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Universidad Nacional del Litoral, CONICET
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Abstract— Compressible flow problems usu-
ally exhibit features in the flow field that
need a very refined mesh in order to achieve
an acceptable accuracy in the numerical solu-
tion. Uniform refinement of the whole mesh
quickly becomes prohibitive in three dimen-
sions. In these situations, the use of an adap-
tive technique shows advantageous. Here, a
h-refinement/coarsening strategy for unstruc-
tured finite element meshes is described and
applied to solve the spherical blast wave prob-
lem driven by a point-like intense explosion.
The resulting meshes are non-conformal. A 3-D
refinement constraint is introduced to enforce
a smooth size distribution among neighbor ele-
ments in the mesh and a gradient error indica-
tor based on the flow variables is used to track
discontinuities. It is shown that the adaption
strategy allows to improve the accuracy and to
reduce the spurious oscillations in the numer-
ical solution, requiring just a small fraction of
the overall computing time.
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I. INTRODUCTION

Transonic and supersonic flow problems are common
candidates for being adaptively solved by the finite el-
ement method because discontinuities usually develop
in a very thin region compared to some characteristic
length of the problem domain. Adaption of the mesh
allows to reduce the computational effort required to
solve the fluid dynamic problem because of the intro-
duction of smaller finite elements only where they are
needed. A mesh enrichment procedure is used in this
work to achieve this goal. The meshes to be adapted
are unstructured and made up tetrahedra, although
hexaedra can also be handled. Hanging nodes appear
in the refined meshes because no transition elements
are used to match the regions of the mesh with dif-
ferente levels of refinement. A simple gradient error
indicator based on the flow variables is used to drive

the refinement of the elements in order to track the
discontinuities through the flow field.

The adaptation algorithm is partially parallelized,
i.e. the mesh refinement/unrefinement stage is sequen-
tially performed while the solution of the fluid flow
equations is computed in parallel on cluster of work-
stations. The three dimensional Euler equations are
solved with the PETSc-FEM code (Storti et al., 1999-
2009). This solver implements both the SUPG formu-
lation introduced by Brooks and Hughes (1980, 1982)
to stabilize the advection terms and shock capturing
techniques for the treatment of strong shocks. The
adaption of the mesh and the solution of the equa-
tions are coupled together for an efficient capturing of
the continuously varying flow physics. The refinement
algorithm is developed in C++ making an intensive
use of the algorithms and containers provided by the
STL(Sil, 1993-2006) library.

The spherical blast wave problem is solved. The re-
sults corresponding to the adapted solution are com-
pared to those computed on a fixed mesh. Also, the
set of ODEs derived from the Euler equations under
the Taylor-Sedov self-similar assumptions are solved
and used to validate the finite element solutions of the
flow field behind the shock. Conclusions about the
advantages of using the adaptive strategy are drawn
based on the accuracy of the numerical solution and
computational costs.

II. REFINEMENT SCHEMES AND
REFINEMENT CONSTRAINTS

The adaption strategy introduced in this work is an ex-
tension of that presented in a series of previous works
for steady and unsteady problems (Ŕıos Rodriguez
et al., 2005, 2009).

It is well known that the condition number of the
global stiffness matrix in the finite element method
strongly depends on the geometrical quality of the el-
ements in the mesh (Schewchuck, 2002). Also, the re-
finement procedures tend to diminish the quality of the
mesh. To keep bounded this quality decrease, only 1:4
and 1:8 regular refinement patterns are applied to sub-
divide 2-D and 3-D elements, respectively. However,



Figure 1: Tetrahedron refinement sequence.

since no regular 1:8 subdivision exists for tetrahedra a
refinement scheme that shows a good tradeoff between
the computational effort and the geometrical quality
of the new elements in the mesh is chosen. In Ŕıos Ro-
driguez et al. (2009) it was shown through numerical
experiments that refining the parent tetrahedron by
joining the midpoints (a0, . . . , a5) of the edges with
new ones and choosing the shortest diagonal of the in-
ner octaedron (see sequence 1-2-3 in Fig.1) to get the
four remaining tetrahedra is a good refinement strat-
egy. In those experiments, the geometrical quality of
the tetrahedra was measured with both geometric and
algebraic quality metrics such as the dihedral angles
and the mean ratio shape measure introduced by Liu
and Joe (1994).

But besides high geometrical quality elements, a
smooth transition in the size of the elements is also
needed (Schewchuck, 2002). To this end, an exten-
sion to a refinement rule introduced by Babuska and
Rheinboldt (1978) in the case of 2-D meshes is used.
The rule of Babuska and Rheinboldt says that no more
than one hanging node should be shared among neigh-
bour elements through the common edge to which the
hanging node belongs.

However, this constraint does not take into account
special situations that appear in 3-D meshes, as it is
shown in Fig.2 for tetrahedral elements. In three di-
mensions the neighborhood through edges and faces as
well as the refinement of orphan edges 1 on triangular
shared faces also have to be taken into account. Con-
sider any two tetrahedra in a mesh that are neighbors
through a common face. One of them has already been
refined. Then, one of the elements that “touches” the
shared face with an edge is marked to be refined (the
green-coloured element in Fig.2.a). As a consecuence,
an orphan edge (i.e.: the edge defined by the nodes
n1 and n2) on the shared face also needs to be re-
fined. It is seen in Fig.2.b) that if the two dimensional
constraint were just considered, this situation would

1Edges that appear in the refined mesh but are not obtained
by the refinement of another edge are said to be ophans or with
no parents.

be accepted. But then a difference of more than one
level of refinement would exist among nearby elements
in the mesh. Besides, the state of the flow variables
on that irregular node (marked as a red dot) would be
constrained to the average of the state at nodes n1 and
n2, which could also be constrained in the flow calcu-
lation (explained in the following section). Figure 2.c)
shows that refining the element that shares the face
such that at least one of its orphan edges has been re-
fined copes with the problem. Obviously, this requires
appropriate data structures to handle the downward
and upward adjacencies among the mesh entities.

III. ADAPTION STRATEGY

The adaptive solution of the problem begins by solving
the fluid flow equations on a conforming (no hanging
nodes) unstructured mesh, hereafter called the base
mesh. After a fixed number of time steps (nsteps),
the regions of the base mesh that need to be refined
are selected. In this work, the selection criterion is
based on the magnitude of the element-wise computed
gradient of the density in the following manner

c1 ≤
‖ ∇iρ ‖ ·hi

maxi(‖ ∇iρ ‖ ·hi)
(1)

where c1 is a constant set beforehand by the user, hi

is a measure for the size of the element and ‖ ∇iρ ‖
is the magnitude of the density gradient computed for
that element.

Then a succession of nested nonconforming meshes
is generated by applying the refinement patterns and
refinement constraints already described in section II.
until the maximum level of refinement allowed by the
user is reached. It is worth to mention that although
the adapted meshes introduce hanging nodes on the
edges or faces of an element, constraining the solution
at these nodes ensures its continuity among nearby
elements through that edge or face. That is, the flow
field variables on hanging nodes are computed as the
average of the corresponding variables for the nodes
that define the edges or faces (hexaedral elements) to
which these hanging nodes belong.

As the base mesh in refined, the state computed by
the solver is projected and the boundary conditions are
updated as will be later explained in subsections A.and
B.. When the maximum level of refinement is reached,
the flow computation is restarted using the projected
solution as the initial state together with the proper
boundary conditions.

After the solution is advanced nsteps time steps, the
selection criterion given by Eq.(1) is applied again and
new elements are marked to be refined. The adaption
strategy implicitly assumes that all the elements that
are not selected for refinement should be coarsened.
Also, since a maximum level of refinement is set to
avoid high computational costs, only those elements
that do not belong to the maximum level are finally
included in the list of elements to be refined. On the



(a) Marked element with an edge (orphan) in
the center of a triangular shared face

(b) Refinement considering only the 2-D con-
straint

(c) Refinement of the neighbour through the
shared triangular face (3-D constraint)

Figure 2: Refinement constraint for 3-D meshes - Or-
phan edge case.

other hand, an element is unrefined if and only if all its
brothers (8 in 3-D and 4 in 2-D) are already marked to
be unrefined. Then they are replaced by their parent
element. This search parent procedure is recursively
repeated on the data structure that stores the hierar-
chical relationship of the elements in the mesh until
the base mesh level is reached. Finally, the list of el-
ements to be refined in order to adapt the mesh is
provided. It must be taken into account that although
some elements should initially be unrefined, the sub-
sequent application of the refinement constraint previ-
ously described may be does not allow it. Besides, it
is emphasized that this strategy does not consider the
coarsening of the base mesh.

Finally, a few words about the updating frequency
(i.e. number of time steps nsteps until the mesh is up-
dated again) are mentioned. The updating frequency
of the mesh is set constant throughout the whole sim-
ulation. But, since the time step size is adjusted after
every mesh adaption to satisfy the Courant-Friedrich-
Lewy (CFL) condition for compressible flow problems
(see Laney (1998)), the time simulated between two
succesive adaptions of the mesh is not constant. This
should prevent the shock waves from moving outside
of the most refined regions of the mesh until they are
adapted again.

On the other hand, a question arises about how to
choose the appropriate frequency. In practice it is
found that the adaption of the mesh, the boundary
conditions and the projection stage of the state takes
just a small fraction of the total computational time
(approximately less than 5 per cent for unsteady three
dimensional problems). This induce as to choose a
high updating frequency for the mesh, maybe 5 or 10
time steps, for not compromising the overall perfor-
mance of the adaptive solution procedure. If the time
required by the adaption of the mesh were found to be
a greater percentage of the overall computing one then
a lower updating frequency should be chosen. In this
case, however, a bigger cost would be transferred to
the flow computation stage since the refined regions of
the mesh would need to be “wider” to ensure the dis-
continuities will be kept inside these regions until the
mesh is updated again. Choosing a higher frequency
for adapting the mesh enables to use narrower refined
regions around discontinuities so that the fluid flow
problem is less expensive to solve.

A. Solution Projection

A new state for the recently adapted mesh has to be
supplied as an initial condition to restart the flow com-
putation. When the base mesh is adapted for the first
time, a linear interpolation of the flow variables is used
to compute the state on the new vertices. This is
enough to guarantee conservation of the flow variables
if linear finite element are used and if the new points
are placed in the middle of the edges, barycenter of
faces (quads) or elements (hexaedra).



For the other adaption steps, the state is projected
as follows : given a vertex V in the recently adapted
mesh (adaption step n) it is required to find the ele-
ment in the previously adapted mesh (adaption step
n − 1) that contains it. This is done through an ap-
proximate nearest neighbour search using the algo-
rithms provided by the ANN library (Arya and Mount,
2006). The barycenter of the elements that belong to
the (n − 1) adaption step are used as data points in
ANN framework. The approximate search provides a
list of k -nearest elements lV = {e1, e2, . . . , ek} to ver-
tex V . These elements are candidates for containing
V . Then, it is possible to find the element that truly
contains V by computing the volume (3-D) or area
(2-D) coordinates N (ei)

j , j = 1, . . . , ne for each one of
the candidates at this vertex. Here ne is the number
of nodes per element and j is the index of the local
vertex in the element. If any of the volume coordi-
nates N (ei)

j is less than zero plus a certain tolerance,
point V is outside of element ei and the next element
in lV is considered. Only if all the volume coordinates
for that element are greater than or equal to zero it
can be stated that V is inside element ei or over one
of its faces or edges. In this case the traversal of lV is
interrupted and the state vector is computed as follows

U(n)
V =

Ne∑
j=1

N
(ei)
j (xV ) ·U(n−1)

j (2)

where U(n−1)
j is the state vector defined at local vertex

j of the element ei at adaption step n − 1, xV is the
coordinates vector of vertex V and U(n)

V is the state
vector for vertex V at adaption step n. Dashed lines
in Fig.3.a illustrate the volume coordinates at vertex
V for adaption step n− 1 while Fig.3.b shows the sit-
uation for the current adaption step.

B. Boudary Conditions and Mesh Entities
Properties Managment

Boundary conditions and properties applied to mesh
entities (namely edges, faces and elements) are han-
dled in the adaption procedure by a property identifier
associated to the entities of the base mesh. This identi-
fier is inherited from a parent entity to its sons during
the adaption procedure. The identifier is defined by
the user and it can describe a set of features of differ-
ent “nature” for an entity. For example: the identifier
assigned to a face could mean that a slip boundary con-
dition has to be enforced on that face and also that the
face belongs to a curved surface which defines a par-
ticular section of the boundary. The user must supply
a list of vertices which define the entities of the mesh
that have a particular set of properties. Then, the
identifier is only assigned to an entity provided cer-
tain conditions on the list of vertices are satisfied, e.g.
if a set of properties is to be applied to faces, the con-
dition might be that all the vertices of the faces should

(a) Adaption step n− 1

(b) Adaption step n

Figure 3: State projection - Vertex position detection.

be in the list of vertices. After refinement, the enti-
ties with the same properties are identified in order to
update the boundary conditions or the properties files
supplied to the flow solver.

IV. THE SPHERICAL BLAST WAVE
PROBLEM

The blast wave problem was formerly and indepen-
dently studied by Taylor (1946, 1950a,b) and Sedov
(1959), and describes what happens if a very intense
point-like explosion occurs in a uniform density gas.
After a short lapse of time, it is expected to find a
spherical shock wave travelling radially outward at su-
personic speeds with a transonic flow behind it. This
shock wave comes to an end because the source of pres-
sure (.i.e. the release of energy) also comes to an end,
in which case the rarefaction wave generated in the
center of the explosion weakens the spherical shock
until it becomes a pressure wave. When this kind of
phenomena takes place it is said that a blast wave
happens.

A. Self-similar Solutions

Taylor and Sedov analysis assumes a self-similar solu-
tion for the problem, which means that the solution
profiles for the density ρ, velocity u and pressure p
keep their shape in time and depend only on a single
parameter ξ that is defined as the ratio of the radial
coordinate r measured from the center of the explosion
to the position of the spherical shock front R, so that



0 ≤ ξ ≤ 1. They formulate the following relationship
between the physical variables and the self-similar pro-
files for the velocity U(ξ), density Ω(ξ) and pressure
P (ξ)

u = ṘU(ξ), ρ = ρ0Ω(ξ), p = ρ0Ṙ
2P (ξ) (3)

ρ0 is the density of the ambient gas and Ṙ is the ra-
dial velocity of the shock wave. This solution holds as
long as the mass swept up by the spherical shock front
is much greater than the mass of the explosive mate-
rial and as long as the shock wave can be considered
strong. The equations for the self-similar solutions are
derived from the Euler equations in radial coordinates

∂ρ

∂t
+

1
r2

∂

∂r

(
r2ρu

)
= 0 (4)

∂u

∂t
+ u

∂u

∂r
+

1
ρ

∂p

∂r
= 0 (5)

∂p

∂t
+ u

∂p

∂r
− c2s

(
∂ρ

∂t
+ u

∂ρ

∂r

)
= 0 (6)

The latter can be reduced to a system of ordinary
differential equations if it is further assumed that the
density shows a power law dependence in space and
time and the shock front position obeys to a power law
in time. The ODE’s are then numerically integrated
with a fourth order Runge-Kutta method assuming the
following boundary conditions inmediately behind the
shock front (at ξ = 1)

U =
2

γ + 1
, Ω =

γ + 1
γ − 1

, P =
2

γ + 1
(7)

The self-similar profiles as a function of the similar-
ity parameter are plotted in Fig.4. It is seen that the
pressure in the center of the blast wave is almost half
the maximum pressure inmediately behind the shock
and it is fairly uniform within the blast wave. It can
also be seen that most of the ambient gas mass pro-
cessed by the shock wave is compressed within a thin
spherical shell inmediately behind the shock which
moves slightly slower than the shock itself (u ' 0.83Ṙ
if γ = 1.4). Finally the velocity profile is almost linear
in the blast wave.

A dimensional analysis shows that

R(t) ∝
(
Ex

ρ0

)1/5

t2/5 (8)

where Ex is the energy released by the explosive and
t is the time variable. The constant Q that allows
to equate both sides of Eq.(8) can be computed by
numerical integration of the total energy profile for a
given time instant

Ex =
∫ R

0

(
p

γ − 1
+
ρu2

2

)
4πr2dr (9)
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Figure 4: Self-similar profiles for the spherical blast
wave problem (γ = 1.4).

Changing to variable ξ, substituting u, p and ρ from
Eqs.(3) in Eq.(9), taking into account that Ṙ = 2

5
R
t ,

then replacing Ex given by Eq.(9) into Eq.(8) and fi-
nally solving for Q it is found

Q =
(

16π
25

∫ 1

0

(
P (ξ)
γ − 1

+
Ω(ξ)U(ξ)2

2

)
ξ2dξ

)−1/5

(10)

For γ = 1.4 the computed value for Q ' 1.165.

B. Finite Element Solutions

The problem is solved on a spherical domain of radius
Rext = 5m. Full 3-D Euler equations are solved al-
though it there is spherical symmetry, since one the
goals of the simulation, besides to analyze the im-
provements in the solution accuracy, is to evaluate
how much of the overall computation time is needed to
adapt the mesh and also to measure how the recursive
refinement algorithm scales with the size of the prob-
lem, since it is expected that the number of elements
to be refined increases with time because the area of
the shock front also does it.

The initial conditions are given as follows: the am-
bient gas is at rest, at a constant pressure and density
equal to p0 = 101325Pa and ρ0 = 1.225kg/m3. It is
assumed that the energy released by the explosive in-
stantly raises the pressure to pblast = 105 ·p0 in a small
spherical region of radius Rblast ' 0.25m. The initial
explosion is not simulated in this work. The pressure
fixation at the surface of the spherical domain is the
only boundary condition prescribed. This condition is
acceptable as long as the shock wave does not reach
this boundary.

Tetrahedral elements are used to subdivide the
problem domain, with elements of smaller size pre-
scribed towards the center of the sphere. The resulting
mesh has 421.000 tetrahedra and 76.500 vertices ap-
proximately. This mesh is used for both simulations,
namely as the base mesh for the adaptive simulation
and as the mesh for the non-adaptive one.



Figure 5: Shock wave position as a function of time.

The Euler equations are solved in parallel with
15 processors on a cluster of workstations and a
Backward-Euler scheme is used for the time integra-
tion. It is recalled that the magnitude of the density
gradient is chosen as an indicator for the adaptive sim-
ulation since the flow field generated by the blast wave
is dominated by a strong shock and an expansion wave.
A value of c1 ' 0.15 in Eq.1 is used for the simulation.
An updating frequency of 10 time steps is chosen and
a maximum of 2 levels of refinement is prescribed. The
final time for both simulations is equal to tf ' 0.001s.

C. Simulation Results

In comparing the position of the shock front to that
given by Eq.(8) it should be taken into account that
the FEM solution profiles will just approximate those
of the self-similar ones after a few time steps because
the initial conditions for the flow variales are not those
of the self-similar profiles of the theory. Bearing this
in mind, Fig.(5) shows the shock wave position as a
function of time for both the adapted and no-adapted
simulations and the analytical one given by Eq.(8). It
can be stated that although there is a good agreement
for the first time instants, both simulations lug behind
the analytical one.

Solutions along the radius for different time instants
are shown in Figs.6 and 7, computed with the adapted
(square symbols) and fixed (continuous line) meshes.
Figure 6 shows that the pressure within the blast wave
behave like that given by the self-similar solution, al-
though higher values for the pressure at the shock front
and behind it are reached if the mesh is adapted to
the solution. The Mach number within the blast wave
is depicted in Fig.7. It can be seen that it is in the
transonic-subsonic regime, as it is stated by the the-
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blast wave.
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Figure 7: Time evolution of the Mach number within
the blast wave.

ory. Both figures show that the entire flowfield is bet-
ter resolved using the adaptive procedure because no
spurious oscillations appear in the expansion region
behind the shock wave and the latter is sharply de-
fined. The shock wave travels roughly at an average
speed of 3000m/s for the simulated final time tf , i.e.
it travels at mach number MS ' 9 so the strong shock
assumption of the self-similar solutions holds. Finally
Fig.8 depicts a cut of the mesh on a plane of sym-
metry at t = 0.645ms while Fig.9 shows the pressure
field and isolines for the same time instant. The mesh
has approximately 2.34 million tetrahedra and 428000
vertices.

D. Mesh Adaption Cost

To evaluate the code performance, clock time to per-
form the adaption of the mesh and to compute the
equations solution is measured throughout the simu-
lation. The adaption time tadapt is defined as that
required to realize all the necessary tasks to adapt the
mesh, namely the error indication computation, the
refinement of the elements, the boundary conditions



Figure 8: Adapted mesh on a plane of symmetry at
time t = 0.645ms.

Figure 9: Pressure field on a plane of symmetry at
time t = 0.645ms.

update, the state projection, the time step size update
through the CFL condition and the writting to disk of
all the files requiered by the flow solver. On the other
hand, the solution time tsol takes into account both the
time requiered to advance the solution and the over-
head incurred to restart the computation. The overall
time is then defined as tall = tadapt + tsol. Figure
10 shows that the ratio tadapt/tall keeps almost con-
stant and equal to 0.04, which enables to state that, in
this case, the adaption of the mesh takes just a small
fraction of the solution time. Given that the biggest
effort is involved in the solution of the flow equations,
maybe a higher updating frequency for the mesh could
be used.

On the other hand the refinement algorithm scala-
bility is depicted in Fig.11, wherein the measured clock
time taken by the recursive refinement algorithm is
shown in the ordinates and the number of elements to
be refined is shown in the abscissa. It is seen that an
almost linear relationship is attained, at least for the
range of refined elements 50.000 < Neleref < 240.000.
A linear fit is superimposed in the same figure for ref-
erence purposes.

Figure 10: Relative cost for the mesh adaption.

V. CONCLUSIONS

The mesh adaption strategy is used to solve the spher-
ical blast wave problem, improving the sharpness of
the shock front and removing the spurious oscillations
in the expansion that are present in the non-adapted
mesh solution. The behaviour of the flow variables
within the blast wave agrees rather well with the the-
oretical results from the Taylor-Sedov self-similar so-
lution. It is noticed that although the shock front
position is not accurately predicted, this cannot be
ascribed to the adaption of the mesh since the non-
adapted solution also shows a similar lack of precision.

The overhead introduced by the adaption of the
mesh is just a small percentage of the time required
to compute the flow, thus allowing to greatly reduce



Figure 11: Refinement algorithm scalability.

the computational effort. If we were to solve the prob-
lem with a fixed mesh with a similar resolution (i.e.
if the base mesh used for the simulations were homo-
geneously refined twice following the 1:8 pattern used
by the adaption procedure), a fixed mesh made up
of 26.9 million would be requiered. So it is concluded
that true benefits are achieved because of adapting the
mesh, namely an accuracy improving and a reduction
in the computational effort.
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