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Abstract

The composite finite element mesh method is useful for discretization error
estimation and, in addition, for solution improvement with no increment in
the computational cost. The technique consists in redefine over a given mesh
the linear operator that arises from the discretization of a partial differen-
tial equation. This operator is modified according to an appropriate linear
combination between the operators of the given mesh and of a coarse mesh,
which must be a coarsening of the first one. In this work a novel algebraic
composite mesh technique is proposed. The technique uses some tools from
the Algebraic Multigrid method for the definition of the coarse mesh and
the discrete space associated with it. Mesh coarsening is based on the fusion
of elements in macroelements, with a new definition of the grid topology
and basis functions. The agglomeration of elements is made in order to re-
duce the mesh anisotropy, which is of importance in the discretization of
convection-diffusion-reaction problems. The discrete operator for the coarser
mesh is obtained by the Galerkin Coarse Approximation, where inter-grid
transfer operators are obtained using the graph of the coarse mesh. Several
test problems with different boundary conditions are presented.
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1. Introduction

In this paper we present a new technique of Composite Mesh (CM) where
each component of the mixture represents a mesh with different approxi-
mation error. Given two finite element meshes with nodes in common, an
appropriate linear combination between the discrete operators that arise on
each grid could give a better solution than the solutions obtained from each
mesh individually and without increment in the computational cost [1].

The Algebraic Composite Mesh (ACM) technique presented in this work
is the algebraic version of the Geometric Composite Mesh (GCM) strategy
proposed by Bergallo et al. [1]. Starting from a finite element mesh, the
coarse mesh that will take part in the linear combination comes from the el-
ement agglomeration of the first one. Such agglomeration is made by means
of techniques taken from the Algebraic multigrid (AMG) method. Particu-
larly in this paper, a modification of the algorithm for the construction of
macroelements proposed by Okusanya [2] is employed. Then, the elements
of a given mesh are properly agglomerated in order to obtain a new mesh
where the elements do not necessarily preserve the geometric shape of the
elements of the initial mesh.

It has been shown that it is feasible to use the GCM technique for un-
structured meshes [3]. The resultant linear system obtained when the CM
technique is applied can be solved by means of a direct method or an iter-
ative method as, for example, the multigrid strategy [3]. In this paper, an
algebraic composite finite element mesh technique for unstructured meshes
is presented. The method is applied to some elliptic test problems on un-
structured meshes, where discretization errors are analyzed. The resulting
linear system of equations is solved by a direct method.

2. Algebraic Composite Mesh technique

We consider elliptic problems with the following form

−∇ · (µ(x)∇u) = f(x), in Ω

u = gD, on ΓD (1)

µ(x)∇u · n = gN , on ΓN

where the domain Ω ⊂ Rnde is delimited by the boundary Γ, nde being the
number of spatial dimensions, and n is the unit normal to Γ. The bound-
ary domain is generally formed by parts with Dirichlet conditions (ΓD) and
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Neumann conditions (ΓN = Γ \ ΓD). The function f(x) is the source term
and µ(x) > 0∀x ∈ Ω is the diffusivity coefficient.

The discretization of equation (1) leads to a system of linear equations as

Ahuh = bh (2)

where Ah is the discrete operator (stiffness matrix), uh is the nodal unknowns
vector and bh is the constant terms vector. The subscript h refers to the
element size of the mesh utilized in the discretization.

The goal of this work is to propose an Algebraic Composite Mesh (ACM)
technique, as the algebraic version of the Composite Mesh (CM) method [1].
The composite finite element mesh applied to elliptic problems can be used
to improve the numerical solution without an appreciable increment in the
computational cost and also estimate the discretization error [1, 3, 4]. In
the h version, the method consists in replacing the discrete operator for a
given mesh (fine mesh), by a linear combination of the operators computed
by using that mesh and a coarser mesh with nodes in common with the
first one. In this case, the interpolation polynomials retain the same degree
in both meshes. Then, assuming that the fine mesh is obtained from the
homogeneous refinement of other grid, the connection between both meshes
is forced with the shared nodes. The participation factor of each mesh in the
compound model, i.e. the coefficient for the linear combination between the
meshes, is introduced in such a way to minimize the discretization error.

Let ΩH a discretization of the problem domain Ω and Ωh the mesh ob-
tained by a homogeneous refinement of ΩH . Applying the Finite Element
Method (FEM) for the discretization of problem (1), the systems of equa-
tions Ahuh = bh and AHuH = bH are obtained with the meshes Ωh and ΩH ,
respectively. Now, we define the discrete operator AHh as the matrix with
the coefficients of AH and the same size as Ah where, in order to obtain the
required size, we impose null coefficients for the nodes belonging to the fine
mesh but not to the coarse mesh. In an analogous way, we define the vector
bHh. The approximate solution by the CM method uHh is obtained from the
following system [4]

[αAh + (1− α)AHh]uHh = αbh + (1− α)bHh (3)

When α = 1, the solution in the fine mesh is recovered and with α → 0 the
solution tends to the corresponding solution in the coarse grid. The coefficient

3



α depends on the regularity of the exact solution of the problem [1]. The
asymptotic error of the numerical approximation has the form

‖u− uh‖ = Chp +O(hq) (4)

where C is a constant and q > p. Then, an extrapolation analysis of the
error leads to the following estimation [1, 4, 5]

α =
(H/h)p

(H/h)p − 1
(5)

The improvement introduced by the CM method with respect to the FEM
solution is verified in the nodal values of the solution and, thus, it must be
evaluated using a discrete norm of the error. Let Ni, i = 1, . . . ,M the nodes
of the fine mesh Ωh and Vh the discrete space associated with the mesh Ωh.
The interpolant πhu of u in the space Vh is defined as

πhu(Ni) = u(Ni), i = 1, . . . ,M (6)

Then, the solution of the system (3) is a better approximation to πhu in Vh

than the uh solution given by FEM. This fact is verified in the tests presented
in section §5.

As presented above, the GCM method requires a fine mesh coming from
the homogeneous refinement of the coarse mesh. In addition, the discretiza-
tion of equations must be done with both meshes in order to obtain the
discrete operators Ah and AH . These two issues motivate us to propose a
CM technique based on algebraic manipulation of the discrete operator com-
puted with a given mesh. To do this we need to make a coarsening of that
mesh, and define in a proper way the coarse space and the coarse discrete
operator. Since the method involves two meshes with different discretization
levels (element size), we can take some strategies from the AMG method to
compute the mesh coarsening.

A unique coefficient in the linear combination for the whole set of mesh
elements in equation (3) is used because the homogeneous refinement of the
coarse mesh preserves the relationship H/h for all elements. In the pro-
posed algebraic technique the coarse grid is obtained from the coarsening of
a (generally unstructured) mesh and, thus, the element size ratio between
the meshes will not be constant through the domain. Hence, in order to
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generalize the formulation, we could apply a matrix α in the linear combina-
tion as a variable participation factor. Then, the linear system for the ACM
technique is written as

[αAh + (I−α)AHh]uHh = αbh + (I−α)bHh (7)

where I is the identity matrix.

3. Elements of the Algebraic Multigrid method

The multigrid method essentially considers a decomposition of the so-
lution error into rough error components, which cannot be resolved on a
coarser grid without aliasing, and the complementary smooth error compo-
nent which can be resolved on the coarser grid. Given a hierarchical sequence
of successively coarser grids, a recursive partitioning of the solution error may
be made amongst these grids such that the associated error components on
each coarse grid effectively form a basis for the smooth error component
on the finest grid. The partitioning of the error is achieved through a set
of interpolation (prolongation/restriction) operators for the transfer of error
components between the spaces.

Consider two consecutive grids from the hierarchical sequence of meshes
cited above. Let Ωh the fine mesh of the pair and ΩH the coarse mesh.
The restriction operator projects vectors from the fine grid to the coarse
one: Rh : Rnh → RnH , where nh > nH are the dimensions of the spaces
of finite dimensions associated with the grids Ωh and ΩH respectively. The
interpolation of vectors from the coarse mesh to the fine grid is done by means
of the prolongation operator Ph : RnH → Rnh (see, for example, Mavriplis [6],
Wesseling [7], Briggs et al. [8], etc.).

A multigrid algorithm requires an approximation to the operator of the
fine grid within the space of the coarse mesh. The matrix for that space
is called AH and could be calculated by the following algebraic recursive
relationship

AH = RhAhPh (8)

where, although the operators Rh and Ph are independent, the choice Rh =
Pt

h results in the minimization of the error in the solution measured in the
A-norm ‖ · ‖Ah

after coarse grid corrections, for symmetrical and positive
definite stiffness matrices [7, 8]. This algebraic method for coarse space
operator construction is called Galerkin Coarse Grid Approximation (GCA).
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A promising technique for the construction of these interpolation oper-
ators which satisfy the rules outlined above is based on the agglomeration
technique [9, 10] which operates by fusing neighboring fine mesh entities to
form coarse mesh macroentities. This provides a natural and automatic way
for coarse space construction. The agglomeration technique defined on the Fi-
nite Element space can be vertex based (nodal) [11] or element based [12, 13].
The choice of elemental agglomeration is motivated by the need to address
higher order of accuracy for the interpolation operators [14].

4. Coarse space agglomeration

The coarse space agglomeration applied in this work was proposed by
Okusanya [2] and is based on the fusion of elements into macroelements with
a proper definition of the coarse grid topology and basis functions. The
driving force behind the agglomeration is the reduction of mesh anisotropy,
which becomes important for convection-diffusion problems [2]. The main
difference between this method and the one described by Chan et al. [14]
is that the coarse mesh elements are not converted in standard elements by
retriangulation, but are general polygons formed by agglomeration of fine
mesh elements.

The topology of the coarse mesh is built partitioning the elements in
groups of macroelements. A macroedge is defined to be the ordered collection
of fine grid edges which are shared by two neighboring macroelements. To
complete the definition of the coarse grid graph, the coarse nodes are chosen
to be the fine grid nodes where three or more macroedges meet. Macrole-
ments with exactly two coarse nodes are modified by the addition of extra
supporting coarse nodes using fine mesh nodes which lie on the macroedge
connecting these two coarse nodes, as shown in figure 1.

4.1. Elemental agglomeration algorithm

The coarsening algorithm consists in a modification of the elementary ag-
glomeration algorithm proposed by Okusanya [2]. It is based on the removal
of mesh anisotropy and makes use of edge lengths such that the geometry
for the coarse spaces is defined entirely in terms of the fine grid. That is, the
macroedge lengths are simply the sum of the edge lengths of the constituting
fine mesh edges. If the fine grid geometry is not specified, then this tech-
nique becomes a purely topological one where the elements are assumed to
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MacroedgeMacroelement Coarse Grid Node

Support Coarse Grid Node

Fine Grid Node

Figure 1: Coarse space topology with exceptional macroelement bearing two coarse nodes
and extra support node.

be isotropic. The decision to agglomerate two neighboring elements is deter-
mined by a geometry based connectivity concept which is term macroelement
skew [2].

Definition 1: For a macroelement defined by a general polygon, the macroele-
ment skew is a measure of anisotropy and is defined as the area of the n-gon
divided by the area of an isotropic n-gon with the same perimeter.

In extreme cases, this measure is zero for co-linear polygon vertices and
unity for an isotropic n-gon. The concept of macroelement skew can be ex-
tended to 3D through a suitable redefinition such as ratio of macroelement
volume to macroelement circumsphere volume similar to the control volume
skew described by Venkatakrishnan et al. [15]. The macroelemental areas
for the coarse spaces are also easy to compute as they are simply sums of
the agglomerated element areas. In order to complete the operators required
for this algorithm, an edge based connectivity concept called edge skew is
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defined.

Definition 2: For an element which borders a macroelement/element on a
given edge, edge skew is defined as the macroelement skew of the macroele-
ment which would be created if the element is merged with the macroele-
ment/element across that edge.

Now, we present the algorithm in detail:

Procedure 1: Macroelemental Construction

• Step 1: Consider the graph of the mesh G = (V, E) and calculate the
edge length for the edges E.

• Step 2: Obtain a seed element: If there is no seed element in the queue,
choose any suitable element which does not belong to any macroele-
ment.

• Step 3: Perform accretion around the seed element. Fuse unassigned
neighboring elements with edge skew larger than some specified fraction
(typically 0.75) of the average edge skew.

• Step 4: Enqueue seed elements. New seed elements are placed in
the queue to continue the algorithm. These are chosen to be elements
which share a vertex but no edges with the last macroelement created.
In 3D, this would extended to elements which share a vertex and/or
an edge but no faces with the macroelement.

• Step 5: Repeat Step 2 until either all elements belong to a macroele-
ment or there are no more seed elements.

After the algorithm terminates, post-processing is necessary to deal with
‘sliver’ elements. These are fine mesh elements which were not originally
selected by the algorithm to be merged into a macroelement. A determination
of which macroelement to merge these elements with is made a priori based
on skew edge.

In the step 2 of the macroelemental construction algorithm it is given
the instruction to choose an appropriate seed element, which is somewhat
vague. In fact, the method to select the proper seed element leads to totally
different results. When the algorithm is applied to a structured mesh, it
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would be desirable retrieve to a 4:1 isotropic agglomeration in 2D. Precisely,
the election of the seed element in step 2 will determine the success of the
implementation of the algorithm. In this work, we make the selection of a
seed element based on labels of the nodes, being able to obtain the ratio 4:1
in structured meshes.

4.2. Interpolation and restriction operators

The construction of the interpolation operators may be facilitated by the
definition of nodal basis functions on the coarse space and serves as a natural
extension of the Finite Element algorithm on these coarse spaces. For the
coarse space basis functions construction we follow the method proposed by
Okusanya [2]. In this method, the construction of the basis functions is
made by using the topology and geometry if provided. If the geometry is not
given, then the elements are assumed to be isotropic, which leads to a purely
topological interpolant. The basis functions are defined using graph distance
interpolation on both the boundary and interior, which is geometric weighted
to form a more accurate interpolant. The algorithm leads to a quasi-linear
interpolant as shown in Figure 2.

Figure 2 shows the basis function Φ defined over the agglomerated macro-
element for the coarse mesh node at x0. This basis function is constructed
from a graph distance interpolation over the macroelement and weighted
with edge length.

Φ
0

Φ
0

Φ
0

Φ
0

Φ
0

Φ
0

Φ
0

Φ
0

0
x

Φ
0

= 1/3Φ
0
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Node

= 0

= 1 = 1/2 = 0

= 0

= 0= 0= 0

= 2/3

Figure 2: Coarse space basis function based on graph distance.
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An important component of the algorithm for the coarse space basis func-
tions construction is the Breadth First Search (BFS) algorithm, which is es-
sentially a Greedy algorithm for graph traversal. The detailed BFS algorithm
is given in appendix A. The algorithm for the construction of the coarse space
interpolant is given below.

Procedure 2: Basis Function Construction

• Step 1: For each macroelement, create a local subgraph. In the pro-
cess, create an ordering of the boundary edges such that the boundary
can be traversed.

• Step 2: Extract the list of interior vertices. Extract the ordered list
of coarse grid vertices by traversing the boundary edges.

• Step 3: For all fine mesh edge vertices which lie between consecutive
coarse mesh nodes, construct length weighted interpolation data. The
macroedge length is also computed simultaneously.

• Step 4: Interior vertex interpolation. For each coarse grid node in the
macroelement, a BFS iteration on the local subgraph is done with the
coarse grid node as seed. Both the level set as the graph distance from
the coarse node is recorded for all interior (fine) nodes in the subgraph
during the process. The graph distance of each fine grid node from
the coarse grid nodes is then computed. For each fine grid node, these
distances are then weighted to sum to unity.

The necessary matrix coefficients for the prolongation operator Ph may
now be extracted from the basis functions. For the 2D case, the algorithm
reads as follows

Procedure 3: Prolongation Operator Construction

• Step 1: For every fine mesh node i in a macroelement which corre-
sponds to a coarse mesh node j, set the prolongation operator coeffi-
cient

Ph(i, j) = 1 (9)

• Step 2: For every other fine grid node i in macroelement which does
not correspond to a coarse grid node, given the length weighted graph
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distance dist(i, j) from every coarse node j, set the prolongation oper-
ator coefficient

Ph(i, j) =

1
dist(i,j)∑
j

1
dist(i,j)

(10)

The restriction operator Rh is simply defined using the GCA formula-
tion. The success of the ACM method depends strongly on how good the
approximation of the coarse space matrix AH is to Ah. Let us choose the
restriction operator to be

Rh = σPt
h (11)

where σ is a suitable scaling factor. If Rh is to be used to transfer residuals to
the coarse grid (as we need in the ACM technique), then the correct value of
the scaling depends on the scaling of the fine grid and coarse grid problems.
This implies that the coarse grid discretization should be consistent with the
governing differential equation in the same way as the fine grid discretization.
Let Aj represents a characteristic area (e.g. control volume area) on the fine
grid associated with the fine node j and let Āi represents a corresponding
characteristic area on the coarse grid associated with coarse node i. Finite
Element schemes in 2D lead to a scaling rule which states that∑

j

Rh(i, j)Aj = Āi (12)

This rule is derived by considering the integral terms for the interior fluxes.
However, the boundary flux integral terms are line integrals which need a
modification of the restriction operator. Let Lj represents a characteristic
length on the fine grid associated with boundary fine node j and let L̄i repre-
sents a corresponding characteristic length on the coarse grid associated with
boundary coarse node i. The corresponding scaling rule for the restriction
operator as applied to the boundary integral term is∑

j

Rh(i, j)Lj = L̄i (13)

In order to deal with the dual scaling issues, Okusanya [2] proposes to
introduce the splitting:

Ah = Agal
h + Abc

h (14)

where Agal
h consists of the Galerkin terms which scale with area and Abc

h

consists of the boundary condition terms which scale with length. Based on
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the splitting (14), the restriction operator is split into Rgal
h and Rbc

h such that
GCA definition for the coarse space matrix becomes

AH = Rgal
h Agal

h Pgal
h + Rbc

h Abc
h Pbc

h (15)

where Rgal
h = σgalPgal

h

t
and Rbc

h = σbcPbc
h

t
. The construction for Pgal

h exactly
follows the algorithm presented in section §4.2. However, Pbc

h is constructed
by deleting the row entries for all the interior fine grid nodes in Pgal

h .
Finally, the following splitting for the residual

rh = rgal
h + rbc

h (16)

is introduced, such that a restriction for the residual can be written as

rH = Rgal
h rgal

h + Rbc
h rbc

h (17)

5. Test problems

In order to show the effectiveness of the proposed ACM strategy, we will
consider three different 2D cases with analytical solution. With these tests
our goal is to evaluate the algebraic construction of the discrete operators
independently of the mesh coarsening. Then, we use fine grids arising from
the homogeneous refinement of a given mesh (the ‘coarse mesh’ in the corre-
sponding problem). This particularization of the technique allows to use the
formulation (3) instead of the most general represented by equation (7).

5.1. Poisson problem in a rectangular domain

Consider the problem of Poisson in a rectangular domain with a Neumann
boundary condition given in (18).

−∆u(x, y) = 2π2 cos πx sin πy, in Ω = (1, 2)× (0, 3)

u(x, 0) = 0, on 1 ≤ x ≤ 2

u(x, 3) = 0, on 1 ≤ x ≤ 2 (18)

u(1, y) = − sin πy, on 0 ≤ y ≤ 3

ux(2, y) = 0, on 0 ≤ y ≤ 3

The exact solution is given by the expression

u(x, y) = cos πx sin πy (19)
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Figure 3: Nodal FEM errors between
the numerical and exact solution for the
Poisson problem in a rectangular do-
main.

Figure 4: Nodal ACM errors between
the numerical and exact solution for the
Poisson problem in a rectangular do-
main.

In this case, the domain is discretized by an unstructured grid with 5000
elements and 2601 nodes. The resulting grid is then the fine mesh of the prob-
lem and the coarse one is obtained by means of the elemental agglomeration
algorithm presented in section §4.1.

The participation factor for the mesh composition is obtained taking into
account the regularity of the exact solution α = 4/3.

Nodal errors between the numerical solution and exact solution are shown
in figures 3 and 4 for FEM and ACM, respectively. The error results in
standard L∞ (‖e‖∞) and euclidean norm (‖e‖2) are presented in table 1. As
can be observed in table 1 the euclidean norm presents the best result due
to the composite mesh gives an improvement of solution in a nodal sense.

Poisson problem in a rectangular domain
‖e‖2 ‖e‖∞

FEM 0.0393 2.1000× 10−3

ACM 0.0015 2.6424× 10−4

Table 1: Euclidean norm and L∞ norm of errors for the Poisson problem in a rectangular
domain.

5.2. Poisson problem in a domain with a hole

Consider the Poisson problem in a rectangular domain with an elliptic-
shaped hole Ω as shown in figure 5 where the test equation and its boundary
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Γ are given in equation 20.

∆u = 10, in Ω

u(x, y) = 4, on Γ

u(x,−2) = 16 + x2, on −3 ≤ x ≤ 3 (20)

u(x, 2) = 16 + x2, on −3 ≤ x ≤ 3

u(−3, y) = 9 + 4y2, on −2 ≤ y ≤ 2

u(3, y) = 9 + 4y2, on −2 ≤ y ≤ 2

The exact solution is given by

u(x, y) = x2 + 4y2 (21)

Figure 5: Fine and coarse meshes for the Poisson problem in a rectangular domain with
an elliptic-shaped hole.

The domain is discretized by an unstructured grid with 2720 elements and
1476 nodes. The resulting grid is the fine mesh of the problem and the coarse
one is obtained by means of the elemental agglomeration algorithm §4.1.
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Figure 6: Nodal FEM errors between
the numerical and exact solution for the
Poisson problem with a domain with a
hole.

Figure 7: Nodal ACM errors between
the numerical and exact solution for
Poisson problem with a domain with a
hole.

The participation factor for the mesh composition is obtained taking into
account the regularity of the exact solution, then α = 4/3 [3].

Nodal errors between the numerical solution and exact solution are shown
in figures 6 and 7 for FEM and ACM, respectively. Table 2 presents the error
L∞ and euclidean norms. As can be observed in this table, the error measured
in euclidean norm diminishes approximately a magnitude order for the ACM
method with respect to FEM, which implies that the solution improvement
is verified in the whole domain.

Poisson problem with a domain with a hole
‖e‖2 ‖e‖∞

FEM 0.0845 1.3000× 10−2

ACM 0.0010 3.5087× 10−4

Table 2: Euclidean norm and L∞ norm of errors for the Poisson problem with a domain
with a hole.

5.3. Laplace Problem

Consider the problem of Laplace ∆u = 0 in a L-shaped domain as shown
in figure 8 and where the exact solution is given in polar coordinates by

u(r, φ) = r2/3 sin
2

3
φ (22)
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The domain is discretized by an unstructured grid with 4008 elements and
2085 nodes. The resulting grid is the fine mesh of the problem and the coarse
one is obtained by means of the elemental agglomeration algorithm §4.1.

Figure 8: Fine and coarse meshes for the Laplace problem in a L-shaped domain.

The participation factor for the mesh composition is obtained taking into
account the regularity of the exact solution [3]:

α =
25/3

25/3 − 1

Nodal errors between the analytical solution and numerical solutions for
FEM and ACM are shown in figures 9 and 10, respectively. The standard L∞
and euclidean norms of the error are presented in table 3. Again, a reduction
of the error norm can be reached when the ACM technique is applied. In this
case the relative reduction between FEM and ACM errors is smaller than in
previous examples due to the lower regularity in the exact solution.
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Figure 9: Nodal FEM errors between
the numerical and exact solution for the
Laplace problem.

Figure 10: Nodal ACM errors between
the numerical and exact solution for the
Laplace problem.

L-shaped domain test problem
‖e‖2 ‖e‖∞

FEM 3.5390× 10−2 8.1450× 10−3

ACM 1.2665× 10−2 5.7305× 10−3

Table 3: Euclidean norm and L∞ norm of errors for the Laplace problem.

6. Conclusion

In this work we present a novel Composite Mesh strategy based on al-
gebraic definition of the coarse mesh topology and the discrete spaces and
operators associated with it. The mesh coarsening tools were taken from an
Algebraic Multigrid method that uses elemental agglomeration. The tests
presented were solved using a fine mesh obtained from the homogeneous
refinement of another grid. These test problems shown that the algebraic
construction of the coarse operators performs correctly, allowing to reach
with the ACM method the main features of its geometric counterpart. Us-
ing the optimum participation factor in the grid ‘mixture’ for the examples
solved we obtain numerical approximations with smaller nodal errors than
the produced by a FEM solution with the same discretization level.
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A. Breadth First Search algorithm

The definition for the BFS algorithm is [16]

Definition: The Breadth First Search (BFS) is a search algorithm which
considers neighbors of a vertex, that is, outgoing edges of the vertex’s prede-
cessor in the search, before any outgoing edges of the vertex such that extremes
are searched last.

The detailed description of the BFS algorithm is given in the following
pseudocode

Unmark all vertices

Choose some starting vertex x

Mark x

Set list L = x

Set tree T = x

Set level set (LS) of x = 0

while L nonempty

Choose some vertex v from front of list

Visit v

for each unmarked neighbor w

Mark w

Set LS(w) = LS(v)+1

Add it to end of list

Add edge (v,w) to T

References

[1] M.B. Bergallo, C.E. Neuman, V.E. Sonzogni, Composite mesh con-
cept based FEM error estimation and solution improvement, Computer
Methods in Applied Mechanics and Engineering, volume 188, pages 755-
774, 2000.

18



[2] T. Okusanya, Algebraic Multigrid for Stabilized Finite Element Dis-
cretizations of the Navier Stokes Equations, Massachusetts Institute of
Technology, 2002.

[3] S.S. Sarraf, M.B. Bergallo, V.E. Sonzogni, Problemas eĺıpticos resueltos
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