
is what is usually done in practice.

• The result holds with a minimal refinement of marked elements, one bisection suffices. We do not
require the enforcement of the so-called interior node property.

• We are assuming that each of the discrete eigenvalues λk is the j-th eigenvalue of the corresponding
discrete problem. The result, as stated above, only guarantees that λk converges to one eigenvalue
λ of the continuous problem. We can be sure that we approximate the j-th eigenvalue of the
continuous problem under any of the following assumptions:

– No eigenfunction is equal to a polynomial of degree ≤ ℓ on an open region of Ω, where ℓ
denotes the polynomial degree of the finite element functions being used. This is a Non-
Degeneracy Assumption, and it holds for a large class of problems; see Assumption 1 and
following discussion.

– The meshsize of the initial triangulation is small enough. This assumption goes against the
spirit of adaptivity and a posteriori analysis, since we cannot quantify what small enough
means. But we state it for completeness, because in some (nonlinear) problems there may be
no way to overcome this.

• The proof follows similar ideas to those of [MSV07], with some modifications due to the different
nature of the problem. It consists in proving the following steps:

– The full sequence of discrete eigenvalues converges to a number λ∞ and a subsequence of the
discrete eigenfunctions converges to some function u∞.

– The global a posteriori error estimator converges to zero (for the subsequence).

– The pair (λ∞, u∞) is an eigenpair of the continuous problem. Due to a lack of a sharp upper
bound (it only holds for sufficiently fine meshes) it is necessary to introduce a new argument to
prove this (see Theorem 5.1). This new argument is perhaps the main difference with respect
to [MSV07], and we believe that the idea can be useful for many other nonlinear problems.

The rest of the article is organized as follows. In Section 2 we state precisely the problem that we
study, describe the approximants, mention some already known results about a priori and a posteriori
estimation, and state the adaptive loop. In Section 3 we prove that the sequence {(λk, uk)}k∈N0

of
solutions to the discrete problems contains a subsequence that converges to a limiting pair (λ∞, u∞). In
Section 4 we prove that the global a posteriori error estimator tends to zero; which is instrumental to
conclude in Section 5 that (λ∞, u∞) is an eigenpair of the continuous problem. Finally, in Section 6 we
state and prove the main result and discuss its implications.
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2 Problem statement and adaptive algorithm

This section is subdivided in four parts. In Section 2.1 we state precisely the continuous problem that
we study and mention some of its properties. In Section 2.2 we state the discrete problems that we
consider as approximants to the continuous one, mention some of its properties and state the a priori
error estimates. In Section 2.3 we define the a posteriori error estimators that we use, state the upper
bound and prove the discrete local lower bound that we will use in our convergence proof. Finally, in
Section 2.4 we state the adaptive algorithm together with the assumptions on each of its blocks.

2.1 Setting

Let Ω ⊂ R
d be a bounded open set with a Lipschitz boundary. In particular, we suppose that Ω is a

polygonal domain if d = 2 and a polyhedral domain if d = 3. Let a, b : H1
0 (Ω) × H1

0 (Ω) → R be the
bilinear forms defined by

a(u, v) :=

∫

Ω

A∇u · ∇v,

and

b(u, v) :=

∫

Ω

Buv,

where A is a piecewise W 1,∞(Ω) symmetric-matrix-valued function which is uniformly positive definite,
i.e., there exist constants a1, a2 > 0 such that

a1|ξ|
2 ≤ A(x)ξ · ξ ≤ a2|ξ|

2, ∀ ξ ∈ R
d, ∀ x ∈ Ω,

and B is a scalar function such that

b1 ≤ B(x) ≤ b2, ∀ x ∈ Ω,

for some constants b1, b2 > 0.
We also define the induced norms by these bilinear forms as

‖v‖a := a(v, v)1/2, v ∈ H1
0 (Ω), and ‖v‖b := b(v, v)1/2, v ∈ L2(Ω).

By the assumptions on A and B, ‖·‖a ≃ ‖ · ‖H1
0
(Ω) and ‖·‖b ≃ ‖ · ‖Ω, i.e., there exist positive constants

c1, c2, c3, c4 such that

c1‖v‖H1
0
(Ω) ≤ ‖v‖a ≤ c2‖v‖H1

0
(Ω), ∀ v ∈ H1

0 (Ω),

and
c3‖v‖Ω ≤ ‖v‖b ≤ c4‖v‖Ω, ∀ v ∈ L2(Ω).

Where, hereafter, if A ⊂ Ω, ‖ · ‖A will denote the L2(A)-norm.
We consider the following

Continuous eigenvalue problem. Find λ ∈ R and u ∈ H1
0 (Ω) satisfying

{

a(u, v) = λ b(u, v), ∀ v ∈ H1
0 (Ω),

‖u‖b = 1.
(2.1)

It is well known [BO91] that under our assumptions on A and B problem (2.1) has a countable
sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ր ∞

and corresponding eigenfunctions
u1, u2, u3, . . .

which can be assumed to satisfy

b(ui, uj) = δij :=

{

1 i = j,

0 i 6= j,
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where in the sequence {λj}j∈N, the λj are repeated according to geometric multiplicity.

Also, the eigenvalues can be characterized as extrema of the Rayleigh quotient R(u) =
a(u, u)

b(u, u)
, by

the following relationships.

• Minimum principle:

λ1 = min
u∈H1

0
(Ω)

R(u) = R(u1),

λj = min
u∈H1

0 (Ω)
a(u,ui)=0
i=1,...,j−1

R(u) = R(uj), j = 2, 3, . . . .

• Minimum-maximum principle:

λj = min
Vj⊂H1

0 (Ω)
dim Vj=j

max
u∈Vj

R(u) = max
u∈span{u1,...,uj}

R(u), j = 1, 2, . . . .

For each fixed eigenvalue λ of (2.1) we define

M(λ) := {u ∈ H1
0 (Ω) : u satisfies (2.1)},

and notice that if λ is simple, then M(λ) contains two functions, whereas if λ is not simple, it consists
of a sphere in the subspace generated by the eigenfunctions.

2.2 Discrete problem

In order to define the discrete approximations we will consider conforming triangulations T of the domain
Ω, that is, partitions of Ω into d-simplices such that if two elements intersect, they do so at a full
vertex/edge/face of both elements. For any triangulation T , S will denote the set of interior sides, where
by side we mean an edge if d = 2 and a face if d = 3. And κT will denote the regularity of T , defined as

κT := max
T∈T

diam(T )

ρT
,

where diam(T ) is the length of the longest edge of T , and ρT is the radius of the largest ball contained
in it. It is also useful to define the meshsize hT := max

T∈T
hT , where hT := |T |1/d.

Let ℓ ∈ N be fixed, and let VT be the finite element space consisting of continuous functions vanishing
on ∂Ω which are polynomials of degree ≤ ℓ in each element of T , i.e,

VT := {v ∈ H1
0 (Ω) : v|T ∈ Pℓ(T ), ∀ T ∈ T }.

Obviously, VT ⊂ H1
0 (Ω) and if T∗ is a refinement of T , then VT ⊂ VT∗

.
We consider the approximation of the continuous eigenvalue problem (2.1) with the following

Discrete eigenvalue problem. Find λT ∈ R and uT ∈ VT such that
{

a(uT , v) = λT b(uT , v), ∀ v ∈ VT ,
‖uT ‖b = 1.

(2.2)

For this discrete problem, similar results to those of the continuous problem hold [BO91]. More
precisely, problem (2.2) has a finite sequence of eigenvalues

0 < λ1,T ≤ λ2,T ≤ λ3,T ≤ . . . ≤ λNT ,T ,

where NT := dim VT , and corresponding eigenfunctions

u1,T , u2,T , u3,T , . . . , uNT ,T ,

which can be assumed to satisfy
b(ui,T , uj,T ) = δij .

Moreover, the following extremal characterizations also hold:

4



• Minimum principle:

λ1,T = min
u∈VT

R(u) = R(u1,T ),

λj,T = min
u∈VT

a(u,ui,T )=0
i=1,...,j−1

R(u) = R(uj,T ), j = 2, 3, . . . , NT .

• Minimum-maximum principle:

λj,T = min
Vj,T ⊂VT

dim Vj,T =j

max
u∈Vj,T

R(u) = max
u∈span{u1,T ,...,uj,T }

R(u), j = 1, 2, . . . , NT .

It follows from the minimum-maximum principles that

λj ≤ λj,T , j = 1, 2, . . . , NT .

and it also follows that if T∗ is any refinement of T then

λj,T∗
≤ λj,T , j = 1, 2, . . . , NT .

For a given eigenvalue λ we define a notion of minimal error of approximation of its eigenfunctions
by

ǫT (λ) := sup
u∈M(λ)

inf
χ∈VT

‖u − χ‖a .

For j = 1, 2, . . . , NT , there holds that

λj,T − λj . ǫ2T (λj),

where, from now on, whenever we write A . B we mean that A ≤ CB with a constant C that may
depend on A, B, the domain Ω and the regularity κT of T , but not on other properties of T such as
element size or uniformity.

If {Tk}k∈N0
is any sequence of triangulations such that sup

k∈N0

κTk
< ∞, and hTk

→ 0 as k → ∞, then

ǫTk
(λj) −→ 0, as k −→ ∞,

and therefore,
λj,Tk

−→ λj , as k −→ ∞. (2.3)

This holds for any j ∈ N and it is a consequence of standard interpolation estimates and the fact that
M(λj) is bounded and contained in a finite dimensional subspace of H1

0 (Ω).

2.3 A posteriori error estimators

A posteriori estimates for eigenvalue problems have been studied by Larson [Lar00], Durán, Padra and
Rodŕıguez [DPR03], Giani and Graham [GG07]. In this section we present the residual type a posteriori
estimates for eigenvalue problems, state without proof some already known properties and prove the
discrete local lower bound that will be useful for our convergence proof.

In order to define the estimators we assume that the triangulation T matches the discontinuities of
A. More precisely, we assume that the discontinuities of A are aligned with the sides of T . Observe that
in particular, A|T is Lipschitz continuous for all T ∈ T .

Definition 1 (Element residual and jump residual). For µ ∈ R and v ∈ VT we define the element
residual R(µ, v) by

R(µ, v)|T := −∇ · (A∇v) − µBv, (2.4)

for all T ∈ T , and the jump residual J(v) by

J(v)|S := (A∇v)|T1
· −→n1 + (A∇v)|T2

· −→n2, (2.5)

for every interior side S ∈ S, where T1 and T2 are the elements in T which share S and −→ni is the outward
normal unit vector of Ti on S, for i = 1, 2. We define J(v)|∂Ω := 0.
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Definition 2 (Local and global error estimator). For µ ∈ R and v ∈ VT we define the local error
estimator ηT (µ, v; T ) by

ηT (µ, v; T )2 := h2
T ‖R(µ, v)‖2

T + hT ‖J(v)‖2
∂T ,

for all T ∈ T , and the global error estimator ηT (µ, v) is given by

ηT (µ, v)2 :=
∑

T∈T

ηT (µ, v; T )2.

Even though we will not need it for the convergence proof, we include the statement of the upper
bound of the error in terms of the a posteriori error estimation, for the sake of completeness.

Theorem 2.1 (Upper bound). Let j ∈ N, and let uT be an eigenfunction corresponding to the j-th
eigenvalue λT of the discrete problem (2.2), then, if hT is small enough, there exists an eigenfunction u
corresponding to the j-th eigenvalue λ of the continuous problem (2.1) such that

‖u − uT ‖a . ηT (λT , uT ).

The proof of this theorem can be obtained following the steps given in [DPR03], by extending Lemmas
3.1 and 3.2 presented there for the model problem with A ≡ I, and B ≡ 1, to the general case that we
consider here, using the following regularity result, and the a priori bound stated in Theorem 2.2 below.

Lemma 1 (Regularity of the eigenfunctions). There exists r ∈ (0, 1] depending only on Ω and A such
that

u ∈ H1+r(Ω),

for any eigenfunction u of the problem (2.1).

Proof. This can be proved by observing that if u is an eigenfunction, then it is also a solution to a linear
elliptic equation of second order with right-hand side in L2(Ω). We know that r = 1 when A is constant
or smooth and Ω is convex. The case in which Ω is non-convex has been studied in [BDLN92] and the
case of A having a discontinuity across an interior interface in [Bab70]. For the general case, which we
are considering here, see [Joc99, Theorem 3].

The following result is an a priori estimate relating the errors in the strong and weak norms associated
to the problem, and it is the last slab in the chain necessary to prove Theorem 2.1. The case A ≡ I and
B = 1 can be easily obtained from the results in [SF73], and in [RT83]. The general case was presented
in [GG07, Gia07].

Theorem 2.2. Let the same assumptions of Theorem 2.1 hold. Then, if hT is small enough, there exists
an eigenfunction u corresponding to the j-th eigenvalue λ of the continuous problem (2.1) such that

‖u − uT ‖b . hr
T ‖u − uT ‖a .

The next result, which we will need for our proof of convergence is the discrete local lower bound,
whose proof follows that of the continuous lower bound in [DPR03], but in order to make this article
more self-contained we will include it here.

For S ∈ S we define ωT (S) as the union of the two elements in T sharing S. For T ∈ T , NT (T ) :=
{T ′ ∈ T : T ′ ∩ T 6= ∅} denotes the set of neighbors of T in T , and ωT (T ) :=

⋃

T ′∈NT (T ) T ′. We also
define nd := 3 if d = 2 and nd := 6 if d = 3. This guarantees that after nd bisections to an element,
new nodes appear on each side and in the interior. Here we consider the newest-vertex bisection in two
dimensions and the procedure of Kossaczký in three dimensions [SS05].

Theorem 2.3 (Discrete local lower bound). Let T ∈ T and let T∗ be the triangulation of Ω which is
obtained from T by bisecting nd times each element of NT (T ). Let λT and uT be a solution to the
discrete problem (2.2). Let W be a subspace of H1

0 (Ω) such that VT∗
⊂ W. If µ ∈ R and w ∈ W satisfy

{

a(w, v) = µ b(w, v), ∀ v ∈ W,
‖w‖b = 1,
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then

ηT (λT , uT ; T ) . ‖∇(w − uT )‖ωT (T ) + hT ‖µw − λT uT ‖ωT (T ) + hT

∥

∥R − R
∥

∥

ωT (T )
+ h

1/2
T

∥

∥J − J
∥

∥

∂T
,

where, for every T ′ ∈ NT (T ), R|T ′ is the L2(T ′)-projection of R := R(λT , uT ) onto Pℓ−1, and for every
side S ⊂ ∂T , J |S is the L2(S)-projection of J := J(uT ) onto Pℓ−1.

Proof. 1 We first analyze the element residual. We obviously have

‖R‖T ≤
∥

∥R
∥

∥

T
+
∥

∥R − R
∥

∥

T
. (2.6)

Let xint
T denote the vertex of T∗ which is interior to T . Let ϕT be the continuous piecewise linear function

over T∗ such that ϕT (xint
T ) = 1 and ϕT vanishes over all the others vertices of T∗. Then

∥

∥R
∥

∥

2

T
.

∫

T

R
2
ϕT =

∫

T

R(RϕT ) =

∫

T

R(RϕT ) +

∫

T

(R − R)RϕT . (2.7)

If we define v := RϕT ∈ VT∗
⊂ W, taking into account that v vanishes over ∂T , for the first integral

in (2.7) we have

∫

T

Rv =

∫

T

(−∇ · (A∇uT ) − λT BuT )v

=

∫

T

A∇uT · ∇v −

∫

T

λT BuT v

=

∫

T

A∇uT · ∇v −

∫

T

λT BuT v −

∫

T

A∇w · ∇v +

∫

T

µBwv

=

∫

T

A∇(uT − w) · ∇v +

∫

T

B(µw − λT uT )v

. ‖∇(uT − w)‖T ‖∇v‖T + ‖µw − λT uT ‖T ‖v‖T .

For the second integral in (2.7) we have

∫

T

(R − R)RϕT ≤
∥

∥RϕT

∥

∥

T

∥

∥R − R
∥

∥

T
≤
∥

∥R
∥

∥

T

∥

∥R − R
∥

∥

T
.

Therefore, taking into account that ‖∇v‖T . 1
hT

‖v‖T and ‖v‖T ≤
∥

∥R
∥

∥

T
we can write

∥

∥R
∥

∥

2

T
. ‖∇(uT − w)‖T

1

hT

∥

∥R
∥

∥

T
+ ‖µw − λT uT ‖T

∥

∥R
∥

∥

T
+
∥

∥R
∥

∥

T

∥

∥R − R
∥

∥

T
,

and then
hT

∥

∥R
∥

∥

T
. ‖∇(uT − w)‖T + hT ‖µw − λT uT ‖T + hT

∥

∥R − R
∥

∥

T
. (2.8)

Now, from (2.6) and (2.8) it follows that

hT ‖R‖T . ‖∇(uT − w)‖T + hT ‖µw − λT uT ‖T + hT

∥

∥R − R
∥

∥

T
. (2.9)

The same bound holds replacing T by T ′, for all T ′ ∈ NT (T ).
2 Secondly, we estimate the jump residual. Let S be a side of T and let T1 and T2 denote the elements

sharing S. Obviously, one of them is T itself. As before we proceed by bounding first the projection J
of J , since

‖J‖S ≤
∥

∥J
∥

∥

S
+
∥

∥J − J
∥

∥

S
. (2.10)

Let xint
S denote the vertex of T∗ which is interior to S. Let ϕS be the continuous piecewise linear function

over T∗ such that ϕS(xint
S ) = 1 and ϕS vanishes over all the others vertices of T∗. Then

∥

∥J
∥

∥

2

S
.

∫

S

(J)2ϕS =

∫

S

J(JϕS) =

∫

S

J(JϕS) +

∫

S

(J − J)JϕS . (2.11)
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Now, we extend J to ωT (S) as constant along the direction of one side of each Ti, for i = 1, 2, and
still call this extention J . Observe that J is continuous on ωT (S) and J |Ti

∈ Pℓ−1(Ti), for i = 1, 2.
Since v := JϕS ∈ VT∗

⊂ W and taking into account that v = 0 on ∂(ωT (S)), for the first integral
in (2.11) we have

∫

S

Jv =
∑

i=1,2

∫

∂Ti

vA∇uT · −→ni =
∑

i=1,2

∫

Ti

∇ · (vA∇uT )

=
∑

i=1,2

(
∫

Ti

A∇uT · ∇v +

∫

Ti

v∇ · (A∇uT )

)

=
∑

i=1,2

(
∫

Ti

A∇uT · ∇v +

∫

Ti

v∇ · (A∇uT )

)

+

∫

T1∪T2

µBwv −

∫

T1∪T2

A∇w · ∇v

=
∑

i=1,2

(
∫

Ti

A∇(uT − w) · ∇v +

∫

Ti

(∇ · (A∇uT ) + µBw)v

)

=

∫

ωT (S)

A∇(uT − w) · ∇v +
∑

i=1,2

(
∫

Ti

−Rv +

∫

Ti

B(µw − λT uT )v

)

. ‖∇(uT − w)‖ωT (S) ‖∇v‖ωT (S) + ‖R‖ωT (S) ‖v‖ωT (S) + ‖µw − λT uT ‖ωT (S) ‖v‖ωT (S) .

For the second integral in (2.11) we have
∫

S

(J − J)JϕS ≤
∥

∥JϕS

∥

∥

S

∥

∥J − J
∥

∥

S
≤
∥

∥J
∥

∥

S

∥

∥J − J
∥

∥

S
.

Hence, taking into account that ‖∇v‖ωT (S) . 1
hT

‖v‖ωT (S), ‖v‖ωT (S) ≤
∥

∥J
∥

∥

ωT (S)
and

∥

∥J
∥

∥

ωT (S)
.

h
1/2
T

∥

∥J
∥

∥

S
we can write

∥

∥J
∥

∥

2

S
. ‖∇(uT − w)‖ωT (S) h

−1/2
T

∥

∥J
∥

∥

S
+ ‖R‖ωT (S) h

1/2
T

∥

∥J
∥

∥

S

+ ‖µw − λT uT ‖ωT (S) h
1/2
T

∥

∥J
∥

∥

S
+
∥

∥J
∥

∥

S

∥

∥J − J
∥

∥

S
,

and then

h
1/2
T

∥

∥J
∥

∥

S
. ‖∇(uT − w)‖ωT (S) + hT ‖R‖ωT (S) + hT ‖µw − λT uT ‖ωT (S) + h

1/2
T

∥

∥J − J
∥

∥

S
. (2.12)

Now, from (2.10) and (2.12) it follows

h
1/2
T ‖J‖S . ‖∇(uT − w)‖ωT (S) + hT ‖R‖ωT (S) + hT ‖µw − λT uT ‖ωT (S) + h

1/2
T

∥

∥J − J
∥

∥

S
.

Adding the last equation over all S ⊂ ∂T , we obtain

h
1/2
T ‖J‖∂T . ‖∇(uT − w)‖ωT (T ) + hT ‖R‖ωT (T ) + hT ‖µw − λT uT ‖ωT (T ) + h

1/2
T

∥

∥J − J
∥

∥

∂T
.

The claim of this theorem follows by adding this last inequality and (2.9).

The next result is some kind of stability bound for the oscillation terms, which will be useful to obtain
the bound of Corollary 1 which is what will be effectively used in our convergence proof.

Lemma 2. Under the assumptions of Theorem 2.3 there holds

hT

∥

∥R − R
∥

∥

ωT (T )
+ h

1/2
T

∥

∥J − J
∥

∥

∂T
. hT (2 + λT )‖uT ‖H1(ωT (T )).

Proof. 1 We first consider the term corresponding to the element residual.

∥

∥R − R
∥

∥

T
=
∥

∥

∥
−∇ · (A∇uT ) − λT BuT + ∇ · (A∇uT ) + λT BuT

∥

∥

∥

T

≤
∥

∥

∥
−∇ · (A∇uT ) + ∇ · (A∇uT )

∥

∥

∥

T
+
∥

∥λT

(

BuT − BuT

)∥

∥

T
, (2.13)
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where, as before, the bar denotes the L2(T )-projection onto Pℓ−1(T ).
Let AT = (AT

ij) denote the mean value of A = (Aij) over the element T , and note that ∇·(AT∇uT ) =

∇ · (AT∇uT ). Thus, for the first term in the right hand side of (2.13) we have
∥

∥

∥
−∇ · (A∇uT ) + ∇ · (A∇uT )

∥

∥

∥

T
=
∥

∥

∥
∇ ·
(

(AT −A)∇uT

)

−∇ ·
(

(AT −A)∇uT

)

∥

∥

∥

T

≤
∥

∥

∥

(

∇ · (AT −A)
)

· ∇uT −
(

∇ · (AT −A)
)

· ∇uT

∥

∥

∥

T

+
∥

∥

∥
(AT −A) : D2uT − (AT −A) : D2uT

∥

∥

∥

T

≤
∥

∥

(

∇ · (AT −A)
)

· ∇uT

∥

∥

T
+
∥

∥(AT −A) : D2uT

∥

∥

T

. ‖A‖W 1
∞

(T ) ‖∇uT ‖T + ‖AT −A‖L∞(T )

∥

∥D2uT

∥

∥

T
.

Since ‖AT −A‖L∞(T ) . hT ‖A‖W 1
∞

(T ), an inverse inequality leads to
∥

∥

∥
−∇ · (A∇uT ) + ∇ · (A∇uT )

∥

∥

∥

T
≤ ‖A‖W 1

∞
(T ) ‖∇uT ‖T + hT ‖A‖W 1

∞
(T )

∥

∥D2uT

∥

∥

T
. ‖∇uT ‖T .

For the second term in the right hand side of (2.13) we have
∥

∥λT

(

BuT − BuT

)
∥

∥

T
≤ ‖λT BuT ‖T . λT ‖uT ‖T ,

and therefore,
∥

∥R − R
∥

∥

T
. (1 + λT )‖uT ‖H1(T ).

The same estimation holds for all elements in NT (T ), and consequently,

hT

∥

∥R − R
∥

∥

ωT (T )
. hT (1 + λT )‖uT ‖H1(ωT (T )). (2.14)

2 Next, we analyze the jump residual. Let S be a side of T and let T1 and T2 denote the elements
sharing S. Again, if the bar denotes the L2(S)-projection onto Pℓ−1(S), it follows that

∥

∥J − J
∥

∥

S
=

∥

∥

∥

∥

∥

∥

∑

i=1,2

(A∇uT )|Ti
· −→ni −

∑

i=1,2

(A∇uT )|Ti
· −→ni

∥

∥

∥

∥

∥

∥

S

.

Using that (ATi∇uT )|Ti
· −→ni = (ATi∇uT )|Ti

· −→ni we have

∥

∥J − J
∥

∥

S
=

∥

∥

∥

∥

∥

∥

∑

i=1,2

(

(A− ATi)∇uT

)

|Ti
· −→ni −

∑

i=1,2

(

(A− ATi)∇uT

)

|Ti
· −→ni

∥

∥

∥

∥

∥

∥

S

≤

∥

∥

∥

∥

∥

∥

∑

i=1,2

(

(A− ATi)∇uT

)

|Ti
· −→ni

∥

∥

∥

∥

∥

∥

S

≤
∑

i=1,2

∥

∥

(

(A− ATi)∇uT

)

|Ti
· −→ni

∥

∥

S

≤
∑

i=1,2

‖A|Ti
− ATi‖L∞(S) ‖∇uT |Ti

‖S

.
∑

i=1,2

hT ‖A‖W 1
∞

(Ti)h
−1/2
T ‖uT ‖H1(Ti)

. h
1/2
T ‖uT ‖H1(ωT (S)).

Therefore,

h
1/2
T

∥

∥J − J
∥

∥

∂T
. hT ‖uT ‖H1(ωT (T )). (2.15)

Adding (2.14) and (2.15) we obtain the claim of this lemma.

As an immediate consequence of Theorem 2.3 and Lemma 2 the following result holds.

Corollary 1 (Lower bound). Under the assumptions of Theorem 2.3 there holds

ηT (λT , uT ; T ) . ‖∇(w − uT )‖ωT (T ) + hT ‖µw‖ωT (T ) + hT (1 + λT )‖uT ‖H1(ωT (T )).
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2.4 Adaptive loop

Our goal is to use an adaptive method to approximate the j-th eigenvalue and one of its eigenfunctions,
for some fixed j ∈ N. From now on, we thus keep j ∈ N fixed, and let λ denote the j-th eigenvalue of
(2.1) and u an eigenfunction in M(λ).

The algorithm for approximating λ and M(λ) is an iteration of the following main steps:

(1) (λk, uk) := SOLVE(Vk).

(2) {ηk(T )}T∈Tk
:= ESTIMATE(λk, uk, Tk).

(3) Mk := MARK({ηk(T )}T∈Tk
, Tk).

(4) Tk+1 := REFINE(Tk,Mk), increment k.

This is the same loop considered in [MSV07], the difference lies in the building blocks which we now
describe in detail.

If Tk is a conforming triangulation of Ω, the module SOLVE takes the space Vk := VTk
as input

argument and outputs the j-th eigenvalue of the discrete problem (2.2) with T = Tk, i.e., λk := λj,Tk
,

and a corresponding eigenfunction uk ∈ Vk. Therefore, λk and uk satisfy

{

a(uk, vk) = λk b(uk, vk), ∀ vk ∈ Vk,
‖uk‖b = 1.

(2.16)

Given Tk and the corresponding outputs λk and uk of SOLVE, the module ESTIMATE computes and
outputs the a posteriori error estimators {ηk(T )}T∈Tk

, where

ηk(T ) := ηTk
(λk, uk; T ).

Based upon the a posteriori error indicators {ηk(T )}T∈Tk
, the module MARK collects elements of Tk

in Mk. In order to simplify the presentation, the only requirement that we make on the module MARK

is that the set of marked elements Mk contains at least one element of Tk holding the largest value of
estimator. That is, there exists one element T max

k ∈ Mk such that

ηk(T max
k ) = max

T∈Tk

ηk(T ).

Whenever a marking strategy satisfies this assumption, we call it reasonable, since this is what practi-
tioners do in order to maximize the error reduction with a minimum effort. The most commonly used
marking strategies, e.g., Maximum strategy and Equidistribution strategy, fulfill this condition, which is
sufficient to guarantee that

T ∈ Tk \Mk =⇒ ηk(T ) . ηk(Mk) :=

(

∑

T∈Mk

ηk(T )2
)1/2

. (2.17)

This is slightly weaker, and is what we will use in our proof. The original Dörfler’s strategy also
guarantees (2.17).

The refinement procedure REFINE takes the triangulation Tk and the subset Mk ⊂ Tk as input
arguments. We require that all elements of Mk are refined (at least once), and that a new conforming
triangulation Tk+1 of Ω, which is a refinement of Tk, is returned as output.

In this way, starting with an initial conforming triangulation T0 of Ω and iterating the steps (1),(2),(3)
and (4) of this algorithm, we obtain a sequence of successive conforming refinements of T0 called T1, T2, . . .
and the corresponding outputs (λk, uk), {ηk(T )}T∈Tk

, Mk of the modules SOLVE, ESTIMATE and MARK,
respectively.

For simplicity, we consider for the module REFINE, the concrete choice of the newest vertex bisection
procedure in two dimensions and the bisection procedure of Kossaczký in three dimensions [SS05]. Both
these procedures refine the marked elements and some additional ones in order to keep conformity, and
they also guarantee that

κ := sup
k∈N0

κTk
< ∞,
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i.e., {Tk}k∈N0
is a sequence shape regular of triangulations of Ω. It is worth mentioning that we do not as-

sume REFINE to enforce the so-called interior node property, and convergence is guaranteed nevertheless,
this is an important difference with respect to [GG07].

Regarding the module MARK, we stress that the marking is done only according to the error es-
timators; no marking due to oscillation is necessary, this is another important difference with respect
to [GG07], where the set of marked elements has to be enlarged so that Dörfler’s criterion is satisfied not
only by the data oscillation terms, but also by the oscillation of the current solution uk.

3 Convergence to a limiting pair

In this section we will prove that the sequence of discrete eigenpairs {(λk, uk)}k∈N0
obtained by SOLVE

throughout the adaptive loop of Section 2.4 has the following property: λk converges to some λ∞ ∈ R

and there exists a subsequence {ukm
}m∈N0

of {uk}k∈N0
converging in H1(Ω) to a function u∞.

Let us define the limiting space as V∞ := ∪Vk
H1

0 (Ω)
, and note that V∞ is a closed subspace of H1

0 (Ω)
and therefore, it is itself a Hilbert space with the inner product inherited from H1

0 (Ω).
Since Tk+1 is always a refinement of Tk, by the Minimum-Maximum principle {λk}k∈N0

is a decreasing
sequence bounded below by λ. Therefore, there exists λ∞ > 0 such that

λk ց λ∞.

From (2.16) it follows that

‖uk‖
2
a = a(uk, uk) = λkb(uk, uk) = λk ‖uk‖

2
b = λk → λ∞, (3.1)

and therefore, that {uk}k∈N0
is a bounded sequence in V∞. Then, there exists a subsequence {ukm

}m∈N0

weakly convergent in V∞ to a function u∞ ∈ V∞, so

ukm
⇀ u∞ in H1

0 (Ω). (3.2)

Using Rellich’s theorem we can extract a subsequence of the last one, which we still denote {ukm
}m∈N0

,
such that

ukm
−→ u∞ in L2(Ω). (3.3)

If k0 ∈ N0 and km ≥ k0, for all vk0
∈ Vk0

we have that a(ukm
, vk0

) = λkm
b(ukm

, vk0
),, and when m

tends to infinity, we obtain that a(u∞, vk0
) = λ∞b(u∞, vk0

). Since k0 ∈ N0 and vk0
∈ Vk0

are arbitrary
we have that

a(u∞, v) = λ∞b(u∞, v), ∀ v ∈ V∞. (3.4)

On the other hand, since that ‖ukm
‖b = 1, considering (3.3) we conclude that ‖u∞‖b = 1. Now, taking

into account (3.4) we have that

‖u∞‖2
a = λ∞ ‖u∞‖2

b = λ∞.

From (3.1) it follows that ‖ukm
‖2

a = λkm
−→ λ∞, and therefore, ‖ukm

‖a → ‖u∞‖a . This, together
with (3.2) yields

ukm
−→ u∞ in H1

0 (Ω).

Summarizing, we have proved the following

Theorem 3.1. There exist λ∞ ∈ R and u∞ ∈ V∞ such that
{

a(u∞, v) = λ∞ b(u∞, v), ∀ v ∈ V∞,
‖u∞‖b = 1.

Moreover, λ∞ = lim
k→∞

λk and there exists a subsequence {ukm
}m∈N0

of {uk}k∈N0
such that

ukm
−→ u∞ in H1

0 (Ω).

Remark 2. It is important to notice that from any subsequence {(λkm
, ukm

)}m∈N0
of {(λk, uk)}k∈N0

,
we can extract another subsequence {(λkmn

, ukmn
)}n∈N0

, such that ukmn
converges in H1(Ω) to some

function ũ∞ ∈ V∞ that satisfies
{

a(ũ∞, v) = λ∞ b(ũ∞, v), ∀ v ∈ V∞,
‖ũ∞‖b = 1.
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4 Convergence of estimators

In this section we will prove that the global a posteriori estimator defined in Section 2.3 tends to zero. We
will follow the same steps as in [MSV07] providing the proofs of the results that are problem dependent.
Those geometrical results that are consequences of the fact that we are only refining will be stated
without proof, but with a precise reference to the result from [MSV07] being used.

In order not to clutter the notation, we will still call {uk}k∈N0
to the subsequence {ukm

}m∈N0
, and

{Tk}k∈N0
to the sequence {Tkm

}m∈N0
. Also, we will replace the subscript Tk by k (e.g. Nk(T ) := NTk

(T )
and ωk(T ) := ωTk

(T )), and whenever Ξ is a subset of Tk, ηk(Ξ)2 will denote the sum
∑

T∈Ξ ηk(T )2.
The main result of this section is the following

Theorem 4.1 (Estimator’s convergence). If {Tk}k∈N0
denote the triangulations corresponding to the

convergent subsequence of discrete eigenpairs from Theorem 3.1, then

lim
k→∞

ηk(Tk) = 0.

In order to prove this theorem we consider the following decomposition of Tk, which was first estab-
lished in [MSV07].

Definition 3. Given the sequence {Tk}k∈N0
of triangulations, for each k ∈ N0 we define the following

(disjoint) subsets of Tk.

• T 0
k := {T ∈ Tk : T ′ is refined at least nd times, for all T ′ ∈ Nk(T )};

• T +
k := {T ∈ Tk : T ′ is never refined, for all T ′ ∈ Nk(T )};

• T ∗
k := Tk \ (T 0

k ∪ T +
k ).

We also define the three (overlapping) regions in Ω:

• Ω0
k :=

⋃

T∈T 0
k

ωk(T );

• Ω+
k :=

⋃

T∈T +

k

ωk(T );

• Ω∗
k :=

⋃

T∈T ∗

k

ωk(T ).

We will prove that ηk(T 0
k ), ηk(T ∗

k ) and ηk(T +
k ) tend to zero as k tends to infinity in Theorems 4.2,

4.3 and 4.4. Since ηk(Tk)2 = ηk(T 0
k )2 + ηk(T +

k )2 + ηk(T ∗
k )2, Theorem 4.1 will follow from these results.

Definition 4 (Meshsize function). We define hk ∈ L∞(Ω) as the piecewise constant function

hk|T := |T |1/d, ∀ T ∈ Tk.

For almost every x ∈ Ω there holds that hk(x) is monotonically decreasing and bounded from below
by 0. Therefore,

h∞(x) := lim
k→∞

hk(x)

is well-defined for almost every x ∈ Ω and defines a function in L∞(Ω). Moreover, the following result
holds [MSV07, Lemma 4.3 and Corollary 4.1].

Lemma 3. The sequence {hk}k∈N0
converges to h∞ uniformly, i.e.,

lim
k→∞

‖hk − h∞‖L∞(Ω) = 0,

and if χΩ0
k

denotes the characteristic function of Ω0
k then

lim
k→∞

‖hkχΩ0
k
‖L∞(Ω) = 0.
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This lemma is a consequence of the fact that the sequence of triangulations is obtained by refinement

only, and that every time an element T ∈ Tk is refined into Tk+1, hk+1(x) ≤
(

1
2

)1/d
hk(x) for almost every

x ∈ T . But it is otherwise independent of the marking strategy. The next result is also independent
of the marking strategy, it is just a consequence of the fact that uk → u∞, the lower bound and the
convergence of ‖hkχΩ0

k
‖L∞(Ω) to zero.

Theorem 4.2 (Estimator’s convergence: First part). If {Tk}k∈N0
denote the triangulations correspond-

ing to the convergent subsequence of discrete eigenpairs from Theorem 3.1, then the contribution of T 0
k

to the estimator vanishes in the limit, i.e.,

lim
k→∞

ηk(T 0
k ) = 0.

Proof. Using Corollary 1 with W = V∞, w = u∞, and µ = λ∞ we have that

ηk(T 0
k )2 =

∑

T∈T 0
k

ηk(T )2

.
∑

T∈T 0
k

‖∇(uk − u∞)‖2
ωk(T ) + h2

T ‖λ∞u∞‖2
ωk(T ) + h2

T (1 + λk)2‖uk‖
2
H1(ωk(T ))

. ‖∇(uk − u∞)‖2
Ω + ‖hkχΩ0

k
‖2

L∞(Ω)

(

‖λ∞u∞‖2
Ω + (1 + λk)2‖uk‖

2
H1(Ω)

)

Since λk → λ∞ in R and uk → u∞ in H1(Ω), Lemma 3 implies the claim.

The following lemma was proved as the first step of the proof of [MSV07, Proposition 4.2], it is also a
consequence of the fact that the sequence of triangulations is obtained by refinement, without coarsening,
and it is independent of the specific problem being considered.

Lemma 4. If Ω∗
k is as in Definition 3, then

lim
k→∞

|Ω∗
k| = 0.

From Corollary 1, Lemma 4 and the fact that uk → u∞ en H1 we obtain

Theorem 4.3 (Estimator’s convergence: Second part). If {Tk}k∈N0
denote the triangulations corre-

sponding to the convergent subsequence of discrete eigenpairs from Theorem 3.1, then the contribution of
T ∗

k to the estimator vanishes in the limit, i.e.,

lim
k→∞

ηk(T ∗
k ) = 0.

Proof. Let (λ, u) be any eigenpair of (2.1). Then Corollary 1 with W = H1
0 (Ω), w = u, and µ = λ implies

that

ηk(T ∗
k )2 =

∑

T∈T ∗

k

ηk(T )2

.
∑

T∈T ∗

k

‖∇(uk − u)‖2
ωk(T ) + h2

T ‖λu‖2
ωk(T ) + h2

T (1 + λk)2‖uk‖
2
H1(ωk(T ))

. ‖∇(uk − u)‖2
Ω∗

k
+ λ2‖u‖2

Ω∗

k
+ (1 + λk)2‖uk‖

2
H1(Ω∗

k
)

. ‖∇(uk − u∞)‖2
Ω + ‖∇(u∞ − u)‖2

Ω∗

k
+ λ2‖u‖2

Ω∗

k

+ (1 + λk)2‖uk − u∞‖2
H1(Ω) + (1 + λk)2‖u∞‖2

H1(Ω∗

k
).

Taking into account that λk → λ∞ in R, uk → u∞ in H1(Ω) and Lemma 4, the claim follows.

In order to prove that the estimator contribution from T +
k vanishes in the limit, we make the following
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Definition 5. Let T + be the set of elements that are never refined, i.e.,

T + :=
⋃

k≥0

⋂

m≥k

Tm,

and let the set Ω+ be defined as
Ω+ :=

⋃

T∈T +

T.

It is interesting to observe at this point that

Lemma 5. The set Ω+ is empty if and only if lim
k→∞

‖hk‖L∞(Ω) = 0.

Proof. If Ω+ is empty, then Ω+
k and Ω∗

k are empty for all k ∈ N0, and ‖hk‖L∞(Ω) = ‖hk‖L∞(Ω0
k
) which

tends to zero by Lemma 3. Conversely, if limk→∞ ‖hk‖L∞(Ω) = 0, then Ω+ must be empty, otherwise

there would exist T ∈ T + and for all k we would have ‖hk‖L∞(Ω) ≥ |T |1/d.

This lemma, as Lemma 3, is just a geometric observation, and a consequence of the fact that the
sequence of triangulations is shape regular and obtained by refinement, but it is independent of the
particular problem being considered.

As an immediate consequence of Definition 5 and Lemma 4.1 in [MSV07] we have that

T + =
⋃

k≥0

T +
k .

Remark 3. Theorems 4.2 and 4.3 hold independently of the marking strategy. In the next theorem, we
will make use for the first time of the assumption (2.17) done on the module MARK.

Theorem 4.4 (Estimator’s convergence: Third part). If {Tk}k∈N0
denote the triangulations correspond-

ing to the convergent subsequence of discrete eigenpairs from Theorem 3.1, then the contribution of T +
k

to the estimator vanishes in the limit, i.e.,

lim
k→∞

ηk(T +
k ) = 0.

Proof. Let T ∈ T +, then there exists k0 such that T ∈ Tk, for all k ≥ k0. Taking into account
that all marked elements are at least refined once, we have that T /∈ Mk. From assumption (2.17),
ηk(T ) . ηk(Mk). Since Mk ⊂ T ∗

k ∪ T 0
k , Theorems 4.2 and 4.3 imply that

ηk(T )2 . ηk(Mk)2 ≤ ηk(T ∗
k )2 + ηk(T 0

k )2 −→ 0.

We have thus proved that
ηk(T ) −→ 0, for all T ∈ T +.

Now, we will prove that, moreover,

∑

T∈T +

k

ηk(T )2 −→ 0.

To prove this, we resort to a generalized majorized convergence theorem. We first define

ǫk|T :=
1

|T |
ηk(T )2, for all T ∈ T +

k , and ǫk := 0, otherwise.

Then
∑

T∈T +

k
ηk(T )2 =

∫

Ω ǫk(x) dx, and ǫk(x) → 0 as k → ∞ for almost every x ∈ Ω. It remains to

prove that
∫

Ω ǫk(x) dx → 0 as k → ∞.

Let k be fixed. Due to the definition of T +
k , for T ∈ T +

k we have that ωk(T ) = ωj(T ) for all j ≥ k,
and we can drop the subscript and call this set ω(T ). Using Corollary 1 we have that if (λ, u) is any
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fixed eigenpair of (2.1),

ηk(T )2 . ‖∇(uk − u)‖2
ω(T ) + ‖λu‖2

ω(T ) + (1 + λk)2‖uk‖
2
H1(ω(T ))

. ‖∇(uk − u∞)‖2
ω(T ) + ‖∇u∞‖2

ω(T ) + ‖∇u‖2
ω(T ) + ‖λu‖2

ω(T )

+ (1 + λ0)
2‖uk − u∞‖2

H1(ω(T )) + (1 + λ0)
2‖u∞‖2

H1(ω(T ))

. (1 + λ0)
2
(

‖uk − u∞‖2
H1(ω(T )) + c2

T

)

,

where
c2
T := ‖u∞‖2

H1(ω(T )) + ‖λu‖2
ω(T ) + ‖∇u‖2

ω(T ),

and fulfills
∑

T∈T +

k

c2
T . ‖u∞‖2

H1(Ω) + ‖λu‖2
Ω + ‖∇u‖2

Ω < ∞. (4.1)

Let now Mk be defined by

Mk|T :=
C

|T |

(

‖uk − u∞‖2
H1(ω(T )) + c2

T

)

, for all T ∈ T +
k , and Mk := 0, otherwise,

where C is chosen so that 0 ≤ ǫk(x) ≤ Mk(x), for all x ∈ Ω. If we define

M |T := C
c2
T

|T |
, for all T ∈ T +, and M := 0, otherwise,

then
∫

Ω+

|Mk(x) − M(x)| dx =
∑

T∈T +\T +

k

∫

T

|Mk(x) − M(x)| dx +
∑

T∈T +

k

∫

T

|Mk(x) − M(x)| dx

=
∑

T∈T +\T +

k

∫

T

|M(x)| dx + C
∑

T∈T +

k

‖uk − u∞‖2
H1(ω(T ))

. C
∑

T∈T +\T +

k

c2
T + C‖uk − u∞‖2

H1(Ω).

The terms in the right hand side tend to zero when k tends to infinity, due to (4.1) and the fact that uk

converges to u∞ in H1
0 (Ω). Therefore,

Mk −→ M, in L1(Ω+).

Hence, using that ǫk(x) → 0, for almost every x ∈ Ω, we can apply a generalized majorized convergence
theorem [Zei90, p.1015] to conclude that

ηk(T +
k )2 =

∑

T∈T +

k

ηk(T )2 =

∫

Ω+

ǫk(x) dx −→ 0,

as k → ∞.

We have proved in this section that ηk(Tk) → 0 as k → ∞. In the next section we will use this result
to conclude that (λ∞, u∞) is an eigenpair of the continuous problem (2.1).

5 The limiting pair is an eigenpair

In this section we will prove that (λ∞, u∞) is an eigenpair of the continuous problem (2.1). The idea
in [MSV07] to prove that u∞ is the exact solution to the continuous problem, consisted in using the
reliability of the a posteriori error estimators, that is, the fact that the error in energy norm is bounded
(up to a constant) by the global error estimator. Such a bound does not hold in this case unless the
underlying triangulation is sufficiently fine (see Theorem 2.1). We do not enforce such a condition on
the initial triangulation T0, since the term sufficiently fine is not easily quantifiable. Instead we resort
to another idea, we will bound a(u∞, v) − λ∞b(u∞, v) by the residuals of the discrete problems, which
are in turn bounded by the estimators, and were proved to converge to zero in the previous section.
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Theorem 5.1. The limiting pair (λ∞, u∞) of Theorem 3.1 is an eigenpair of the continuous prob-
lem (2.1). That is,

{

a(u∞, v) = λ∞ b(u∞, v), ∀ v ∈ H1
0 (Ω),

‖u∞‖b = 1.

Proof. We know that ‖u∞‖b = 1 due to Theorem 3.1. It remains to prove that

a(u∞, v) = λ∞b(u∞, v), ∀ v ∈ H1
0 (Ω).

Let v ∈ H1
0 (Ω), and let vk ∈ Vk be the Scott-Zhang interpolant [SZ90],[SZ92] of v, which satisfies

‖v − vk‖T . hT ‖∇v‖ωk(T ) and ‖v − vk‖∂T . h
1/2
T ‖∇v‖ωk(T ).

From (2.16) we have
a(uk, vk) = λkb(uk, vk),

for all k, and then

|a(u∞, v)−λ∞b(u∞, v)| = |a(u∞, v) − λ∞b(u∞, v) − a(uk, vk) + λkb(uk, vk)|

= |a(uk, v − vk) − λkb(uk, v − vk) + b(λkuk − λ∞u∞, v) + a(u∞ − uk, v)|

≤ |a(uk, v − vk) − λkb(uk, v − vk)| + |b(λkuk − λ∞u∞, v)| + |a(u∞ − uk, v)|. (5.1)

The second term in (5.1) can be bounded as

|b(λkuk − λ∞u∞, v)| = |λkb(uk − u∞, v) + (λk − λ∞)b(u∞, v)|

≤ |λk||b(uk − u∞, v)| + |λk − λ∞||b(u∞, v)|

. λ0 ‖uk − u∞‖Ω ‖v‖Ω + |λk − λ∞| ‖u∞‖Ω ‖v‖Ω

. (λ0 ‖uk − u∞‖Ω + |λk − λ∞| ‖u∞‖Ω) ‖v‖Ω .

And the third term in (5.1) is bounded by

|a(u∞ − uk, v)| . ‖∇(u∞ − uk)‖Ω ‖∇v‖Ω .

Finally, the first term in (5.1) can be bounded following the steps of the proof of the a posteriori
upper bound, as follows:

|a(uk, v − vk) − λkb(uk, v − vk)| =

∣

∣

∣

∣

∣

∑

T∈Tk

∫

T

A∇uk · ∇(v − vk) − λk

∫

T

Buk(v − vk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

T∈Tk

∫

T

(

−∇ · (A∇uk) − λkBuk

)

(v − vk) +

∫

∂T

(v − vk)A∇uk · −→n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

T∈Tk

∫

T

R(λk, uk)(v − vk) +
1

2

∫

∂T

(v − vk)J(uk)

∣

∣

∣

∣

∣

,

with R(λk, uk) and J(uk) as defined in (2.4) and (2.5). Now, by Hölder and Cauchy-Schwarz inequalities
we obtain

|a(uk, v − vk) − λkb(uk, v − vk)| ≤
∑

T∈Tk

‖R(λk, uk)‖T ‖v − vk‖T + ‖J(uk)‖∂T ‖v − vk‖∂T

.
∑

T∈Tk

‖R(λk, uk)‖T hT ‖∇v‖ωk(T ) + ‖J(uk)‖∂T h
1/2
T ‖∇v‖ωk(T )

.

(

∑

T∈Tk

h2
T ‖R(λk, uk)‖2

T + hT ‖J(uk)‖2
∂T

)1/2

‖∇v‖Ω

= ηk(Tk) ‖∇v‖Ω .
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Summarizing, we have that

|a(u∞, v) − λ∞b(u∞, v)| .
(

(1 + λ0) ‖uk − u∞‖H1(Ω) + |λk − λ∞| ‖u∞‖Ω + ηk(Tk)
)

‖v‖H1(Ω) .

Using the convergence of uk to u∞ in H1(Ω) and λk to λ∞ in R from Theorem 3.1, and the convergence
of the global estimator to zero from Theorem 4.1, we conclude that

|a(u∞, v) − λ∞b(u∞, v)| = 0,

and the proof is completed.

6 Main result and concluding remarks

We conclude this article by stating and proving our main result, which is a consequence of the results in
the previous sections, and discussing its strengths and weaknesses.

Theorem 6.1. Let {(λk, uk)}k∈N0
denote the whole sequence of discrete eigenpairs obtained through the

adaptive loop stated in Section 2.4. Then, there exists an eigenvalue λ of the continuous problem (2.1)
such that

lim
k→∞

λk = λ and lim
k→∞

distH1
0
(Ω)(uk, M(λ)) = 0.

Proof. By Theorem 3.1, taking λ := λ∞, we have that limk→∞ λk = λ, and by Theorem 5.1, λ is an
eigenvalue of the continuous problem (2.1). In order to prove that lim

k→∞
distH1

0
(Ω)(uk, M(λ)) = 0 we argue

by contradiction. If the result were not true, then there would exist a number ǫ > 0 and a subsequence
{ukm

}m∈N0
of {uk}k∈N0

such that

distH1
0
(Ω)(ukm

, M(λ)) > ǫ, ∀ m ∈ N0. (6.1)

By Remark 2 it is possible to extract a subsequence of {ukm
}m∈N0

which still converges to some function
ũ∞ ∈ V∞. By the arguments of Sections 4 and 5, ũ∞ is an eigenfunction of the continuous prob-
lem (2.1) corresponding to the same eigenvalue λ. That is, a subsequence of {ukm

}m∈N0
converges to an

eigenfunction in M(λ), this contradicts (6.1) and completes the proof.

Remark 4. We have proved that the discrete eigenvalues converge to an eigenvalue of the continuous
problem, and the discrete eigenfunctions converge to the set of the corresponding continuous eigenfunc-
tions, and this is the main result of this article. But there is still an open question: If λk was chosen
as the j-th eigenvalue of the discrete problem over Tk, is it true that {λk}k∈N0

converges to the j-th
eigenvalue of the continuous problem? The answer is affirmative for a large number of problems, but not
necessarily for all. There could be some pathological cases in which looking for the j-th eigenvalue we
converge to one that is larger.

We now state an assumption on problem (2.1) that we will prove to be sufficient to guarantee that the
convergence holds to the desired eigenvalue/eigenfunction. More precise sufficient conditions on problem
data A and B to guarantee that this assumption holds will be stated below.

Assumption 1 (Non-Degeneracy Assumption). We will say that problem (2.1) satisfies the Non-
Degeneracy Assumption if whenever u is an eigenfunction of (2.1), there is no nonempty open subset O
of Ω such that u|O ∈ Pℓ(O).

Theorem 6.2. Let us suppose that the continuous problem (2.1) satisfies the Non-Degeneracy Assump-
tion 1, and let {(λk, uk)}k∈N0

denote the whole sequence of discrete eigenpairs obtained through the
adaptive loop stated in Section 2.4 and λ denote the j-th eigenvalue of the continuous problem (2.1).
Then,

lim
k→∞

λk = λ and lim
k→∞

distH1
0
(Ω)(uk, M(λ)) = 0.

Before embarking into the proof of this theorem, it is worth mentioning that the model case of A ≡ I
and B ≡ 1 satisfies Assumption 1, due to the fact that the eigenfunctions of the laplacian are analytic. A
weaker assumption on the coefficients A and B that guarantee non-degeneracy of the problem are given
in the following
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Lemma 6. If A is continuous, and piecewise P1, and B is piecewise constant, then problem (2.1) satisfies
the Non-Degeneracy Assumption 1.

Proof. We will argue by contradiction. Let us suppose that there exists an eigenfunction u of (2.1) with
corresponding eigenvalue λ, and a nonempty open subset O of Ω such that u|O ∈ Pℓ(O). Without loss
of generality, we may assume that A|O ∈ P1(O) and B is constant over O. Then

−∇ · (A∇u) = λBu, in O.

Since u|O ∈ Pℓ(O), we have that −∇ · (A∇u) ∈ Pℓ−1(O), and the last equation implies that u|O ∈
Pℓ−1(O). Repeating this argument we finally obtain that

u|O ≡ 0,

which cannot be true. In fact, u is a solution of a linear elliptic equation of second order with uniformly
elliptic and Lipschitz leading coefficients and therefore, it cannot vanish in an open subset of Ω unless it
vanishes over Ω [Han94].

Remark 5. Searching for other sufficient conditions on the coefficients to guarantee Assumption 1 is
out of the scope of this article. We believe that in the assumptions of the previous lemma, A can be
allowed to be piecewise continuous with discontinuities along Lipschitz interfaces. The only thing needed
is a proof of the fact that solutions to elliptic problems with coefficients like these cannot vanish in an
open subset of Ω unless they vanish over all Ω. We conjecture that this could be proved using Han’s
result [Han94] in combination with Hopf’s lemma [GT83], but it will be subject of future work.

We now proceed to prove Theorem 6.2, which will be a consequence of the following lemma.

Lemma 7. Let {hk}k∈N0
denote the sequence of meshsize functions obtained through the adaptive loop

stated in Section 2.4. If the continuous problem (2.1) satisfies the Non-Degeneracy Assumption 1, then
‖hk‖L∞(Ω) → 0 as k → ∞.

Proof. We argue by contradiction. By Lemma 5, if ‖hk‖L∞(Ω) does not tend to zero, then Ω+ is not
empty, and then there exists T ∈ T +, and thus k0 ∈ N0 such that T ∈ Tk, for all k ≥ k0. Since
‖ukm

− u∞‖L2(T ) → 0 as m → ∞, and uk|T ∈ Pℓ(T ), for all k ≥ 0, using that Pℓ(T ) is a finite
dimensional space we conclude that

u∞|T ∈ Pℓ(T ). (6.2)

Theorem 5.1 claims that u∞ is an eigenfunction of (2.1) and thus (6.2) contradicts Assumption 1.

Remark 6. It is important to notice that the convergence of hk to zero is not an assumption, but a
consequence of the fact that a subsequence is converging to an eigenfunction u∞ and the Non-Degeneracy
Assumption 1.

Proof of Theorem 6.2. In view of Theorem 6.1 it remains to prove that λk converges to the j-th eigenvalue
of (2.1). By Lemma 7 the result follows from (2.3).

We conclude the article with several remarks.

Remark 7. At first sight, the convergence of ‖hk‖L∞(Ω) to zero looks like a very strong statement,
especially in the context of adaptivity. But the uniform convergence of the meshsize to zero should not
be confused with quasi-uniformity of the sequence of triangulations {Tk}k∈N0

, the latter is not necessary
for the former to hold. Thinking about this more carefully, we realize that if we wish to have (optimal)
convergence of finite element functions to some given function in H1(Ω), then hk must tend to zero
everywhere (pointwise) unless the objective function is itself a polynomial of degree ≤ ℓ in an open
region of Ω. Lemma 3 implies that the convergence of hk to zero is also uniform, and this does not
necessarily destroy optimality [CKNS07, Ste07, GMZ08].

Remark 8. A sufficient condition to guarantee that we converge to the desired eigenvalue is to assume
that hk → 0 as k → ∞. This condition is weaker than the Non-Degeneracy Assumption, but it is in
general impossible to prove a priori.
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Remark 9. Another option to guarantee convergence to the desired eigenvalue is to start with a mesh
which is sufficiently fine. In view of the minimum-maximum principles, it is sufficient to start with a
triangulation T0 that is sufficiently fine to guarantee that λj,T0

< λj0 , where j0 > j is the minimum index
such that λj0 > λj . This condition is verifiable a posteriori if we have a method to compute eigenvalues
approximating from below. Some ideas in this direction are presented in [AD03], where the effect of
mass lumping on the computation of discrete eigenvalues is studied.
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