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Abstract. We obtain a comparison of the level sets for two maximal functions

on a space of homogeneous type: the Hardy-Littlewood maximal function of
mean values over balls and the dyadic maximal function of mean values over the

dyadic sets introduced by M. Christ in [4]. As applications to the theory of Ap

weights on this setting, we compare the standard and the dyadic Muckenhoupt

classes and we give an alternative proof of reverse Hölder type inequalities.

1. Introduction.

The partition process of a cube in Rn involved in the original Calderón-Zygmund
decomposition of the domain of a given integrable function f , sometimes can be
substituted by a selection method generally provided by a covering lemma. Spaces
of homogeneous type are natural settings in which covering lemmas are available.

In some analytical problems the Calderón-Zygmund method needs to be applied
to a function defined in a given cube of Rn or a given ball of an abstract metric
measure space. Such is the case if we try to extend the proof given by Coifman and
Fefferman [6] of reverse Hölder inequalities for Muckenhoupt weights.

The basic facts concerning Muckenhoupt Ap classes on the euclidean space for
1 < p < ∞, are consequences of the implicit reverse Hölder inequality contained in
the Ap condition. From the technical point of view, dealing with the boundedness
of operators, the basic fact used is that if w ∈ Ap then there exists a positive ε,
such that w ∈ Ap−ε. The proof of this fact is the key argument in [6] in order to
show that w ∈ Ap if and only if the Hardy-Littlewood maximal function is bounded
as an operator on Lp(w).

To prove “Ap ⇒ Ap−ε”, Calderón-Zygmund decomposition is the standard and
powerful tool. The Calderón-Zygmund decomposition is associated to the weight w
and to a special sequence of levels and has to be obtained on cubes or balls in an
uniform way.

The first generalization of the Muckenhoupt theory to the setting of quasi-metric
measure spaces with the additional assumption of continuity of the measure of balls
as functions of the radius, was given by Calderón in [3].

As it was pointed out by Maćıas and Segovia in [11], balls of a space of ho-
mogeneous type need not be subspaces of homogeneous type with the inherited
measure and metric structures. Examples of parabolic distances on R2 for which
the family of all balls is not a uniform family of subspaces of homogeneous type are
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also given in [11]. Nevertheless they are able to construct on a general space of ho-
mogeneous type (X, d, µ) another quasi-distance δ equivalent to d (c1d ≤ δ ≤ c2d,
for some constants c1 and c2) in such a way that δ-balls are uniformly subspaces
of homogeneous type. Therefore the Calderón-Zygmund decomposition technique
can be applied to functions given on balls with respect to this new distance. Ac-
tually Maćıas and Segovia [11] use their above mentioned construction to give a
proof of the reverse Hölder inequality in the setting of spaces of homogeneous type,
extending the technique introduced by Coifman and Fefferman in [6].

A different proof, of the sufficiency of Ap for the Lp(w) boundedness of the Hardy-
Littlewood maximal operator, avoiding reverse Hölder type inequalities, given by
Christ and Fefferman [5] in the euclidean case, can be rather easily adapted to the
setting of space of homogeneous type (see [1]).

In this note we intend to get a Calderón-Zygmund decomposition that goes back
to the original partitioning argument, even in metric measure spaces. This method
is based in the construction of dyadic type families given by Christ in [4]. Our goal
is to compare the level sets of the Hardy-Littlewood maximal function and the level
sets of the dyadic maximal function, built on these dyadic families. As applications
we shall compare the Muckenhoupt classes defined through the d-balls and through
this dyadic sets and prove reverse Hölder inequalities for Ap weights on spaces of
homogeneous type.

In Section 2 we give the construction, due to Christ [4], of the dyadic family
D in the general measureless setting of quasi metric spaces with finite Assouad
metric dimension. We also prove that for a doubling measure µ on (X, d), Christ’s
construction is providing a tiling sequence of the space with the special property
that the family {(Q, d, µ) : Q ∈ D} is a uniform family of spaces of homogeneous
type and we state the Calderón-Zygmund decomposition of the domain of a real
integrable function. Section 3 contains the elementary but central comparison of
level sets for the dyadic maximal and for the Hardy-Littlewood maximal functions.
In Section 4 we introduce standard and dyadic Ap-Muckenhoupt weights, and we
prove their equivalence under the assumption of the doubling property. Section 5
is devoted to apply the result of §4 to prove reverse Hölder inequalities. Even when
the reverse Hölder inequality in the dyadic setting can be obtained from the general
results for martingales see [8], we give, for the sake of completeness, an elementary
proof in the spirit of [6].

2. Dyadic type partitions on spaces of homogeneous type.

Let X be a set. A quasi-distance on X is a nonnegative symmetric function
defined on X × X such that d(x, y) = 0 if and only if x = y and there exists a
constant K such that the inequality

d(x, y) ≤ K[d(x, z) + d(z, y)],

holds for every x, y, z ∈ X.
A well known result due to Maćıas and Segovia (see [10]) provides a distance ρ

and a real number α, generally larger than one, such that d is equivalent to ρα =: d′.
Since a quasi-distance d on X induces a topology through the neighborhood

system {B(x, r) : r > 0} of each point x ∈ X (see [7]), we consider on X this
topology. A basic corollary of the above mentioned theorem of Maćıas and Segovia
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is the fact that for any quasi-distance d on X it is always possible to construct an
equivalent quasi-distance d′ such that every d′-ball is an open set.

Let us briefly introduce the Assouad dimension of a quasi-metric space. We shall
say that a subset A of X is ε-disperse (ε > 0) if d(x, y) ≥ ε for every x and y in
A with x 6= y. The Assouad dimension of X, dimAX, is the infimum of all those
positive numbers s such that the inequality

#(B(x, λr) ∩A) ≤ Cλs.

holds for some constant C, every λ ≥ 1, every x ∈ X, every r-disperse subset A of
X and every r > 0. It is not difficult to prove that dimAX < ∞ is equivalent to the
fact that, for some N > 0, every r-disperse subset A of X has at most N points in
each ball B(x, 2r) for every x ∈ X and every r > 0.

Let (X, d) be a quasi-metric space with finite Assouad dimension. Assume that
the d-balls are open sets. Take 0 < δ < 1 and j ∈ Z. We shall say that Nj is a
δj-net in X if Nj is a maximal δj-disperse subset of X. Notice that for every j ∈ Z
there exists a non-empty δj-net Nj , since of course we are assuming X 6= ∅. We can
write Nj = {xj

k : k ∈ K(j)}, where K(j) is an initial interval of natural numbers
that may coincide with all of N. In fact K(j) is finite for some j if and only if it is
finite for every j. Actually K(j) is finite for some j if and only if (X, d) is bounded.

The first step in the Christ’s construction is to introduce a tree structure on the
index setA =

⋃
j∈Z ({j} × K(j)) that is closely related to the metric structure on X.

Lemma 2.1 (Lemma 13 in [4]). There exists a partial order � on A satisfying the
following tree properties

(1) (j1, k1) � (j2, k2) implies j2 ≤ j1;

(2) for every (j1, k1) ∈ A and every j2 ≤ j1, there exists a unique k2 ∈ K(j2)
such that (j1, k1) � (j2, k2);

(3) if (j1, k1) � (j1 − 1, k2), then d(xj1
k1

, xj1−1
k2

) < δj1−1;

(4) if d(xj1
k1

, xj1−1
k2

) < δj1−1

2K , then (j1, k1) � (j1 − 1, k2).

For a helpful visualization we may think A as a family tree in which (j1, k1) �
(j2, k2) if and only if (j2, k2) is an ancestor of (j1, k1).

Now we are in position to construct the building blocks of the partitions. Define
for (j, k) ∈ A, the set

(2.1) Qj
k = ∪(i,l)�(j,k)B(xi

l, aδi)

for a positive number a. Choosing a and δ appropriately, we get the desired dyadic
properties for the family {Qj

k : k ∈ K(j), j ∈ Z}.

Theorem 2.2. Let (X, d) be a quasi-metric space with finite Assouad dimension
such that the d-balls are open sets. Then there exist a > 0, C > 0, and 0 < δ < 1
such that the sets Qj

k satisfy the following properties

(D.1) Qj
k is an open set for every (j, k) ∈ A;

(D.2) B(xj
k, aδj) ⊂ Qj

k, for every (j, k) ∈ A;
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(D.3) Qj
k ⊂ B(xj

k, Cδj), for every (j, k) ∈ A;
(D.4) for every (j, k) ∈ A and every i < j there exists a unique ` ∈ K(i) such that

Qj
k ⊆ Qi

`;
(D.5) for j ≥ i then either Qj

k ⊆ Qi
` or Qj

k ∩Qi
` = ∅, k ∈ K(j) and ` ∈ K(i);

(D.6) there exists a constant N such that #{k ∈ K(j) : Qj
k ⊂ Qj−1

` } ≤ N for
every ` ∈ K(j − 1) and every j ∈ Z;

(D.7) for every j ∈ Z, Qj
k ∩Qj

` = ∅ for k 6= ` both in K(j) and the set
⋃

k∈K(j) Qj
k

is dense in X;
(D.8) X is bounded if and only if there exists (j, k) ∈ A such that X = Qj

k.

Proof. Notice that properties (D.2) to (D.5) can be proved as in [4] since there
only the finiteness of the Assouad dimension is actually used. Property (D.1) fol-
low from the fact that the d-balls are open sets. From (D.2) and (D.3) it follows
that the sequence of points xj

k such that Qj
k ⊂ Qj−1

` is an aδj-disperse subset of
B(xj−1

` , Cδj−1). Since (X, d) has finite Assouad dimension, we get (D.6). The first
statement in (D.7) follows from the definition of Qj

k and (2) in Lemma 2.1. The
second follows from the fact that being Ni is a maximal δi-dense subset of X for
every i ∈ Z, and

⋃
k∈K(j) Qj

k ⊇
⋃

i≥j Ni. If X = B(x0, R), it is possible to find j,
negative enough, such that 2KR < aδj . For this j and every k ∈ K(j) we have
B(xj

k, aδj) ⊃ B(x0, R). Since, from (D.2), Qj
k contains the ball B(xj

k, aδj), (D.8)
follows. �

Let us denote by D the class of all dyadic sets defined by (2.1). With Dj = {Qj
k :

k ∈ K(j)}, we have that D =
⋃

j∈ZDj . Given Q and Q′ two elements in D we
say that they are of the same level if Q = Qj

k, Q′ = Qj
` for some j ∈ Z and some

k, ` ∈ K(j).
For a given positive number R, we shall say that two dyadic sets Qj

k and Qj
` of

the same level j ∈ Z are R-neighbors if the inequality d(xj
k, xj

`) ≤ Rδj holds.
The next result is elementary but useful for the subsequent development. Let us

write NR(Qj
k) to denote the set of all R-neighbors of Qj

k.

Lemma 2.3. For every R > 0 there exists a number M = M(R) such that the
number of elements of NR(Qj

k) is less than or equal to M for every j ∈ Z and every
k ∈ K(j).

Proof. Since the set {xj
` : Qj

` ∈ NR(Qj
k)} is δj-disperse and, from the definition of

neighboring, is contained in a ball with radius Rδj , the finiteness of the Assouad
dimension gives the desired estimate. Moreover we can take M ≤ N1+log2 R, where
N is the constant associated to the finiteness of the metric dimension. �

Let (X, d) be a quasi-metric space with finite Assouad dimension such that the
d-balls are open sets. If the space (X, d) is complete, in the Cauchy sense, we can
apply the results of Vol´berg and Konyagin [13], Wu [14] and Luukkainen and
Saksman [9] to get a Borel measure µ on X satisfying the doubling condition

(2.2) 0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) < ∞

for some constant A, every x ∈ X and every r > 0. As usual we shall say that
(X, d, µ) is a space of homogeneous type if (X, d) is a quasi-metric space and µ is
a measure defined on a σ-algebra Σ containing the d-balls that satisfies (2.2). We
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will refer to the triangle constant K and the doubling constant A as the geometric
constants of the space.

Let us notice that if (X, d, µ) is a space of homogeneous type then the fact
that (X, d) has finite Assouad dimension is proved in [7]. So that in a space of
homogeneous type the above construction of dyadic sets is available. But as Christ
shows in [4], a result stronger than (D7) holds in this case: the measure of the
boundaries of dyadic sets vanishes.

Theorem 2.4 ([4]). Let (X, d, µ) be a space of homogeneous type such that d-balls
are open sets and continuous functions are dense in L1(X), then

µ(∂Qj
k) = 0, for every (j, k) ∈ A,

where ∂Qj
k is the boundary of Qj

k.

We would like to observe that under metric completeness the density of Lipschitz
β functions with compact support, for some β > 0, can actually be obtained (see
[2] and [12]).

In the next lemma we sketch the proof of an interesting additional feature of these
dyadic families: {(Q, d, µ) : Q ∈ D} is a uniform family of spaces of homogeneous
type for any doubling Borel measure µ on (X, d).

Lemma 2.5. Let (X, d, µ) be a space of homogeneous type with geometric constants
K and A such that d-balls are open sets. Let D be a dyadic family with constants C, a
and δ. Then there exists a constant Ã (depending only on K, A,C, a and δ), such
that for every (j, k) ∈ A, (Qj

k, d, µ) is a space of homogeneous type with geometric
constants K and Ã.

Proof. Notice first that if a Borel measure ν is given on a quasi-metric space (Y, ρ)
with open balls and it satisfies the doubling property, with a doubling constant
Ao, for the balls centered on a dense subset of Y , then ν also satisfies the doubling
property for every ball with a constant Ão that depends only on Ao and the triangle
constant for ρ. With this fact in mind, take x ∈ Q\

⋃
Q′∈D ∂Q′ for a fixed but

general Q ∈ D. Let r be a positive given number. Assume that Q belongs to the
level jo ∈ Z, that is Q = Qjo

ko
∈ Djo

for some ko ∈ K(jo). With BQ(x, r) we shall
denote the d-balls of the space (Q, d, µ). Observe that if r ≥ 2KCδjo , we have
that BQ(x, r) = BQ(x, 2r) = Q, so that the doubling property trivially holds with
constant equal to one. Let us, then assume that 0 < r < 2KCδjo . Pick j1 ≥ jo such
that 2KCδj1+1 ≤ r < 2KCδj1 . Let k1 ∈ K(j1 + 1) be such that x ∈ Qj1+1

k1
⊂ Q.

Then
B(xj1+1

k1
, aδj1+1) ⊂ Qj1+1

k1
⊂ BQ(x, r).

On the other hand,

BQ(x, 2r) ⊂ B(xj1+1
k1

, CK(
4K

δ
+ 1)δj1+1).

Thus

µ(BQ(x, 2r)) ≤ µ(B(xj1+1
k1

, CK(
4K

δ
+ 1)δj1+1))

≤ Ãµ(B(xj1+1
k1

, aδj1+1))

≤ Ãµ(BQ(x, r)),
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with Ã depending only on K, A,C, a and δ, not on Q. Let us finally observe that
since BQ(x, 2r) is an open set we have that µ(BQ(x, 2r)) > 0 and since BQ(x, r) is
bounded, µ(BQ(x, r)) is finite. �

Let us finish this section by proving a dyadic version of Calderón-Zygmund
decomposition. We shall use the standard notation for mean values: mQ(f) =

1
µ(Q)

∫
Q

fdµ, for Q ∈ D and mX(f) = 1
µ(X)

∫
X

fdµ if µ(X) < ∞ and mX(f) = 0 if
µ(X) = +∞.

Theorem 2.6. Let (X, d, µ) be a space of homogeneous type such that d-balls are
open sets. Let f ≥ 0 be a µ-integrable function defined on X and λ a positive
number with λ ≥ mX(f). Then there exists a family F ⊂ D such that

if Q and Q′ are distinct elements of F , then Q ∩Q′ = ∅;(2.3a)

mQ(f) > λ for every Q ∈ F ;(2.3b)

mQ̃(f) ≤ λ for every Q̃ ∈ D such that Q̃ ' Q for some Q ∈ F ;(2.3c)

mQ′(f) ≤ λ for every Q′ ∈ D such that Q′ ∩ (
⋃

Q∈F
Q) = ∅.(2.3d)

Proof. Let H be the family of all dyadic sets Q ∈ D for which mQ(f) > λ. If H = ∅,
taking F = ∅ we trivially have that (2.3a), (2.3b), (2.3c) and (2.3d) holds true for
every Q′ ∈ D = Fc. Let us then assume that H 6= ∅. For each Q ∈ H, the class of
all dyadic sets Q in H such that Q ⊃ Q is bounded above. Of course this is true if
(X, d) is bounded. For the unbounded case, as f ∈ L1(X, µ), mQ′(f) ≤ 1

µ(Q′)‖f‖1
tends to zero if the diameter the dyadic set Q′ grows to infinity and Q′ ⊃ Q. So
that for each Q ∈ H there is a unique cube Q ∈ D which is maximal with the
properties Q ∈ H and Q ⊃ Q. Let F be the class of those Q. In other words

F = {Q : Q is maximal with the property mQ(f) > λ}.

Properties (2.3a), (2.3b), (2.3c) and (2.3d) for this class F follow directly from
its definition. �

3. Comparison of the level sets of the dyadic and the standard
maximal functions

Let (X, d, µ) be a space of homogeneous type. The non-centered Hardy-Littlewood
maximal function is defined by

Mf(x) = sup
x∈B

1
µ(B)

∫
B

|f |dµ,

for a given locally integrable function f .
Taking d′ a quasi-distance on X equivalent to d such that the d′-balls are open

sets, we have a dyadic family D satisfying the results of the previous section. For
a locally integrable function f we define its dyadic maximal function by

Mdyf(x) = sup
x∈Q∈D

1
µ(Q)

∫
Q

|f(y)| dµ(y),

for x ∈
⋃

Q∈D Q and Mdyf(x) = 0 otherwise.
The basic facts concerning boundedness of the dyadic maximal operator are

contained in the next result.
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Theorem 3.1. With the notation introduced above we have

(a) For every integrable function f and every positive real number λ there exists
a disjoint family F ⊂ D such that

{x ∈ X : Mdyf(x) > λ} =
⋃

Q∈F
Q.

(b) The weak type (1, 1) inequality

µ({x ∈ X : Mdyf(x) > λ}) ≤ 1
λ

∫
X

|f | dµ,

holds for every locally integrable function f and every λ > 0.

(c) If 1 < p ≤ ∞, there exists a constant Cp > 0 such that the inequality

||Mdyf ||p ≤ Cp||f ||p,
holds for every locally integrable f .

Proof. (a) Let λ > 0 and f an integrable function. If λ ≥ mX(|f |) we can apply
Theorem 2.6 to |f | and λ in order to obtain a family F of disjoint dyadic cubes
satisfying (2.3a), (2.3b), (2.3c) and (2.3d). If, on the other hand, λ < mX(|f |),
this is only because µ(X) < ∞. Since µ is doubling we have that X is bounded
and, from (D.8) X = Qj

k for some (j, k) ∈ A. In this case we take as F the family
which contains only the element Qj

k. Notice now that {Mdyf > λ} =
⋃

Q∈F Q. In
fact, F is empty if and only if Mdyf ≤ λ. If F has the only element Qj

k = X,
then both sets are the whole X. For the generic case, notice that if x ∈ Q ∈ F ,
Mdyf(x) ≥ mQ(|f |) > λ. Given now a point x such that Mdyf(x) > λ, we have
mQ(|f |) > λ for some Q ∈ D with x ∈ Q. From the construction of F there exists
a cube Q′ ⊃ Q, Q′ ∈ F , hence x is an element of the set

⋃
Q∈F Q.

(b) From (a) we easily obtain

µ({x ∈ X : Mdyf(x) > λ}) =
∑
Q∈F

µ(Q)

≤ 1
λ

∫
(
⋃

Q∈F Q)

|f | dµ

≤ 1
λ

∫
X

|f | dµ.

(c) From Marcinkiewicz interpolation, we get the Lp boundedness of Mdy for 1 <
p ≤ ∞.

�

Of course inequalities of type (b) and (c) follows also from the inequality Mdyf ≤
C Mf which follows from (D2), (D3) and the doubling property for µ. Observe that
the pointwisse inequality in the opposite sense is not possible in general, but as the
next theorems show a control of the level sets of Mf in terms of those of Mdyf is
still possible.

Theorem 3.2. Let (X, d, µ) be a space of homogeneous type and Mf the non-
centered Hardy-Littlewood maximal function. Let d′ be any quasi-distance on X
equivalent to d for which the balls are open sets. Let D be any dyadic family on
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(X, d′, µ) as in §2. Then there exist R0 > 0 and L > 0 such that for every locally
integrable function f and every positive real number λ, we have that

(3.1) {x : Mf(x) > Lλ} ⊆
⋃

Q∈F

 ⋃
Q′∈NR0 (Q)

Q′

 ∪ Z,

where F is the family associated to f and λ given in Theorem 3.1, NR0(Q) denotes
the R0-neighbors of Q defined in Section §2 and Z =

⋃
Q∈D ∂Q is a set of zero

µ-measure.

Proof. Let us first notice that by taking L large enough it suffices to prove (3.1)
for the centered maximal function

M cf(x) = sup
r>0

1
µ(B(x, r))

∫
B(x,r)

|f |dµ

instead of Mf(x) and for the case in which actually the d-balls are open sets. The
constants R0 and L will become explicit at the end of our estimates. Let us take
a point x which does not belong to the set

⋃
Q∈F

(⋃
Q′∈NR0 (Q) Q′

)
∪ Z. In order

to obtain an upper estimate for the M cf(x), let us pick a ball B(x, r) centered at
x with positive radius r and let us estimate mB(x,r)(|f |). Take j ∈ Z such that
δj+1 ≤ r < δj . Define the subclass of dyadic sets

G(x, r) = {Q̃ ∈ Dj : Q̃ ∩B(x, r) 6= ∅}

Claim: No Q̃ ∈ G(x, r) is contained in a Q ∈ F .
Let us assume that the claim is proved. The family D can be partitioned in two

disjoint subfamilies D1 = {Q ∈ D : mQ(|f |) > λ} and D2 = {Q ∈ D : mQ(|f |) ≤
λ}. From the claim and Theorem 2.6 we see that G(x, r) ⊂ D2. Notice also that the
number of elements of the class G(x, r) is bounded by a constant M1 which does
not depend on x or r > 0. Hence

1
µ(B(x, r))

∫
B(x,r)

|f |dµ =
1

µ(B(x, r))

∑
Q̃∈G(x,r)

∫
B(x,r)∩Q̃

|f |dµ

≤
∑

Q̃∈G(x,r)

µ(Q̃)
µ(B(x, r))

mQ̃(|f |)

≤ M1A2λ,

where A2 satisfies µ(Q̃) ≤ A2µ(B(x, r)), which follows from the fact that Q̃ is
contained in the ball centered at x with radius Cr for some fixed C. So, we have that
M cf(x) ≤ Lλ with L = M1A2. Let us, finally, prove the claim. Let us assume there
exist Q̃ ∈ G(x, r) and Q ∈ F such that Q̃ ⊂ Q. Since Q is also a dyadic set, we have
that Q = Qi

l for some i ≤ j and some l ∈ K(i). Let us show that for an appropriate
choice of the constant R0, we have the contradiction: x ∈

⋃
Q′∈NR0 (Q) Q′. Take

a point y ∈ Q̃ ∩ B(x, r), then d(x, xi
l) ≤ K[d(x, y) + d(y, xi

l)] < K(r + Cδi) <
K(δj +Cδi) ≤ K(1+C)δi. In other words x is a point in the ball B(xi

l,K(1+C)δi)
which does not belong to the residual boundaries Z. Hence x ∈ Qi

m for some
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m ∈ K(i). So that from (D.3) d(x, xi
m) < Cδi then,

d(xi
m, xi

l) ≤ K(d(xi
m, x) + d(x, xi

l))

< K(Cδi + K(1 + C)δi)

= K(C + K(1 + C))δi.

In other words x ∈ Qi
m and Qi

m and Q = Qi
l are R0-neighbors with R0 = K(C +

K(1 + C)). �

Theorem 3.2 allows us to obtain distribution function estimates for the Hardy-
Littlewood maximal function in terms of the dyadic maximal function for a given
doubling measure ν on X which is absolutely continuous with respect to µ.

Theorem 3.3. Let (X, d, µ), Mf , d′ and D as in Theorem 3.2. Let ν � µ be a
doubling measure. Then there exist two positive and finite constants L and C such
that the inequality

ν∗({Mf > Lλ}) ≤ Cν({Mdyf > λ}),

holds for every locally integrable f and every λ > 0, where ν∗(E) = inf ν(F ) with
F ⊃ E and F ∈ Σ.

Proof. Let L and R0 be the numbers given by Theorem 3.2. Let us first observe
that, from Lemma 2.3, (D2) and (D3), there exists a constant A(ν, R0) such that
the inequality

ν

 ⋃
Q′∈NR0 (Q)

Q′

 ≤ A(ν,R0)ν(Q)

holds for every Q ∈ D. From this inequality and (3.1) we have that

ν∗({Mf > Lλ}) ≤ ν

 ⋃
Q∈F

 ⋃
Q′∈NR0 (Q)

Q′

 + ν(Z)

≤
∑
Q∈F

ν

 ⋃
Q′∈NR0 (Q)

Q′


≤ A(ν, R0)

∑
Q∈F

ν(Q)

= A(ν, R0) ν

 ⋃
Q∈F

Q


= A(ν, R0) ν({Mdyf > λ}),

and the result holds with C = A(ν,R0).
�
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4. Ap and dyadic-Ap Muckenhoupt weights on space of homogeneous
type.

A non-negative, measurable and locally integrable function w defined on the
space of homogeneous type (X, d, µ), is said to be a Muckenhoupt weight of class
Ap(X, d, µ) (1 < p < ∞) if the inequality

(4.1)
( ∫

B

wdµ

) (∫
B

w−
1

p−1

)p−1

≤ Cµ(B)p
,

holds for some constant C and every ball B in X. We say that w ∈ A1(X, d, µ) if
there exists a constant C such that the inequality

(4.2)
1

µ(B)

∫
B

wdµ ≤ C ess infBw,

holds for every ball B in X. Let us observe that the definitions of the Ap classes
are invariant by change of equivalent quasi-distances.

Assuming that η is a quasi-distance on X such that η-balls are open sets and
(X, η, µ) is a space of homogeneous type, we have dyadic families D = D(η) given
by the sets defined in (2.1). It is easy to see that if w ∈ Ap(X, d, µ), then the
measure w(x)dµ(x) is doubling.

We say that a non-negative, measurable and locally integrable function w is a
dyadic Muckenhoupt weight of class Ady

p (X, η, µ) 1 < p < ∞, (resp. p = 1), with
respect to D, if (4.1) (resp. (4.2)) holds with Q ∈ D instead of B.

Let us notice that Ap(X, d, µ) implies Ady
p (X, d′, µ) for d′ ' d with the d′-balls

open sets. In fact, if w ∈ Ap(X, d, µ) and Qj
k is any dyadic set in D, we have( ∫

Qj
k

wdµ

) (∫
Qj

k

w−
1

p−1

)p−1

≤
( ∫

B(xj
k,Cδj)

wdµ

) (∫
B(xj

k,Cδj)

w−
1

p−1

)p−1

≤ Cµ(B(xj
k, Cδj))p

≤ C̃µ(B(xj
k, aδj))p

≤ C̃(µ(Qj
k))p.

The converse is generally false. For example the function defined on R by w(x) = 1
if x < 0 and w(x) = x1/2 if x > 0 belongs to Ady

2 but not to A2 with respect to the
usual dyadic intervals on R.

The purpose of this section is to prove the next result.

Theorem 4.1. Let (X, d, µ) be a space of homogeneous type. If ν � µ is doubling
measure on (X, d) such that for some d′ ' d with the d′-balls being open sets we
have that w = dν

dµ ∈ Ady
p (X, d′, µ), then w ∈ Ap(X, d, µ).

Proof. Since w ∈ Ady
p (X, d′, µ), by Hölder inequality we get that, for every Q ∈ D,

1
µ(Q)

∫
Q

|f | dµ ≤ 1
µ(Q)

( ∫
Q

|f |pw dµ
)1/p( ∫

Q

w−
1

p−1 dµ
)1/p′

≤ C
( 1
w(Q)

∫
Q

|f |pw dµ
)1/p

,

where w(Q) =
∫

Q
w dµ. Then we get that

(4.3) Mdyf(x) ≤ C[Mdy
w (|f |p)(x)]1/p,
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where Mdy
w g(x) = supx∈Q,Q∈D

1
w(Q)

∫
Q
|g|w dµ for every x ∈ ∪Q∈DQ and Mdyg(x) =

0 otherwise. Now, from Theorem 3.3, (4.3) and, since ν is doubling, applying The-
orem 3.1 (b) in the space of homogeneous type (X, d, ν) we get

ν∗({Mf > λ}) ≤ ν({Mdyf >
λ

L
})

≤ ν({Mdy
w (|f |p) >

( λ

CL

)p})

≤ CpLp

λp

∫
X

|f |pw dµ,

for all locally integrable f and all λ > 0. Then, by standard arguments we obtain
that w ∈ Ap(X, d, µ). In fact, let us consider a ball B and f = w−

1
p−1 χB . Then

B ⊂
{
Mf >

1
µ(B)

∫
B

w−
1

p−1 dµ− ε
}
,

for all ε > 0. So that∫
B

w dµ = ν(B) ≤ ν∗
({

Mf >
1

µ(B)

∫
B

w−
1

p−1 dµ− ε
})

≤ C(
1

µ(B)

∫
B

w−
1

p−1 dµ− ε
)p

∫
B

w−
1

p−1 dµ,

for all ε > 0. Then letting ε → 0 we are done. �

Notice that Theorem 4.1 proves that, under the hypothesis of doubling for a given
weight w, the Muckenhoupt character of w can be described through its behavior
on any dyadic system D(η) with η ' d. Since doubling condition on w, in Theorem
4.1, involves the family of all balls on (X, d), one may think that the Muckenhoupt
character of w is not completely described by a dyadic family of the type D(η).
But if we look at the actual estimate in the proof of Theorem 3.3, we see that the
doubling property used involves only dyadic sets. Moreover what matters is the
boundedness of the measure of neighbors of a dyadic set Q in terms of the measure
of Q itself. Nevertheless is not difficult to prove that this notion of doubling is
equivalent to the standard one, so that all the information of the Muckenhoupt
character of a weight w can be given in terms of its behavior on the dyadic sets.
Let us state this remark in the next result.

Corollary 4.2. Let (X, d, µ) be a space of homogeneous type such that d-balls are
open sets and let D = D(d). Let w be a non-negative locally integrable function
defined on X. Then w ∈ Ap(X, d, µ) if and only if w ∈ Ady

p (X, d, µ) and for each
R > 0 there exists a constant A(w,R) such that the inequality

(4.4) w(Q′) ≤ A(w,R)w(Q)

holds for every Q′ ∈ NR(Q) and for every Q ∈ D.

Proof. Since it is clear from the definition of R-neighbors of a given Q ∈ D, that
the doubling condition implies (4.4), from Theorem 4.1, we only have to show the
converse. Given r > 0, let j ∈ Z be such that K(1 + C)δj < r ≤ K(1 + C)δj−1

where K is the triangle constant of d and C is the constant in Theorem 2.2. It is
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easy to see that there exists ` ∈ Z such that Qj
` ⊂ B(x, r) since Nj is maximal with

the property of δj-dispersion. We shall prove that there exists R0 such that

B(x, 2r) ⊂

 ⋃
Q∈NR0 (Qj

`)

Q

 ∪ Z,

where Z = X \
⋃

k∈K(j) Qj
k. To prove this fact take y ∈ B(x, 2r)−Z. Then, there

exists m ∈ K(j) such that y ∈ Qj
m. Notice that

d(xj
m, xj

`) ≤ K[d(xj
m, y) + d(y, xj

`)]

≤ K[Cδj + K[d(y, x) + d(x, xj
`)]]

≤ K(Cδj + 3Kr)

≤ [KC + 3K3(1 + C)/δ]δj .

Then choosing R0 = KC + 3K3(1 + C)/δ we get that Qj
m ∈ NR0(Q

j
`). Now, by

Lemma 2.3

ν(B(x, 2r)) ≤ ν

 ⋃
Q∈NR0 (Qj

`)

Q

 + ν(Z)

≤ Cν(Qj
`) ≤ ν(B(x, r)).

�

Let us finally observe that (4.4) is not the “dyadic doubling” obtained naturally
from Ady

p relating the measure of a dyadic set to the measure of its father (first
ancestor): if Q = Qj

k ∈ D and Q̃ = Qj−1
` are such that Q̃ ⊇ Q, then

(4.5) w(Q̃) ≤ Cw(Q).

In fact, from the Ady
p condition, the doubling property for µ and Hölder inequality,

we get the following inequalities( ∫
Q̃

w dµ
)( ∫

Q̃

w−
1

p−1 dµ
)p−1 ≤ C[µ(Q̃)]p

≤ C̃[µ(Q)]p

≤ C̃
( ∫

Q

w dµ
)( ∫

Q

w−
1

p−1 dµ
)p−1

≤ C̃
( ∫

Q

w dµ
)( ∫

Q̃

w−
1

p−1 dµ
)p−1

,

which give us (4.5).

5. Application to reverse Hölder inequalities.

As it was mentioned in the introduction we shall use the above results to give
another proof of the next theorem.

Theorem 5.1. Let (X, d, µ) be a space of homogeneous type such that continuous
functions are dense in L1(X) and let w ∈ Ap(X, d, µ) then there exists a positive ε
such that w ∈ Ap−ε(X, d, µ).
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To prove the theorem let us take a quasi-distance d′ equivalent to d such that
d′-balls are open sets and let us construct a dyadic family D = D(d′) associated to
this new quasi-distance. As we have observed in Section 4; since w ∈ Ap(X, d, µ),
then w ∈ Ady

p (X, d′, µ). If we prove the desired result in the dyadic setting, i.e.:
there exists a positive ε such that w ∈ Ady

p−ε(X, d′, µ) we are done, since we can
apply Theorem 4.1 because wdµ is a doubling measure. On the other hand in order
to prove Ady

p ⇒ Ady
p−ε, it will suffice to obtain a reverse Hölder inequality in the

dyadic context.
Even when the remaining dyadic reverse Hölder inequality could be obtained

from the martingale setting [8], we shall briefly sketch how the result follows from
the analytical tools given in Theorem 2.6 (Calderón-Zygmund decomposition) and
Lemma 2.5 applying mutatis mutandi the technique introduced by Coifman and
Fefferman in [6].

Lemma 5.2 (Reverse Hölder Inequality). Assume that the space satisfies the hy-
potheses of Theorem 5.1 and that each ball is an open set. Given a weight w ∈ Ady

p

with 1 ≤ p < ∞ there exist positive constants C and δ depending only on p, the
Ady

p constant for w and the geometric constants such that the inequality

(5.1)
(

1
µ(Q)

∫
Q

[w(x)]1+δdµ(x)
) 1

1+δ

≤ C

µ(Q)

∫
Q

w(x)dµ(x)

holds for every Q ∈ D.

Proof. Let w be a weight in Ady
p , let Q be a given dyadic set in D and let {λm : m =

0, 1, . . . } be an increasing sequence with λo = mQ(w). Since (Q, d, µ) is a space of
homogeneous type (Lemma 2.5) we can apply Theorem 2.6 with X = Q, f = w
and λ = λm in order to obtain a family Fm ⊂ D satisfying (2.3a) to (2.3d). Set
Ωm =

⋃
Q′∈Fm

Q′. Notice that Ωm+1 ⊆ Ωm, for every m = 0, 1, 2, . . . . The desired
inequality (5.1) will follow from the next statement.

Claim: For each α ∈ (0, 1), we can choose two numbers M > 1 and β ∈ (0, 1)
such that λm = λoM

m and both inequalities

(5.2a) µ(Ωm) ≤ αmµ(Ωo);

and

(5.2b) w(Ωm) ≤ βmw(Ωo)

hold for every Q and every m = 0, 1, 2, . . ..
Assuming our claim, let us finish the proof of the lemma. Pick δ > 0 such that

βM δ < 1. Let us estimate the desired mean value of w1+δ over the set Q,∫
Q

w1+δdµ =
∫

Q−Ωo

w1+δdµ +
∞∑

m=0

∫
Ωm−Ωm+1

w1+δdµ +
∫

⋂∞
m=1 Ωm

w1+δdµ.

From the first assertion in our claim, we see that the last term above vanishes. For
the first and the second terms we use (2.3d), the Lebesgue Differentiation Theorem
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and the second assertion in the claim in order to get∫
Q

w1+δdµ ≤ λδ
ow(Q) +

∞∑
m=0

λδ
m+1w(Ωm)

≤
(
λδ

o +
∞∑

m=0

λδ
m+1β

m
)
w(Q)

= λδ
o

(
1 +

∞∑
m=0

M δ(m+1)βm
)
w(Q)

= C

(
w(Q)
µ(Q)

)1+δ

µ(Q).

Let us finally sketch the proof of the claim. Take Q ∈ D and α ∈ (0, 1). As in the
euclidean case, it is enough to show that there exits a constant M such that with
λm = λoM

m we have the inequalities

(5.2c) µ(Ωm+1 ∩Q′) ≤ αµ(Q′);

for every Q′ ∈ Fm and every m = 0, 1, 2, . . . . Once (5.2c) is proved, from the
standard Ady

∞-type inequality, we also have

(5.2d) w(Ωm+1 ∩Q′) ≤ βw(Q′),

for some β < 1. Adding, over Q′ ∈ Fm, in the inequalities (5.2c) and (5.2d), and
then iterating, we obtain (5.2a) and (5.2b).

Let us sketch the proof of (5.2c). Take Q′ ∈ Fm. Since we are dealing with the
dyadic sets in D, the intersection of Q′ and Ωm+1 is the disjoint union of those
dyadic sets Q′′ ∈ Fm+1, which are contained in Q′. From property (2.3b) of the
Calderón-Zygmund decomposition at level λm+1, we have

µ(Ωm+1 ∩Q′) =
∑

{Q′′∈Fm+1:Q′′⊆Q′}

µ(Q′′)

<
1

λm+1

∑
{Q′′∈Fm+1:Q′′⊆Q′}

∫
Q′′

wdµ

≤ 1
λm+1

∫
Q′

wdµ.

Let us now consider the first ancestor Q̃ of Q′, applying (2.3c), and using the fact
that Q̃ and Q′ have comparable µ-measures, we get

µ(Ωm+1 ∩Q′) ≤ C
λm

λm+1
µ(Q′),

which becomes (5.2c) provided that λm =
(

C
α

)m

λo or, in other words M = C
α . �
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