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Abstract

We introduce a software package running under Matlab that implements several re-
cently proposed likelihood-based methods for sufficient dimension reduction. Current
capabilities include estimation of reduced subspaces with a fixed dimension d, as well as
estimation of d by use of likelihood-ratio testing, permutation testing and information
criteria. The methods are suitable for preprocessing data for both regression and classifi-
cation. Implementations of related estimators are also available. Although the software is
more oriented to command-line operation, a graphical user interface is also provided for
prototype computations.

Keywords: Key words and phases: Dimension Reduction, Inverse Regression, Principal Com-
ponents .

1. Introduction

Since the introduction of sliced inverse regression (SIR; Li 1991) and sliced average variance
estimation (SAVE; Cook and Weisberg 1991) there has been considerable interest in dimension
reduction methods for the regression of a real response Y on a random vector X ∈ Rp of
predictors. A common goal of SIR, SAVE and many other dimension reduction methods is
to estimate the central subspace SY |X (Cook 1994, 1998), which is defined as the intersection
of all subspaces S ⊆ Rp with the property that Y X|PSX. Informally, these methods
pursue the estimation of the fewest linear combinations of the predictors that contain all the
regression information on the response. SIR uses a sample version of the first conditional
moment E(X|Y ) to construct such an estimator, while SAVE uses sample first and second
E(XXT |Y ) conditional moments. Although SIR and SAVE have found wide-spread use in
applications, both have well known limitations. In particular, the subspace Ssir estimated by
SIR is typically a proper subset of SY |X when the response surface is symmetric about the
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origin. SAVE was developed in response to this limitation and provides exhaustive estimation
of SY |X under mild conditions (Li and Wang 2007; Shao, Cook and Weisberg 2007), but its
ability to detect linear trends is generally inferior to SIR’s. For these reasons, SIR and SAVE
have been used as complementary methods, with satisfactory results often being obtained by
informally combining their estimated directions (see, for example, Bura and Pfeiffer 2003;
Cook 2003; Ye and Weiss 2003; Li and Li 2004; Zhu, Othaki and Li, 2005; Pardoe, Yin and
Cook 2007). Another method called directional regression (DR) was recently proposed by
Li and Wang (2007) and it was shown to provide exhaustive estimation of SY |X under mild
conditions. In a series of recent articles, Cook (2007) and Cook and Forzani (2008, 2009a-b)
took a substantial step forward in the development of dimension reduction methods based
on the first two conditional moments. The idea behind this new methodology is to estimate
SY |X via maximum likelihood. Likelihood-based methods provide exhaustive estimation of
SY |X under the same conditions as SIR, DR and SAVE. Unlike those methods, however, a
likelihood-based objective function is employed to acquire the reduced dimensions, giving
these methods

√
n consistency and asymptotical efficiency, which is not a claimed attribute

for any previous method. The dimension d of SY |X can be estimated using likelihood ratio
testing or an information criterion like AIC or BIC, and conditional independence hypotheses
involving the predictors can be tested straightforwardly. Furthermore, it was demonstrated
both theoretically and with simulations that these methods have good robustness properties,
even under substantial deviations of the error distribution from its nominal specification.

The goal of this article is to introduce software tools for these recently proposed likelihood-
based methods for sufficient dimension reduction. We have called the package LDR (standing
for Likelihood-based Dimension Reduction) and it runs under Matlab, which allows use of
computational tools developed outside of the statistics community. In particular, likelihood
maximization under some of the models discussed below requires optimization on a Grassman
manifold G(d,p), which is the set of all d dimensional subspaces of Rp (Edelman, Arias and
Smith 1999). Optimization on Grassmann manifolds is fairly common in some areas such as
computer science and signal processing, but is relatively rare in statistics. The software is
oriented to command-line operation and it is intended to provide an easy-to-use interface sim-
ilar to Weisberg’s DR package for R (http://cran.us.r-project.org/web/packages/dr).
Fixed-dimension as well as dimension selection tasks are supported, both for continuous and
for discrete responses. Functions to compute other estimators such as SIR, SAVE and DR
are also provided, although methods for dimension estimation are not yet available for these
methods.

The paper is organized as follows. In Section 2 we briefly review some theory concerning
likelihood-based sufficient dimension reduction. In Section 3, we describe the main features
of the software and then give some examples of how to use it in Section 4. Finally, we briefly
describe how to use the graphical user interface in Section 4.3. The package and the complete
software documentation is available at http://liliana.forzani.googlepages.com/ldr-
package.

2. Likelihood-based sufficient dimension reduction

The likelihood-based approach to dimension reduction uses model-based inverse regression of
X on Y to gain reductive information for the forward regression of Y on X. We assume that
the data consist of n independent observations on (X, Y ), with X ∈ Rp, Y ∈ R, n > p and
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that X|Y ∼ N(µy,∆y). Then we can write

X = µy + ε, (1)

where ε ∼ N(0,∆y), ∆y > 0. The goal is to find the maximum likelihood estimator for
the central subspace, SY |X. Let d = dim(SY |X) and let α denote a p × d semi-orthogonal
matrix whose columns form a basis for SY |X, so Y |X ∼ Y |αT X. Likelihood-based methods
are designed to estimate SY |X = span(α) under different structures for the mean µy and the
covariance ∆y functions in model (1). These methods are summarized in the sections that
follow. In preparation, let M = span{µy − µ|y ∈ SY } ⊆ Rp, where SY denotes the sample
space of Y , and let â stand for the maximum likelihood estimator of a parameter a.

2.1. Principal Component, PC.

In this model, which was introduced by Cook (2007), it is assumed that the errors are isotonic,
∆y = σ2Ip. As a consequence of this structure, SY |X = M and therefore we have the
representation µy = µ+ ανy, where νy ∈ Rd is unknown for all y ∈ Sy. Under this setting,
the maximum likelihood estimator of SY |X is the span of the first d eigenvectors of the sample
covariance matrix Σ̃ of X.

2.2. Isotonic Principal Fitted Components, IPFC.

As in the PC model, it is assumed that the errors are isotonic. Consequently SY |X =M and
we can again represent the conditional means as µy = µ + ανy. However, following Cook
(2007), the coordinate vectors νy are now modeled as

νy = β{fy − E(fY )}, (2)

where fy ∈ Rr is a known vector-valued function of y with linearly independent elements and
β ∈ Rd×r, d ≤ min(r, p), is an unrestricted rank d matrix. For this model the maximum like-
lihood estimator of SY |X is the first d eigenvectors of Σ̃fit, where Σ̃fit is the sample covariance
matrix of the fitted vectors from the multivariate linear regression of Xy on fy, including an
intercept. When Y is discrete or slicing is used to approximate the coordinates of νy with
step functions,

Σ̃fit =
h∑

y=1

ny

n
(X̄y − X̄)(X̄y − X̄)T ,

where X̄y the average predictor vector in slice y, X̄ the overall average, and h is the number
of slices.

2.3. Structured Principal Fitted Components, SPFC.

This model was introduced by Cook and Forzani (2009-a). The coordinate vectors νy are
again modeled as in (2), but now a linear structure is used to model ∆ =

∑m
i=1 δiGi, where

m ≤ p(p + 1)/2, G1, . . . ,Gm are known real symmetric p × p linearly independent matrices
and the elements of δ = (δ1, . . . , δm)T are functionally independent. It is required also that
∆−1 have the same linear structure as ∆: ∆−1 =

∑m
i=1 siGi. To model a diagonal ∆ we

set Gi = eieT
i , where ei ∈ Rp contains a 1 in the i-th position and zeros elsewhere. This
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basic structure can be modified straightforwardly to allow for a diagonal ∆ with sets of equal
diagonal elements, and for a non-diagonal ∆ with equal off-diagonal entries and equal diagonal
entries. In the latter case, there are only two matrices G1 = Ip and G2 = eeT , where e ∈ Rp

has all elements equal to 1.

In this case the central subspace SY |X = ∆−1M and then µy = µ+ ∆αβfy. The maximum

likelihood estimator for SY |X is the span of the first d eigenvectors of ∆̂
−1

Σ̃ where ∆̂ indicates
the MLE of ∆. The MLE ∆̂ is relatively complicated and an iterative algorithm is evidently
required for its computation

2.4. Extended Principal Fitted Components, EPFC.

In this version the coordinate vectors νy are again modeled like (2) so that µy = µ+ αβfy,
but now ∆ is modeled as ∆ = αΩαT + α0Ω0α

T
0 , where Ω ∈ Rd×d and Ω0 ∈ Rp−d,p−d are

positive definite matrices and still SY |X = span(α). Then the maximum likelihood estimator
for SY |X maximizes over S(α) ∈ G(d,p) the log likelihood function

F (α) = −np
2

(1 + log(2π))− n

2
log |Σ̃| − n

2
log |αT Σ̃

−1
α| − n

2
log |αT Σ̃resα|,

where Σ̃res = Σ̃ − Σ̃fit with Σ̃fit defined in the IPFC model. See Cook (2007) for further
discussion.

2.5. Principal Fitted Components, PFC.

In this model, which was studied by Cook and Forzani (2009-a) the coordinate vectors νy

are again modeled as in (2), but ∆ is now an unstructured positive definite matrix that is
functionally independent of y. The central subspace is again SY |X = ∆−1M and the MLE of

SY |X is the span of Σ̃
−12
res v, with v the first d eigenvector of Σ̃

−1/2
res Σ̃Σ̃

−1/2
res , with Σ̃res defined

as in the EPFC model.

2.6. Covariance Reduction, CORE.

Covariance reduction addresses a rather different dimension reduction issue. Consider the
problem of characterizing the covariance matrices ∆y , y = 1, . . . , h, of a random vector
X observed in each of h normal populations. There is no interest in the population means
µy. The methodology reviewed here, which was proposed by Cook and Forzani (2008), is
based on reducing the sample covariance matrices to an informational core that is sufficient to
characterize the variance heterogeniety across the h populations. It may be a useful alternative
to the spectral modeling in many applications.

For this problem the central subspace, SY |X = span(α) is redefined to be the smallest subspace
satisfying ∆y = ∆ + P T

α(∆y)(∆y − ∆)Pα(∆y), where Pα(∆y) = α(αT ∆yα)−1αT ∆y the
projection onto SY |X using the inner product defined by ∆y. We assume that the data consist
of ny independent observations of Xy, y = 1, . . . , h. Then the maximum likelihood estimator
of SY |X is the subspace span(α) that maximizes over G(d,p) the log likelihood function

Ld(α) = c− n

2
log |∆̃|+ n

2
log |αT ∆̃α| −

h∑
y=1

ny

2
log |αT ∆̃yα|, (3)
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where c is a constant depending only on p, ny and ∆̃y, y = 1, . . . , h denote the sample
covariance matrix from population y computed with divisor ny, and ∆̃ = 1

n

∑h
y=1 ny∆̃y.

2.7. Likelihood Acquired Directions, LAD.

In this model, which was proposed by Cook and Forzani (2009-b), we consider both a general
conditional covariance ∆y and a general mean µy. It requires a discrete response Y . When
the response is continuous it is typical to follow Li (1991) and replace it with a discrete version
constructed by partitioning its range into h slices. The central subspace SY |X = span(α) is
the smallest subspace that satisfies the conditions (i) ∆y = ∆ +P T

α(∆y)(∆y −∆)Pα(∆y) and
(ii) span(α) ⊂∆−1span(µy−µ). Condition (i) is the same as that encountered in the CORE
model, while condition (ii) incorporates the conditional means µy. Assume as before that the
data consist of ny independent observations on Xy, y = 1, . . . , h. Then the MLE for SY |X
maximizes over span(α) ∈ G(d,p) the log likelihood function

Ld(α) = −np
2

(1 + log(2π))− n

2
log |Σ̃|+ n

2
log |αΣ̃α| − 1

2

h∑
y=1

ny log |α∆̃yα| (4)

where ∆̃y is as defined in the CORE model.

2.8. Envelope Models for Multivariate Linear Regression, MLM

The dimension reduction methodology described in this section is different from the previous
methods because it involves a multivariate response Y ∈ Rr and a multivariate predictor X ∈
Rp, assumed to be non-stochastic, that are related through the standard normal multivariate
linear model:

Y = β0 + βX + ε, (5)

where β0 ∈ Rr, β ∈ Rr×p and ε ∼ Nr(0,Σ). The number of responses r is often large
in modern applications of this model. In such situations the response vector may contain
irrelevant linear combinations whose conditional distribution does not change with X. It
may also contain redundant information characterized by Σ having relatively large eigenvec-
tors. Developed recently by Cook, Li and Chiaromonte (2009), envelope models allow for
the possibility that such irrelevant or redundant information may be present in Y, and can
yield maximum likelihood estimators of β with substantially smaller variation that the usual
maximum likelihood estimators.

The redundant and irrelevant information in (5) can be characterized by using the reducing
subspaces of Σ. Let (Γ,Γ0) ∈ Rr×r be an orthogonal matrix, where the columns of Γ ∈
Rr×d form a basis for the smallest reducing subspace of Σ that contains span(β). Then the
parameters in model (5) have the structure β = Γη, and Σ = ΓΩΓT + Γ0Ω0ΓT

0 , where
η ∈ Rd×r is an unconstrained coordinate matrix, and Ω ∈ Rd×d and Ω0 ∈ Rr−d×r−d are
positive definite matrices. The theory developed by Cook, Li and Chiaromonte (2009) shows
that substantial gains in efficiency are possible if the linear combinations ΓT

0 Y contain both
the irrelevant and redundant information in Y.

Fitting with this parameter structure requires estimation of β0, span(Γ), η, Ω and Ω0. The
partially maximized log likelihood for estimating span(Γ) is similar to the objective function
for extended principal fitted components described in Section 2.4.
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3. Software overview

The software is organized to allow users to run different types of processing by calling just a few
interface functions. Several auxiliary tools are then internally called to perform computations
according to the specified options on those interface functions. As the main example, a single
function called ldr manages all methods for maximum likelihood estimation of the central
subspace. Arguments in this function specify the model to use, the response type – continuous
or discrete – and the protocol for the dimension d. This protocol allows d to be specified or
estimated using an information criterion, a likelihood-ratio test or in some case a permutation
test. Separate functions mlm are used for the envelope methodology discussed in Section 2.8.
In Section 4 we describe how to use the software in detail.

The package is designed to run mainly from the command-line, but we have also built a
simple graphical user interface to make usage more intuitive and analysis more interactive.
Although the graphical interface does not currently provide all the features available from
the command-based interface, it is powerfull enough to run prototype computations using
standard values for some parameters of the models. A brief tutorial for using this interface is
given in Section 4.3.

Our implementation emphasizes easy-reading code over performance. It is mainly based
upon built-in functions in Matlab and has been tested for compatibility starting up from
version 6.5 Release 13. Nevertheless, some functions require the Statistics Toolbox too.
The LDR package relies on Lippert’s sg-min toolkit for gradient-based optimization over
Stiefel-Grassmann manifolds (Lippert and Edelman 2000). This toolkit is freely available
at http://www-math.mit.edu/∼lippert/sgmin.html. Some minor modifications of sg-min
were necessary for this application and this modified version of the sg-min is available with
our package. The modifications are described in the documentation that comes with the code.

3.1. Available methods

The LDR package offers an implementation of the models described in Section 2. SIR, SAVE
and DR are incorporated as separate Matlab functions with the same names. SIR and SAVE
are available in Weisberg’s DR package, and DR is available from its authors (Li and Wang
2007). We have included basic implementations here in order to provide a more self-contained
tool for dimension reduction. We have also used a separate Matlab function PC for the PC
model, since this model gives the same solution as the usual principal components and we do
not have a novel way to estimate d.

For the rest of the models, which are the primary focus of the LDR package, we have in-
corporated methods to estimate the central subspace, including estimation of its dimension
d. Available procedures for choosing d include information criteria such as AIC and BIC
(Burnham and Anderson 2002), likelihood-ratio testing, and permutation testing (Cook and
Yin 2001). Table 1 shows the available testing methods for each model. All of these functions
run both for continuous and discrete responses and share the common interface function ldr.

3.2. Managing data, results and plots

Interface functions like ldr have workspace variables as arguments and do not allow managing
data files directly. Despite several procedures for reading data being already available in
Matlab, they usually do not provide support for data files with headers. We have included
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Table 1: Available models and testing criteria for d.

Model AIC BIC LRT PERM
IPFC X X X
SPFC X X X
EPFC X X X
PFC X X X
LAD X X X X
CORE X X X X

functions loadDATA and getDATA to allow for this. The former returns a data matrix, the text
in the header and the labels of the variables if all of them exist. On the other hand, getDATA
returns the response vector and the predictors directly, but does not return the header. In
both of these procedures, data must be numeric and organized with rows as cases and columns
as variables, with columns separated by white space. If another delimiter is used to separate
columns, you can specify it as an optional input.

The header can be just a line of labels, one for each column and with the same delimiter,
or it can have more text describing the data. In either case, the header and variable names
should be separated by a line feed. For illustration, assume that datafile.txt consists of
the following semi-colon delimited data:

This is the header for seven variables
var1 var2 var3 var4 var5 var6 var7
1; 2; 3; 4; 5; 6; 7;
8; 9; 10; 11; 12; 13; 14;

The command loadDATA can be used to read this data file:

[data,header,labels] = loadDATA(’datafile.txt’,’;’);

The semi-colon at the end of the last line is the Matlab command to supress printing. To
read the same file with white space used as the delimiter use the command

[data,header,labels] = loadDATA(’datafile.txt’);

If the response Y is in the first column of matrix data and all other columns are predictors
X, then we can create these data arrays in our workspace with the commands

Y = data(:,1);
X = data(:,2:end);

We can get the same result by typing:

[Y,X] = getDATA(’datafile.txt’,’;’);

If the response fills the seventh column in the data file we create Y by typing

[Y,X] = getDATA(’datafile.txt’,’;’,7);
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Table 2: Additional/optional inputs for available models
Model Input Description Default value
IPFC ’fy’ Basis for regression. A matrix must be given after

this output.
Polynomial basis
of degree r =
max{3, d + 1}.

’alpha’ Confidence level for likelihood ratio test. 0.05
SPFC ’fy’ Basis for regression. A matrix must be given after

this output.
Polynomial basis
of degree r =
max{3, d + 1}.

’alpha’ Confidence level for likelihood ratio test. 0.05
PFC ’fy’ Basis for regression. A matrix must be given after

this output.
Polynomial basis
of degree r =
max{3, d + 1}.

’alpha’ Confidence level for likelihood ratio test. 0.05
EPFC ’fy’ Basis for regression. A matrix must be given after

this output.
Polynomial basis
of degree r =
max{3, d + 1}.

’alpha’ Confidence level for likelihood ratio test. 0.05
’initval’ Starting basis for central subspace estimation. See text for details.
’maxiter’ Maximum number of iterations. 10000

see sg-min Several optional inputs for optimization. ’prcg’,’euclidean’
LAD ’nslices’ Number of slices for continuous response prepro-

cessing.
5 slices.

’alpha’ Confidence level for likelihood ratio test and per-
mutation test.

0.05

’npermute’ Permutations for permutation test. 500 permutations.
’initval’ Starting basis for central subspace estimation. See text for details.
’maxiter’ Maximum number of iterations. 10000

see sg-min Several optional inputs for optimization. ’prcg’,’euclidean’
CORE ’nslices’ Number of slices for continuous response prepro-

cessing.
5 slices.

’alpha’ Confidence level for likelihood ratio test and per-
mutation test.

0.05

’npermute’ Permutations for permutation test. 500 permutations.
’initval’ Starting basis for central subspace estimation. See text for details.
’maxiter’ Maximum number of iterations. 10000

see sg-min Several optional inputs for optimization. ’prcg’,’euclidean’

If we want just the first five columns as predictors we should type:

[Y,X] = getDATA(’datafile.txt’,’;’,7,1:5);

The graphical user interface also allows for using any column in a data array as the response
vector and any number of the remaining columns as the predictors. Nevertheless, for full
compatibility with the software, the response should be the first column of the data matrix
with the predictors occupying the remaining columns.

While saving results in text files is a straightforward operation in Matlab, we have included a
function saveastxt to make it even easier for those who are not familiar with the language.
As it is usual in Matlab, help for this or any other function in the LDR package is available
with a command of the form help function-name. In addition, we have also added some
tools for plotting results to supplement those in Matlab. The function plotDR allows for
an easier labeling of results and automatical selection of the most suitable plot according to
the dimension of the reduced subspace and the type of response. A brief overview of these
capabilities is given in Section 4. More detailed description is available through the software
documentation.
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4. Using the software

4.1. Methods for estimating the central subspace

Except for envelope models, a single function called ldr provides a unified interface for all di-
mension reduction methods based on maximum likelihood estimation of the central subspace.
Other methods such as SIR, SAVE, DR and PC are called from separate interface functions.
Their usage is very similar and is discussed briefly in this section.

To start using the software, set the current directory to the package’s location in your disk
and type setpaths. This command adds all the directories in the package to the Matlab
path, so that all functions there become available for computation.

Five arguments are mandatory when calling the ldr function and they must be provided in
the order that follows: i) the response vector Y ; ii) the matrix of predictors X; iii) an identifier
for the model to be used, such as ’PFC’ or ’epfc’; iv) the type of response, which may be
’cont’ or ’disc’ depending on whether Y is continuous or discrete; and v) the dimension d
of the central subspace or an identifier such as ’BIC’ for an estimation method along with any
necessary argument. Acronyms previously introduced in Section 2 have been used to identify
the available models. Identifiers for estimation methods are ’AIC’ for Akaike’s information
criterion, ’BIC’ for Bayes information criterion, ’LRT’ for likelihood-ratio test and ’PERM’
for permutation test. Matching is case-insensitive, so you can type either ’LRT’ or ’lrt’.
The identifiers ’LRT’ and ’PERM’ should be followed by a test level, typically .01 or .05.

Outputs are the same for all models and they are: i) the projection of the predictors onto the
estimated central subspace; ii) a matrix whose columns are the estimated basis vectors for
the central subspace; iii) the maximum value of the log likelihood; and the iv) the estimated
dimension in case a criterion for d was used.

Depending on the model, additional and optional arguments can be given. As an example,
to slice a continuous response into ten slices for processing data under the LAD model, an
additional string ‘nslices’ and the value 10 should be added to the arguments. In this case,
a call to the function ldr should look like:

[WX,W,L,d] = ldr(Y,X,’LAD’,’cont’,’aic’,’nslices’,10);

where WX is the projection of the predictors onto the estimated central subspace, W is a matrix
whose columns are the estimated basis vectors for the central subspace, L the maximum value
of the log likelihood and d is the dimension of the central subspace estimated by using Akaike’s
information criterion.

Methods such as EPFC, LAD and CORE require a starting basis for the central subspace prior
to iteration. We determine the starting basis internally by searching over several estimators
like SIR, SAVE, DR, PLS and PC and selecting the one that gives the largest value of the
likelihood. Nevertheless, in some cases an external starting basis may be useful. A starting
basis can be supplied by adding the text string ’initval’ followed by a matrix whose column
form a starting basis. Iterative estimation of the central subspace is carried out using the
sg-min package. All the available parameters in this toolkit have been retained as optional
inputs in LDR. In addition, you can set the maximum number of iterations to be done. By
default, computation will stop after 10000 iterations if convergence has not been achieved.
Another optional argument available for all methods is ’-v’, which enables a verbose mode
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to get progress information of the running process. This input should always be given as the
last one. The previous call to LAD in verbose mode with an initial basis B ∈ Rp×d for the
central subspace and with no more than 1000 iterations would look like

[WX,W,f,d] = ldr(Y,X,’LAD’,’cont’,’aic’,’nslices’,10,’initval’,B,’maxiter’,1000,’-v’).

A list of the remaining optional arguments and their identifiers is given in Table 2.

To further illustrate how to use the package, consider a script to study the identification of
hand-written digits {0, 1, . . . , 9}. The 44 subjects were asked to write 250 random digits. Each
digit yields a 16-dimensional feature vector, consisting of 8 pairs of randomly sampled two-
dimensional locations on the digit. The 44 subjects were divided into two groups of size 30 and
14, in which the first formed the training set with sample size 7, 494 and the second formed
the test set with sample size 3, 498. The data set is available from the UCI machine-learning
repository at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits. We
focus on dimension reduction of the 16-dimensional feature vectors for the training set, which
serves as a preparatory step for developing an efficient classifier. For clarity, we first consider
the digits 0, 6 and 9. The reduced data set comprises 2,219 cases. Suppose data are stored
in the text file digits.txt where the first column takes values 1, 2 or 3 indicating if the
observation corresponds to a 0, 6 or 9 respectively. Remembering the file convention discussed
in Section 3.2, we first load the response vector and the predictors by typing:

setpaths; % adds all directories in the LDR package to Matlabs’s path.
data = load(’digits.txt’); % reads data from text file.
Y = data(:,1); % assigns the first column of data to the response.
X = data(:,2:end); % assigns the remaining columns to the predictors.

Now we look for a subspace of dimension d = 2 using the LAD model:

[WX,W] = ldr(Y,X,’LAD’,’disc’,2);

Here we used default options for optimization. To plot results, we can call the provided
function plotDR as:

plotDR(Y,WX,’disc’,’LAD’);

Here, arguments ’disc’ and ’LAD’ allows for labeling data according to the response and
for setting axes labels. The function plotDR behaves like standard Matlab plotting functions.
For instance, a second call to plotDR will overwrite the first plot, unless the Matlab command
for a new figure has been issued. To carry out a similar analysis but using the CORE model,
we could just replace ’LAD’ with ’CORE’ in all the statements above. When using SIR, SAVE,
DR or PC the dimension d should be given, as no testing method for d is currently available
for them in the LDR package. If we choose d = 2, corresponding commands should look as:

[WX,W]=SIR(Y,X,’disc’,2);
[WX,W]=SAVE(Y,X,’disc’,2);
[WX,W]=DR(Y,X,’disc’,2);
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Processing data with continuous responses is completely analogous, but it often allows for
additional arguments. For illustration, let’s review a script to study the data from Figure 5
in Cook and Forzani (2009-b). Suppose you have already loaded your continuous data into
workspace variables Y and X (the complete script and data are available in the directory
data). To process under the LAD model, suppose 5 slices are suitable and d = 1. Then, use
a statement such as

ldr(Y,X,’LAD’,’cont’,1,’nslices’,5);

If we were looking for a similar analysis but wanted instead to estimate d by using likelihood-
ratio testing with level 5% we could type:

[WX,W,f,d] = ldr(Y,X,’LAD’,’cont’,’lrt’,’nslices’,5,’alpha’,0.05);

Similarly, if we were considering estimating d with a permutation test using 500 permutations
with level of 5 %, we would type:

[WX,W,f,d] = ldr(Y,X,’LAD’,’cont’,’perm’,’nslices’,5,’alpha’,0.05,’npermute’,500);

These arguments are inappropriate for models like IPFC, SPFC, EPFC and PFC. For them,
instead, the fy’s should be given as an n × r matrix, say FY, with rows fT

y . In this package
we provide an auxiliary function get_fy which returns fy as a polynomial of order r, where
the order of polynomials r to be used for fy should be given. Calling for the PFC model, for
example, should look like:

FY = get_fy(Y,2); % builds a matrix of polynomials of order 2.
[WX,W,f,d] = ldr(Y,X,’PFC’ ,’cont’ ,’bic’,’fy’ ,FY);

[WX,W,f,d] = ldr(Y,X,’PFC’ ,’cont’ ,’bic’,’fy’ ,FY); where we have told the soft-
ware to use a second-order polynomial and we are also estimating d using the Bayes infor-
mation criterion. To reproduce Figure 5 from Cook and Forzani (2009-b) we would then
use

plotDR(Y,WX,’cont’,’PFC’);

Further examples of how to use the software are provided in the papers folder within LDR.
They reproduce results and figures published when introducing the methods discussed in
Section 2 and they can help in getting used to the main features available in the package
while testing the methods.

4.2. Envelope models

The basic command for computing an estimated basisG of span(Γ) in the envelope model (2.8)
is [GX,G,L,dhat] = mlm_fit(Y,X,dim), where dim stands for the dimension of the envelope.
The essential output consists of the estimate G of Γ, the value L of the log likelihood at the
MLE’s and the estimated dimension dhat of the envelope. GX is an exploratory quantity and
not used routinely in this application. The following options are avaiable for dim: If dim is set
to an interger d, eg., mlm_fit(Y,X,2), then dhat = d and the envelope model is fitted with the
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specified dimension. If dim is set to ’aic’ or ’bic’ then the indicated information criterion
AIC or BIC is used to estmimate d. These commands may take a long time, depending on
the size of the regression. If dim is set to the pair ’lrt’,.05, eg,. mlm_fit(Y,X,’lrt’,.05),
then likelihood ratio testing at level .05 is used to estimate d.

The following commands are available following the initial fit that produces G.

• [betaem,eta,Omega,Omega0,S1,S2] = mlm_empars(Y,X,G) returns the estimated pa-
rameters from the fit of the envelope model. betaem = G x eta is the estimated coef-
ficient matrix Omega and Omega0 are the estimates of Ω and Ω0, S1 is the estimate of
ΓΩΓT and S2 is the estimate of Γ0Ω0ΓT

0 .

• mlm_emses(Y,X,G) returns the matrix of standard errors of the elements betaem from
the fit of the envelope model.

• mlm_seratios(Y,X,G) returns the matrix of ratios of standard errors of the full model
and envelope model estimates of β. The ratios are (full model se’s)/(envelope model
se’s).

Other commands are documented in the folder mlm that comes with the Matlab code.

4.3. Using the graphical user interface

The graphical user interface (GUI) is expected to provide an easy-to-use tool to perform small
prototype tasks using the functions available in the package. The GUI starts by typing demo
in the command window, provided current directory is the LDR folder. Once it has been
loaded, data analysis using the GUI typically follows a sequence of steps:

1. Load data by clicking on the LOAD DATA button and then follow the dialog box until
finding the desired data file.

2. Specify the type of the response according to the data by choosing the right option in
the popup menu. For continuous responses, you should also give the number of slices for
the slicing procedure if you plan to apply methods such as LAD, CORE, SIR, SAVE or
DR. Similarly, you can use this editable text box to type specific input values for each
method. As another example, if you plan to apply models such us PFC, IPFC, SPFC
or EPFC, you should type here the order of the polynomials you want to use in order
to estimate Σ̃fit. Only polynomial bases can be specified when using the GUI.

3. Set the dimension reduction method to apply. Available methods are listed in a popup
menu.

4. Select the dimension of the reduced subspace or choose a method to test for it. Currently,
the GUI allows only d = 1, 2, 3. Testing criteria include all those listed in Table 1. Some
testing criteria, in particular permutation tests, take a long computation time and can
freeze the GUI for awhile.

5. Start the computation by clicking the RUN button. You will then be asked to select the
response vector from the data file. Notice you can select only one vector as the response.
By default, data corresponding to the first column in the data file will be highlighted.
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Clicking on the RUN button again to select the predictors. A default set is highlighted,
but you can change selection if you want to use a subset of them for computations. A
third click on the button sets the selected predictors and starts processing data.

By default, processing data with the GUI only returns results through plots. Nevertheless, you
can check the Show results option to allow the program to print results on the command
window. Furthermore, you can save results as text files by clicking on the SAVE RESULTS
button. When you do so, you are first asked to select what results you want to save. All
analysis performed so far are listed and you can choose as many as you like. For each selection,
you are allowed to save two files. The first one contains the response plus the transformed
predictors, while the second one contains only the generating vectors for the reduced subspace.
You can skip saving either of them by clicking on the CANCEL button in the respective save
dialog.

After some data is loaded, the popups below the figure axes get filled with identifiers for
each column in the data file. You can get scatter plots of pairs of variables by selecting
one of them in the popup corresponding to the vertical axis and the other one in the popup
menu related to the horizontal axis. For a sequential display of scatter plots for some given
variable, you can instead set the related identifier in one of these popups and then click on
the SCATTER PLOTS button. You can then move through the scatter plots by clicking
the UP and DOWN buttons placed below the SCATTER PLOTS button.

5. Conclusion

This paper introduces new software for sufficient dimension reduction based on maximum
likelihood estimation of the central subspace. Matlab implementation of these methods allows
easy integration of complex optimization tools and provides a flexible environment for graphics
capabilities and further model development. Scripts are given to reproduce all published
results concerning the methods discussed above, in agreement with the reproducible research
philosophy. We plan to continue adding methods to the package and to finish code verification
for full compatibility with the OCTAVE programming language in order to provide tools
suitable to run under GNU software.
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