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Abstract. In this article we obtain boundedness of the operator (−∆ + V )−α/2

from Lp,∞(w) into weighted bounded mean oscillation type spaces BMOβL(w)

under appropriate conditions on the weight w. We also show that these
weighted spaces also have a point-wise description for 0 < β < 1. Finally, we

study the behaviour of the operator(−∆ + V )−α/2 when acting on BMOβL(w).

1. Introduction

Let us consider the Schrödinger operator on Rd with d ≥ 3,

L = −∆ + V

where V ≥ 0 is a function satisfying, for some q > d
2 , the reverse Hölder inequality(

1
|B|

∫
B

V (y)q dy
)1/q

≤ C

|B|

∫
B

V (y) dy

for every ball B ⊂ Rd. The set of functions with the last property is usually denoted
by RHq.

It is well known that negative powers of the Schrödinger operator can be ex-
pressed in terms of the heat diffusion semigroup generated by L as

Iαf(x) = L−α/2f(x) =
∫ ∞

0

e−tLf(x) tα/2
dt

t
, α > 0.

For each t > 0 the operator e−tL is an integral operator with kernel kt(x, y)
having a better behaviour far away form the diagonal than the classical heat kernel.
Some useful properties of kt where obtained in [6], [3] and [4]. As a consequence
Iαf turns out to be finite a.e. even if f belongs to Lp with p greater than the
critical index d/α. Particularly, in [1] the authors proved that Iα maps Ld/α into
an appropriate substitute of L∞ denoted by BMOL which in fact is smaller than
the classical BMO space of John-Nirenberg.

In this work we extend and improve their result by analysing the behaviour of Iα
on weighted weak Lp spaces with p ≥ d/α for a suitable class of weights. In order
to do that we introduce a family of spaces BMOβL(w) that includes, as a particular
case, the space BMOL. We point out that in the case of w ≡ 1 and p = d/α, we
obtain a better result than that in [1] since Lp is strictly contained in weak Lp.
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It is worth mentioning that for w ≡ 1 the spaces BMOβL are the duals of the
Hp-spaces introduced in [2] and [4], as it can be easily checked from the atomic
decomposition given there. For β = 0 such representation was already pointed out
in [1].

We also study the behaviour of Iα on BMOβL(w) proving that, under appropriate
conditions on the weight, they are transformed into BMOβ+α

L (w). In proving
such result we give a point-wise characterization of our spaces BMOβL(w) when
0 < β < 1, which we believe to be of independent interest.

Finally, we remark that when the potential V belongs to RHd/2, as it is the case
of the Hermite differential operator, the classes of weights for which we prove our
boundedness results coincide with those obtained in [5] for V = 0.

This article is organized as follows. In Section 2 we introduce the family of spaces
BMOβL(w) and we prove some basic properties. In particular the aforementioned
point-wise description is given in Proposition 4. The remaining two sections contain
the main results: Section 3 is devoted to the analysis of Iα acting on Lp,∞(w) while
Section 4 deals with the boundedness on BMOβL(w).

2. BMOβL(w) spaces

For a given potential V ∈ RHq, with q > d
2 , we introduce the function

ρ(x) = sup

{
r > 0 :

1
rd−2

∫
B(x,r)

V ≤ 1

}
, x ∈ Rd.

Due to the above assumptions ρ(x) is finite for all x ∈ Rd. This auxiliary function
plays an important role in the estimates of the operators and in the description of
the spaces associated to L (see [1], [3], [4], [7]).

The following propositions contain some properties of ρ that will be useful in the
sequel.

Proposition 1 (Lemma 1.4 in [7]). There exist C and k0 ≥ 1 such that,

(1) C−1ρ(x)
(

1 +
|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ Cρ(x)

(
1 +
|x− y|
ρ(x)

) k0
k0+1

for all x, y ∈ Rd.

Throughout this work, we denote w(E) =
∫
E
w for every measurable subset

E ⊂ Rd, and CB = B(x,Cr), for x ∈ Rd, r > 0 and C > 0.

Proposition 2 ([2]). There exists a sequence of points {xk}∞k=1 in Rd, so that the
family Bk = B(xk, ρ(xk)), k ≥ 1, satisfies

(1) ∪kBk = Rd.
(2) There exists N such that, for every k ∈ N, card{j : 4Bj ∩ 4Bk 6= ∅} ≤ N .

We denote by L1
loc the set of locally integrable functions of Rd. For η ≥ 1 and w

a weight, i.e. w ≥ 0 and w ∈ L1
loc, we say that w ∈ Dη if there exists a constant C

such that
w(tB) ≤ C tdη w(B),

for every ball B ⊂ Rd and t ≥ 1.
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It is easy to see that a weight w belongs to D = ∪η≥1Dη if and only if it satisfies
the doubling condition

w(2B) ≤ Cw(B).

For β ≥ 0 we define the space BMOβL(w) as the set of functions f in L1
loc

satisfying for every ball B = B(x,R), with x ∈ Rd and R > 0,

(2)
∫
B

|f − fB | ≤ C w(B) |B|β/d, with fB =
1
|B|

∫
B

f ,

and

(3)
∫
B

|f | ≤ C w(B) |B|β/d, if R ≥ ρ(x).

Let us note that if (3) is true for some ball B then (2) holds for the same ball,
so we might ask to (2) only for balls with radii lower than ρ(x).

The constants in (2) and (3) are independent of the choice of B but may depend
on f . A norm in the space BMOβL(w) can be given by the maximum of the two
infima of the constants that satisfy (2) and (3) respectively.

The case β = 0 and w ≡ 1 was introduced in [1] as a natural substitute of L∞

in the context of the semigroup generated by the operator L. As in that case we
can replace condition (3) by the following weaker condition (4) that only takes into
account critical balls.

Proposition 3. Let β ≥ 0 and w ∈ Dη. If {xk}∞k=1 is a sequence as in Proposi-
tion 2, then a function f belongs to BMOβL(w) if, and only if, f satisfies (2) for
every ball, and

(4)
∫
B(xk,ρ(xk))

|f | ≤ Cw(B(xk, ρ(xk))) |ρ(xk)|β, for all k ≥ 1.

Proof. Let f satisfy (4), and let B = B(x,R) be a ball with radius R > ρ(x). From
Proposition 2 the set

F = {k : B ∩Bk 6= ∅}

is finite and

(5)
∑
k∈F

∫
Bk

w ≤ (N + 1)
∫
∪k∈FBk

w ,

where N is the constant controlling the overlapping (see Proposition 2).
It is easy to see that for some constant C, Bk ⊂ CB for every k ∈ F . In fact, if

z ∈ Bk ∩B, from (1),

ρ(xk) ≤ Cρ(z)
(

1 +
|xk − z|
ρ(xk)

)k0
≤ C2k0ρ(z)

≤ C2k0ρ(x)
(

1 +
|x− z|
ρ(x)

) k0
k0+1

≤ C2k0ρ(x)
(

1 +
R

ρ(x)

)
≤ C2k0+1R,
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then ∫
B

|f | ≤
∑
k∈F

∫
B∩Bk

|f | ≤
∑
k∈F

∫
Bk

|f |

≤ C
∑
k∈F

w(Bk) |Bk|β/d ≤ C |B|β/d
∑
k∈F

∫
Bk

w

≤ C |B|β/d
∫
∪k∈FBk

w ≤ C|B|β/d
∫
CB

w.

Since we assumed that w is doubling the last expression is bounded up to a constant
by w(B) |B|β/d. �

Corollary 1. A function f belongs to BMOβL(w) if, and only if, condition (2) is
satisfied for every ball B = B(x,R) with x ∈ Rd and R < ρ(x), and

(6)
∫
B(x,ρ(x))

|f | ≤ Cw(B(x, ρ(x))) |ρ(x)|β, for all x ∈ Rd.

For β > 0 and w ∈ L1
loc, we define

Wβ(x, r) =
∫
B(x,r)

w(z)
|z − x|d−β

dz.

for all x ∈ Rd and r > 0.
We introduce a kind of Lipschitz space ΛβL(w) as the set of functions f such that

(7) |f(x)− f(y)| ≤ C [Wβ(x, |x− y|) + Wβ(y, |x− y|)]

and

(8) |f(x)| ≤ CWβ(x, ρ(x))

for almost all x and y in Rd.
It is possible to define a norm in these spaces by taking the maximum of the two

infima of the constants that satisfy equations (7) and (8) respectively.

Remark 1. For almost every x ∈ Rd, Wβ(x, r) is finite for all r > 0, it is always
increasing as a function of r. Also, if w satisfies the doubling condition, then we
have

(9) Wβ(x, 2r) ≤ CWβ(x, r),

for almost every x ∈ Rd and r > 0, where the constant C does not depend on r or
x.

Proposition 4. If 0 < β < 1 and w satisfies the doubling condition, then

ΛβL(w) = BMOβL(w),

and the norms are equivalent.

Proof. Let f be in BMOβL(w) with ‖f‖BMOβL(w) = 1, x and y in Rd. Since f

satisfies (2), from [5] (Proposition 1.3) we obtain

|f(x)− f(y)| ≤ C [Wβ(x, 2|x− y|) + Wβ(y, 2|x− y|)]

for all x and y Lebesgue points of f . Hence, Remark 1 implies that f satisfies (7).



WEIGHTED INEQUALITIES FOR NEGATIVE POWERS OF SCHRÖDINGER OPERATORS 5

To verify (8), if x ∈ Rd is a Lebesgue point of f , and B = B(x, ρ(x)), from (7)
and condition (3), we have

|f(x)| ≤ 1
|B|

∫
B

|f(x)− f(y)| dy +
1
|B|

∫
B

|f(y)| dy

≤ C

|B|

(∫
B

Wβ(x, |x− y|)dy +
∫
B

Wβ(y, |x− y|)dy + w(B) |B|
β
d

)
.

(10)

In the last sum, by Remark 1, the first term is∫
B

Wβ(x, |x− y|)dy ≤ |B|Wβ(x, ρ(x)).

For the second term of (10), if y ∈ B, we have B(y, |x− y|) ⊂ B(x, 2ρ(x)), then∫
B

Wβ(y, |x− y|) dy ≤
∫
B(x,2ρ(x))

w(z)
(∫

B

1
|z − y|d−β

dy

)
dz

≤ C |B|β/dw(B) ≤ C |B|Wβ(x, ρ(x)).

Finally, the last term of (10) is bounded by

|B|
β
d−1w(B) ≤ Wβ(x, ρ(x)),

and we have shown that (8) is satisfied.
In order to prove the other inclusion, consider ‖f‖ΛβL(w) = 1. From [5] (Propo-

sition 1.3) we have (7) implie (2). To see condition (3), let x ∈ Rd and R ≥ ρ(x).
If y ∈ B(x,R), from Proposition 1,

ρ(y) ≤ Cρ(x)
(

1 +
|x− y|
ρ(x)

) k0
k0+1

≤ Cρ(x)
(

R

ρ(x)

) k0
k0+1

≤ CR

and thus by (8)∫
B(x,R)

|f(y)|dy ≤
∫
B(x,R)

∫
B(y,ρ(y))

w(z)
|z − y|d−β

dz dy

≤
∫
B(x,CR)

w(z)
∫
B(x,R)

1
|z − y|d−β

dy dz

≤ C Rβw(B(x,CR))

≤ C |B(x,R)|β/dw(B(x,R)),

where in the last inequality we have used the fact that w is doubling. �

Remark 2. Observe that in the last proof (see inequality (10)) we have shown that
(6) and (7) with |x− y| < ρ(x) implies (8), and thus conditions (6) and (7) imply
that f belongs to ΛβL(w).

3. Iα on Lp,∞(w) spaces

We begin by stating a series of lemmas that will be useful in proving the main
results. We omit the proofs though we provide references where they can be found.

For Lp,∞(w), p > 1, we mean the space of measurable functions f such that

(11) [f ]p,w =
(

sup
t>0

tp
∣∣∣∣{x :

|f(x)|
w(x)

> t}
∣∣∣∣)1/p
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is finite. The quantity (11) is not a norm (triangular inequality fails) but it turns to
be equivalent to a norm. Clearly, the Lebesgue spaces Lp(w) = {f :

∫
Rd |f/w|

p <
∞} are continuously embedded in Lp,∞(w).

As usual p′ denotes the Hölder conjugate exponent of p.

Lemma 1 ([5]). Let p > 1 and w a weight in RHp′ . If f is a locally integrable
function and B is a ball in Rd then, there exists a constant C such that∫

B

|f | ≤ C w(B)|B|−
1
p [f ]p,w.

For t > 0 let kt be the kernel of e−tL. Then, the kernel of Iα is given by the
formula

(12) Kα(x, y) =
∫ ∞

0

kt(x, y) tα/2
dt

t
.

Some estimates of kt are presented below.

Lemma 2 ([6]). Given N > 0, there exists a constant C such that for all x and y
in Rd,

kt(x, y) ≤ C t−d/2 e−
|x−y|2
C t

(
1 +

√
t

ρ(x)
+
√
t

ρ(y)

)−N
.

As a consequence of the previous lemma we have

(13) Kα(x, y) ≤ C

|x− y|d−α

for all x and y in Rd.

Lemma 3 ([4] Proposition 4.11). Given N > 0 and 0 < δ < min(1, 2 − d
q ), there

exists a constant C such that

|kt(x, y)− kt(x0, y)| ≤ C
(
|x− x0|√

t

)δ
t−d/2 e−

|x−y|2
C t

(
1 +

√
t

ρ(x)
+
√
t

ρ(y)

)−N
,

for all x, y and x0 in Rd with |x− x0| <
√
t.

A function ψ is rapidly decaying (see [3]) if for every N > 0 there exists a
constant CN such that

|ψ(x)| ≤ CN (1 + |x|)−N .
If ψ is a real function on Rd and t > 0, we define

ψt(x) =
1
td/2

ψ

(
x√
t

)
.

We will also need some estimates for the kernel

qt(x, y) = kt(x, y)− k̃t(x, y),

for all x, y ∈ Rd and t > 0, where k̃t is the kernel of the classical heat operator
e−t∆.

Lemma 4 ([3]). There exists a rapidly decaying function ψ ≥ 0 such that

qt(x, y) ≤ C
( √

t

ρ(x)

)2− dq
ψt(x− y),

for all x, y in Rd and t > 0.
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Lemma 5 ([3]). For every 0 < δ < min(1, 2 − d
q ) and C, there exists a rapidly

decaying function ψ such that

|qt(x, y + h)− qt(x, y)| ≤ C ′
(
|h|
ρ(x)

)δ
ψt(x− y)

for all x, y and in Rd and t > 0, with |h| < Cρ(y) and |h| < |x−y|
4 .

In [1] the authors obtain boundedness of Iα from Ld/α into BMOL = BMO0
L.

The next theorem presents an extension of this result to Lp spaces with p greater
than d/α. Moreover, Lp,∞ spaces are considered instead of Lp.

Theorem 1. Let us assume that the potential V ∈ RHq with q ≥ d/2 and set
δ0 = min{1, 2 − d

q }. Let 0 < α < d, d
α ≤ p < d

(α−δ0)+ and w ∈ RHp′ ∩ Dη,
where 1 ≤ η < 1− α

d + δ0
d + 1

p , then the operator Iα is bounded from Lp,∞(w) into

BMO
α−d/p
L (w).

Proof. We need the following claim: if f is a locally integrable function and B a
ball in Rd, then

(14)
1

w(B)

∫
B

Iα(|f χ2B |) ≤ C |B|
α
d−

1
p [f ]p,w.

To get this estimate, from (13), we have

1
w(B)

∫
B

Iα(|f χ2B |) ≤ C
1

w(B)

∫
B

∫
2B

|f(y)|
|x− y|d−α

dy dx.

Let x0 be the center of B and r its radius. Applying Tonelli’s Theorem, the last
integral is ∫

2B

|f(y)|
∫
B

dx

|x− y|d−α
dy ≤ C rα

∫
2B

|f(y)| dy

≤ C w(B)|B|
α
d−

1
p [f ]p,w,

where the last inequality is due to Lemma 1, finishing the proof of (14).
In order to see that Iαf is in BMO

α−d/p
L (w), in view of Corollary 1, it is enough

to check that there exists a constant C such that the two following conditions hold:
(i) For any x0 ∈ Rd

1
w(B(x0, ρ(x0)))

∫
B(x0,ρ(x0))

|Iαf | ≤ C |B(x0, ρ(x0))|
α
d−

1
p [f ]p,w.

(ii) For every ball B = B(x0, r) with r < ρ(x0) and some constant cB

1
w(B)

∫
B

|Iαf(x)− cB | dx ≤ C |B|
α
d−

1
p [f ]p,w.

We first prove (i). Let B = B(x0, R) with R = ρ(x0). Splitting f = f1 + f2,
with f1 = f χ2B , by the claim (14), we have

1
w(B)

∫
B

|Iαf1| ≤ C |B|
α
d−

1
p [f ]p,w.

To deal with f2, we split the integral representation of Iα as follows. Let x ∈ B,

(15) Iαf2(x) =
∫ R2

0

e−tLf2(x) tα/2−1 dt+
∫ ∞
R2

e−tLf2(x) t
α
2−1 dt.
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For x ∈ B and y ∈ Rd \ 2B, we have |x0 − y| ≤ C |x− y|, then for the first term
of (15), we have∣∣∣∣∣
∫ R2

0

e−tLf2(x) tα/2−1 dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ R2

0

∫
Rd\2B

kt(x, y) f(y) dy t
α
2−1 dt

∣∣∣∣∣
≤ C

∫ R2

0

∫
Rd\2B

1
td/2

e−
|x−y|2

t |f(y)| dy tα2−1 dt

≤ C
∫ R2

0

t
−d+α

2 −1

∫
Rd\2B

(
t

|x− y|2

)M/2

|f(y)| dy dt

≤ C
∫ R2

0

t
M−d+α

2 −1 dt

∫
Rd\2B

|f(y)|
|x0 − y|M

dy ,

where M is a constant to be determined later and C depends on M .
Splitting the domain of the second integral into dyadic annuli 2k+1B \ 2kB, and

applying Lemma 1 we get∫
(2B)c

|f(y)|
|x0 − y|M

dy =
∞∑
k=1

∫
2k+1B\2kB

|f(y)|
|x0 − y|M

dy

≤ 1
RM

∞∑
k=1

1
2kM

∫
2k+1B

|f(y)| dy

≤ C R−
d
p−M [f ]p,w

∞∑
k=1

w(2k+1B) 2−k( dp+M)

≤ Cw(B)R−
d
p−M [f ]p,w

∞∑
k=1

2−k( dp+M−dη),

(16)

where the last inequality follows from the fact that w ∈ Dη.
The last series converges if M > dη − d

p . Therefore, for such M ,∣∣∣∣∣
∫ R2

0

e−tLf2(x) tα/2−1 dt

∣∣∣∣∣ ≤ C w(B)R−
d
p−M [f ]p,w

∫ R2

0

t(M−d+α)/2−1 dt

= C w(B) |B|
α
d−

1
p−1 [f ]p,w .

For the second term of (15), we use the extra decay of the kernel kt(x, y) given
by Lemma 2. Thus, we can choose M as above and N ≥M so that,

∣∣∣∣∫ ∞
R2

e−tLf2(x) tα/2−1 dt

∣∣∣∣ =
∫ ∞
R2

∫
Rd\2B

kt(x, y) |f(y)| dy tα/2−1 dt

≤ C
∫ ∞
R2

∫
Rd\2B

t(α−d−N)/2−1 ρ(x)N e−
|x−y|2

t |f(y)| dy dt

and the last expression is bounded by

C ρ(x)N
∫ ∞
R2

t(α−d−N)/2−1

∫
Rd\2B

(
t

|x− y|2

)M/2

|f(y)| dy dt.
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As x ∈ B, we have ρ(x) ∼ ρ(x0) = R. Then, the last expression is bounded by a
constant times

RN
∫ ∞
R2

t(M+α−d−N)/2−1 dt

∫
Rd\2B

|f(y)|
|x0 − y|M

dy .

Since M +α− d−N < 0, the integral in t converges. Then, splitting the second
integral in the same way as before, the last term is bounded by

C w(B)Rα−
d
p−d [f ]p,w = C w(B) |B|

α
d−

1
p−1 [f ]p,w

and we have proved (i).

Now we will see (ii). Let B = {x ∈ Rd : |x− x0| < r}, with r < ρ(x0). We set
f = f1 + f2 with f1 = f χ2B and

cB =
∫ ∞
r2

e−tLf2(x0) tα/2−1 dt .

By the claim (14) we have

1
w(B)

∫
B

|Iα(f)− cB | ≤
1

w(B)

∫
B

Iα(|f1|) +
1

w(B)

∫
B

|Iα(f2)− cB |

≤ C |B|α/d−1/p [f ]p,w +
1

w(B)

∫
B

|Iα(f2)− cB | .

For the second term, we will show that

(17) |Iαf2(x)− cB | ≤ C w(B) |B|
α
d−

1
p−1 [f ]p,w .

Let x be in B and split Iαf2(x) as in (15). For the first term we can proceed as
before to obtain that∣∣∣∣∣

∫ r2

0

e−tLf2(x) tα/2−1 dt

∣∣∣∣∣ ≤ C w(B) |B|
α
d−

1
p−1 [f ]p,w .

The remaining part, by the definition of cB , is bounded by∣∣∣∣∫ ∞
r2
e−tLf2(x) tα/2−1 dt− cB

∣∣∣∣ ≤ ∫ ∞
r2

∫
Rd\2B

|kt(x, y)− kt(x0, y)| |f(y)| dy tα/2−1 dt

and by Lemma 3, for any 0 < δ < δ0 the last integral is majorised

Cδ

∫ ∞
r2

∫
Rd\2B

(
|x− x0|√

t

)δ
t−d/2 e−

|x−y|2
C t |f(y)| dy tα/2−1 dt .

Since |x0 − x| < r, applying Fubini’s Theorem the last integral is bounded by

rδ
∫

Rd\2B
|f(y)|

∫ ∞
r2

t−(d−α+δ)/2 e−
|x−y|2
C t

dt

t
dy .

Now, changing variables s = |x−y|2
t we obtain the bound

rδ
∫

Rd\2B

|f(y)|
|x− y|d−α+δ

dy

∫ ∞
0

s(d−α+δ)/2 e−s/C
ds

s
.

Since the integral in s is finite, we only need to estimate the integral in y. We
perform the same calculation as in (16) with M = d − α + δ. But now, to make
the series convergent we need η < 1 − α/d + δ/d + 1/p which holds true by our
assumption on η, and taking δ close enough to δ0. Notice this is the only place
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where we have used the condition on the size of η. In this way the above expression
can be controlled by w(B)rα−

d
p−d [f ]p,w and so (17) is proved. �

4. Iα on BMOβL(w) spaces

The definition of BMOβL(w) only establishes a control for the averages over balls
with radii greater than ρ at their centres (see (3)). However, for lower radii some
kind of estimate can be proved.

Lemma 6. Let w ∈ Dη with η ≥ 1 and f ∈ BMOβL(w). Then, for every ball
B = B(x, r), we have∫

B

|f | ≤ C ‖f‖BMOβL(w) w(B)|B|β/d max

{
1,
(
ρ(x)
r

)dη−d+β
}
,

if η > 1 or β > 0, and∫
B

|f | ≤ C ‖f‖BMOL(w) w(B) max
{

1, 1 + log
(
ρ(x)
r

)}
,

if η = 1 and β = 0.

Proof. Let f ∈ BMOβL(w). If r ≥ ρ(x) the conclusion follows from condition (3). If
r < ρ(x), let j0 = blog2(ρ(x)

r )c+ 1, where b·c denotes the greatest integer function.
Then

1
|B|

∫
B

|f | ≤ 2d
j0−1∑
j=0

1
|2jB|

∫
2jB

|f(z)− f2jB |dz +
1

|2j0B|

∫
2j0B

|f |

≤ C ‖f‖BMOβL(w)

j0∑
j=0

w(2jB)|2jB|
β
d−1,

since r2j0 ≥ ρ(x). Using now that w ∈ Dη, we get∫
B

|f | ≤ C‖f‖BMOβL(w)w(B)|B|β/d
j0∑
j=0

2j(dη−d+β)

≤ C ‖f‖BMOβL(w) w(B)|B|β/d
(
ρ(x)
r

)dη−d+β

,

in the case η > 1 or β > 0. If η = 1 and β = 0, we have

j0∑
j=1

2j(dη−d+β) = j0 ≤ 1 + log2

(
ρ(x)
r

)
,

and the proof is finished. �

Theorem 2. Let us assume that the potential V ∈ RHq with q ≥ d/2 and set
δ0 = min{1, 2 − d

q }. Let 0 < α < 1, β ≥ 0, α + β < δ0 and, w ∈ Dη with 1 ≤ η <

1 + δ0−α−β
d , then the operator Iα is bounded from BMOβL(w) into BMOβ+α

L (w).
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Proof. Since α > 0, BMOβ+α
L (w) = Λβ+α

L (w) with equivalent norms, due to Propo-
sition 4. Hence we can prove boundedness from BMOβL(w) into Λβ+α

L (w). Let
f ∈ BMOβL(w). We will see that for x and y in Rd, we have

(18) |Iαf(x)− Iαf(y)| ≤ C‖f‖BMOβL(w) [Wβ+α(x, |x− y|) +Wβ+α(y, |x− y|)]

provided |x− y| < ρ(x), and

(19)
∫
B(x,ρ(x))

|Iαf(u)| du ≤ ‖f‖BMOβL(w) ρ(x)β+α w(B(x, ρ(x))).

The above inequalities (18) and (19) would imply that Iαf belongs to Λβ+α
L (w)

(see Remark 2).
Suppose ‖f‖BMOβL(w) = 1 and let us start with (19). We split the inner integral,

as usual, in local and global parts. If we call B = B(x, ρ(x)), then

∫
B

|Iαf(u)| du ≤
∫
B

(∫
2B

+
∫

(2B)c

)
Kα(u, z) |f(z)| dz du.

By estimate (13), the first term is bounded by

∫
B

∫
2B

|f(z)|
|u− z|d−α

dz du ≤
∫

2B

|f(z)| dz
∫
B

1
|u− x|d−α

du

≤ C‖f‖BMOβL(w) ρ(x)α+β w(B).

For the second term, using Lemma 2 and the change of variables s = |u−z|2
Ct , we

have

∫
B

∫ ∞
0

∫
(2B)c

kt(u, z)|f(z)| dz tα/2 dt
t
du

≤ C
∫
B

∫ ∞
0

∫
(2B)c

t−(d−α+N)/2 e−
|u−z|2
C t ρ(u)N |f(z)| dz dt

t
du

≤ C
∫ ∞

0

s(d−α+N)/2 e−s
ds

s

∫
B

∫
(2B)c

ρ(u)N
|f(z)|

|u− z|d−α+N
dz du.

If u ∈ B(x, ρ(x)) then ρ(u) ≤ Cρ(x) (Proposition 1), and also |u− z| > |x− z|/2
for all z ∈ B(x, 2ρ(x))c. Hence, the last expression is bounded by

(20) C ρ(x)N+d

∫
(2B)c

|f(z)|
|x− z|d−α+N

dz.
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If we call Bj = 2jB, we may split the last integral into annuli, use that f ∈
BMOβL(w) and w ∈ Dη to obtain

∫
(2B)c

|f(z)|
|x− z|d−α+N

dz ≤
∞∑
k=1

∫
Bk+1\Bk

|f(z)|
|x− z|d−α+N

dz

≤ ρ(x)−d+α−N
∞∑
k=1

2−k(d−α+N)

∫
Bk+1

|f(z)| dz

≤ C ρ(x)−d+α+β−N
∞∑
k=1

2−k(d−α−β+N)w(Bk+1)

≤ C ρ(x)−d+α+β−N w(B)
∞∑
k=1

2−k(d−α−β+N−dη).

If we choose N large enough, the last sum is finite, thus (20) is bounded by a
constant times

ρ(x)α+β w(B(x, ρ(x))),

and we have shown that (19) is satisfied.
To see (18), let |x− y| < ρ(x),

|Iαf(x)− Iαf(y)| ≤

∣∣∣∣∣
∫ ρ(x)2

0

∫
Rd

[kt(x, z)− kt(y, z)] f(z) dz tα/2
dt

t

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞
ρ(x)2

∫
Rd

[kt(x, z)− kt(y, z)] f(z) dz tα/2
dt

t

∣∣∣∣∣ .
(21)

For the first term, if t > ρ(x)2, since |x− y| < ρ(x), we have |x− y| <
√
t, hence

Lemma 3 allows us to get∫ ∞
ρ(x)2

∫
Rd
|kt(x, z)− kt(y, z)| |f(z)| dz tα2−1 dt

≤ Cδ |x− y|δ
∫ ∞
ρ(x)2

∫
Rd
e−
|x−z|2
C t |f(z)| dz t(−d+α−δ)/2 dt

t
,

(22)

for each 0 < δ < δ0. If t > ρ(x)2, calling B = B(x,
√
t) we estimate the inner

integral as

∫
Rd
e−
|x−z|2
C t |f(z)| dz ≤ C

∫
B

|f | + tM/2
∞∑
k=0

∫
2k+1B\2kB

|f(z)|
|x− z|M

dz,

for some M > 1 to be chosen. Since f ∈ BMOβL(w) and t > ρ(x)2, the first integral
is bounded by w(B)tβ/2. To deal with the sum in k, we use again f ∈ BMOβL(w),
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and then w ∈ Dη, to obtain

tM/2
∞∑
k=0

∫
2k+1B\2kB

|f(z)|
|x− z|M

dz ≤ 2
∞∑
k=0

2−kM
∫

2k+1B

|f |

≤ C tβ/2
∞∑
k=0

2−k(M−β)w(2k+1B)

≤ C tβ/2w(B)
∞∑
k=0

2−k(M−β−dη),

and the sum is finite for M large enough. Therefore, since |x− y| < ρ(x) <
√
t and

−d+ α+ β − δ + dη < 0 choosing δ close to δ0, (22) is bounded by

|x− y|δ
∫ ∞
ρ(x)2

w(B(x,
√
t))t(−d+α+β−δ)/2 dt

t

≤ C |x− y|δ−dηw(B(x, |x− y|))
∫ ∞
|x−y|2

t(−d+α+β−δ+dη)/2 dt

t

≤ C w(B(x, |x− y|)) |x− y|−d+α+β

≤ CWα+β(x, |x− y|).

To deal with the second term of (21), we set

qt(x, y) = kt(x, y)− k̃t(x, y),

for all x, y ∈ Rd and t > 0, where k̃t is the classical heat kernel as before. Then we
have, ∣∣∣∣∣

∫ ρ(x)2

0

∫
Rd

[kt(x, z)− kt(y, z)] f(z) dz tα/2
dt

t

∣∣∣∣∣ ≤ I + II,

where

I =

∣∣∣∣∣
∫ ρ(x)2

0

∫
Rd

[qt(x, z)− qt(y, z)] f(z) dz tα/2
dt

t

∣∣∣∣∣
and

II =

∣∣∣∣∣
∫ ρ(x)2

0

∫
Rd

[k̃t(x, z)− k̃t(y, z)] f(z) dz tα/2
dt

t

∣∣∣∣∣ .
To estimate I, calling B = B(x, 4|x− y|), we split Rd into two regions and write

I ≤ I1 + I2 + I3,

with

I1 =
∫ ρ(x)2

0

∫
Bc
|qt(x, z)− qt(y, z)| |f(z)| dz tα/2 dt

t
,

I2 =
∫ ρ(x)2

0

∫
B

|qt(x, z)| |f(z)| dz tα/2 dt
t

and

I3 =
∫ ρ(x)2

0

∫
B

|qt(y, z)| |f(z)| dz tα/2 dt
t
.
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If z ∈ Bc, we are in the hypothesis of Lemma 5 and therefore, given 0 < δ < δ0,
there exists a rapidly decaying function ψ such that

I1 ≤ C|x− y|δ
∫ ρ(x)2

0

∫
Bc

ψt(z − x)
ρ(z)δ

|f(z)| dz tα/2 dt
t

≤ C

(
|x− y|
ρ(x)

)δ ∫ ρ(x)2

0

∫
Bc

(
1 +
|x− z|
ρ(x)

)δk0
ψt(z − x) |f(z)| dz tα/2 dt

t
,

where in the last inequality we have used Proposition 1.
The inner integral is∫

Bc

(
1 +
|x− z|
ρ(x)

)δk0
ψt(z − x) |f(z)| dz

=
∞∑
j=0

∫
Bj\Bj−1

(
1 +
|x− z|
ρ(x)

)δk0
ψt(z − x) |f(z)| dz,

where Bj = B(x, 2j+3|x− y|). Thus I1 ≤ I11 + I12, where

I11 = C

(
|x− y|
ρ(x)

)δ ∫ ρ(x)2

0

j0∑
j=0

∫
Bj\Bj−1

(
1 +
|x− z|
ρ(x)

)δk0
ψt(z−x) |f(z)| dz tα/2 dt

t
,

with j0 =
⌊
log2

(
ρ(x)
|x−y|

)⌋
, and I12 the same but summing up from j0 + 1. If j ≤ j0

and z ∈ Bj\Bj−1, then
(

1 + |x−z|
ρ(x)

)δk0
≤ C, and since ψt(z−x) ≤ C tε/2/|x−z|d+ε,

for some ε > 0 fixed, we obtain

I11 ≤ C

(
|x− y|
ρ(x)

)δ ∫ ρ(x)2

0

t(α+ε)/2 dt

t

j0∑
j=0

∫
Bj\Bj−1

|f(z)|
|x− z|d+ε

dz

≤ C
|x− y|δ−d−ε

ρ(x)δ−α−ε

j0∑
j=0

2−j(d+ε)

∫
Bj

|f(z)| dz.

From Lemma 6 and the fact that w ∈ Dη, in the case η > 1 or β > 0,
j0∑
j=0

2−j(d+ε)

∫
Bj

|f(z)| dz ≤ C

j0∑
j=0

2−j(d+ε)w(Bj)|Bj |β/d
(

ρ(x)
2j+3|x− y|

)dη−d+β

≤ C
ρ(x)dη−d+β

|x− y|dη−d
w(B)

j0∑
j=0

2−jε

≤ C
ρ(x)dη−d+β

|x− y|dη−d
w(B).

Therefore, we have

I11 ≤ C

(
|x− y|
ρ(x)

)δ−α−β−dη+d−ε
w(B)

|x− y|d−α−β

≤ C
w(B)

|x− y|d−α−β
,

(23)

since by hypothesis 1 ≤ η < δ0−α−β
d + 1 and |x− y| < ρ(x), and thus δ − α− β −

dη + d− ε > 0, choosing ε small enough and δ close to δ0.
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As for the case β = 0 and η = 1, using Lemma 6 and the inequality

(24) 1 + log(t) ≤ Ctε/2,

for t > 1/8, we arrive to the same estimate of I11 proceeding as before.

Next we estimate I12. For M > δk0 + dη + β, we have ψt(z − x) ≤ C t(M−d)/2

|z − x|M
.

Also if z ∈ Bj \Bj−1 for j > j0, then |x− z| > ρ(x). Therefore

I12 ≤ C

(
|x− y|
ρ(x)

)δ+δk0 ∫ ρ(x)2

0

t(M−d+α)/2 dt

t

∞∑
j=j0+1

2jδk0
∫
Bj\Bj−1

|f(z)|
|z − x|M

dz

≤ C
|x− y|δ+δk0−M

ρ(x)δ+δk0−M+d−α

∞∑
j=j0+1

2−j(M−δk0)

∫
Bj

|f(z)| dz.

Since for j > j0, the radius of Bj is 2j+3|x− y| > ρ(x), then∫
Bj

|f(z)| dz ≤ C w(Bj)|Bj |β/d ≤ C 2j(dη+β)|x− y|βw(B),

and thus

I12 ≤ C

(
|x− y|
ρ(x)

)−M+δk0+δ−α+d
w(B)

|x− y|d−α−β
∞∑

j=j0+1

2−j(M−δk0−dη−β)

≤ C
(
|x− y|
ρ(x)

)d−dη+δ−α−β
w(B)

|x− y|d−α−β

≤ C
w(B)

|x− y|d−α−β
,

(25)

with an appropriate choice of δ.
To deal with I2, let M > d. From Lemma 4, being t < ρ(x)2,

(26) |qt(x, z)| ≤ C
( √

t

ρ(x)

)δ0 1
td/2

(
1 +
|x− z|√

t

)−M
.

Then we may write

I2 = I21 + I22,

where

I21 = C

∫ |x−y|2
0

∫
B

|qt(x, z)| |f(z)| dz tα/2 dt
t

and

I22 =
∫ ρ(x)2

|x−y|2

∫
B

|qt(x, z)| |f(z)| dz tα/2 dt
t
.
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To take care of I21 let Bt = B(x,
√
t) and N =

⌊
log2

(
4|x− y|√

t

)⌋
. Using

estimate (26), we have∫
B

|qt(x, z)| |f(z)| dz ≤ t
δ0−d

2

ρ(x)δ0

(∫
Bt

|f | + tM/2

∫
B\Bt

|f(z)|
|x− z|M

dz

)

≤ t
δ0−d

2

ρ(x)δ0

∫
Bt

|f | + tM/2
N∑
j=0

∫
2j+1Bt\2jBt

|f(z)|
|x− z|M

dz


≤ C

t
δ0−d

2

ρ(x)δ0

N+1∑
j=0

2−jM
∫

2jBt

|f |

 ,

and since every ball in the last sum has its radius less than 8ρ(x), we can apply
Lemma 6 and that w ∈ Dη, to obtain∫

B

|qt(x, z)| |f(z)| dz ≤ C
t(δ0−dη)/2

ρ(x)δ0−dη+d−β

 N∑
j=0

2−j(M−d+dη)w(2jBt)


≤ C

t(δ0−dη)/2

ρ(x)δ0−dη+d−βw(Bt)

 ∞∑
j=0

2−j(M−d)


≤ C

t(δ0−dη)/2

ρ(x)δ0−dη+d−βw(Bt),

where the last sum is finite since M > d.
Hence,

I21 ≤
C

ρ(x)δ0−dη+d−β

∫ |x−y|2
0

t(δ0+α−dη)/2w(Bt)
dt

t

≤ C

ρ(x)δ0−dη+d−β

∫ |x−y|2
0

t(δ0−β−dη+d)/2Wα+β(x,
√
t)
dt

t

≤ C

ρ(x)δ0−dη+d−β

∫ |x−y|2
0

t(δ0−β−dη+d)/2 dt

t
Wα+β(x, |x− y|)

≤ C

(
|x− y|
ρ(x)

)δ0−β−dη+d

Wα+β(x, |x− y|).

(27)

Since δ0 − β − dη+ d > α > 0, and |x− y| < ρ(x), we have I21 ≤Wα+β(x, |x− y|).
To deal with I22 we use again (26) and Lemma 6, to get

I22 =
∫ ∞
|x−y|2

∫
B

|qt(x, z)| |f(z)| dz tα/2 dt
t

≤ C ρ(x)−δ0
∫ ∞
|x−y|2

t(α+δ0−d)/2 dt

t

∫
B

|f |

≤ C
w(B)

|x− y|d−α−β

(
|x− y|
ρ(x)

)d−dη+δ0−β

≤ C
w(B)

|x− y|d−α−β
≤ CWα+β(x, |x− y|),

(28)
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since d− dη + δ0 − β > α > 0, and |x− y| < ρ(x).
The case β = 0 and η = 1 is performed using Lemma 6 and inequality (24) with

ε < δ0, following the same steps as in (27) and (28) respectively.
We can also obtain that

(29) I3 ≤ CWα+β(x, |x− y|)

following the same lines as in I2 but exchanging x by y and integrating over
B(y, 8|x− y|).

From (23), (25), (27), (28) and (29) we obtain

I ≤ CWα+β(x, |x− y|).

To see II ≤ CWα+β(x, |x− y|) we refer to the reader to [5], p. 238. In fact, since
k̃t is a convolution kernel, ∫

Rd
[k̃t(x, z)− k̃t(y, z)] dz = 0.

So we have

II =

∣∣∣∣∣
∫ ρ(x)2

0

∫
Rd

[k̃t(x, z)− k̃t(y, z)] [f(z)− fB ] dz tα/2
dt

t

∣∣∣∣∣ ≤ II1 + II2,

where

II1 =
∫ ρ(x)2

0

∫
B

|k̃t(x, z)− k̃t(y, z)| |f(z)− fB | dz tα/2
dt

t

and

II2 =
∫ ρ(x)2

0

∫
Bc
|k̃t(x, z)− k̃t(y, z)| |f(z)− fB | dz tα/2

dt

t

with B = B(x, |x− y|).
Applying

|k̃t(x, z)− k̃t(y, z)| ≤ C
e−
|x−y|
Ct

td/2−1
|x− y| |x− z|

and changing variables s = t
|x−y| , we have

II2 ≤ |x− y|
∫
Bc
|f(z)− fB | |x− z|

∫ ρ(x)2

0

e−
|x−y|
Ct

td/2−1
tα/2

dt

t
dz

≤ |x− y|
∫
Bc

|f(z)− fB |
|x− z|d−α+1

dz.

Since w ∈ Dη, from Lemma 4.7 in [5], the last expression is bounded by

|x− y|
∫
Bc

w(z)
|x− z|d−α−β+1

dz ≤ Cw(B)|x− y|d−α−β ,

where the last inequality is due to Lemma 3.9 in [5].
To deal with II1,∫ ρ(x)2

0

∫
B

|k̃t(x, z)| |f(z)− fB | dz tα/2
dt

t
≤ C

∫ ∞
0

∫
B

e−
|x−y|
Ct

td/2
|f(z)− fB | dz tα/2

dt

t

= C

∫
B

|f(z)− fB |
|x− z|d−α

dz
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and denoting Bj = 2−jB, we obtain∫
B

|f(z)− fB |
|x− z|d−α

dz =
∞∑
k=0

∫
Bj\Bj+1

|f(z)− fB |
|x− z|d−α

≤ C

∞∑
k=0

(
2j

|x− y|

)d−α ∫
Bj

|f(z)− fB |

≤ C

∞∑
k=0

(
2j

|x− y|

)d−α−β
w(Bj)

≤ C

∞∑
k=0

(
2j

|x− y|

)d−α−β
w(Bj \Bj+1)

≤ C

∞∑
k=0

∫
Bj\Bj+1

w(z)
|x− z|d−α−β

dz

= C

∫
B

w(z)
|x− z|d−α−β

dz,

finishing the proof of the theorem. �

Acknowledgement: We would like to express our gratitude to the referee for
the thorough revision of the manuscript.

References
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