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Abstract. In this note we prove a formula for the volume of level sets of
generalized homogeneous functions in terms of measures supported on the
level surfaces. We relate the results to some well known mean value formulas
for solutions of PDE.

1. Introduction and statement of the result

The well known mean value formulas for harmonic functions on IRn are

u(x) =
1

|B(x, r)|
∫

B(x,r)

u(y)dy,

and
u(x) =

1
σ(∂B(x, r))

∫

∂B(x,r)

u(y)dσ(y),

where B(x, r) denotes the open ball centered at x with radious r > 0; ∂B(x, r) is
its boundary and σ is the surface area.

The rotational invariance of the Laplacian, reflects in the fundamental solution
for ∆u = δ, which is given essentially by Γ(x) = |x|2−n, n ≥ 3. A little less
standard, but equally well known is the case of the mean values for the solutions
of the heat equation. Now, the fundamental solution is given by

(1.1) Γ(x, t) =

{
(
√

4πt)−ne−
|x|2
4t t > 0

0 t ≤ 0

in IRn+1 = {(x, t) : x ∈ IRn; t ∈ IR}. Following [2] (see also [3] and [5]) let us
define the heat balls E((x, t), r) as the set of all the points (y, s) ∈ IRn+1 for which
Γ(x−y, t−s) > r−n. The corresponding mean value for a temperature u(x, t) takes
now the following form

(1.2) u(x, t) =
1

4rn

∫∫

E((x,t),r)

u(y, s)
|x− y|2
|t− s|2 dyds.

For the parabolic case a corresponding mean value on the boundaries of the heat
balls is also available (see [3] and [5]). Precisely,

u(x, t) =
1

4rn

∫

∂E((x,t),r)

u(y, s)
|x− y|2√

4 |x− y|2 (t− s)2 + (|x− y|2 − 2n(t− s))2
dσ(y, s)

where ∂E((x, t), r), the topological boundary of the heat ball, is called the heat
sphere or parabolic sphere.
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The elliptic and parabolic situations briefly described above share a common
pattern. In fact both, Γ(x) and Γ(x, t) are homogeneous functions. Of course not
with respect to the same dilations. While Γ(x) is homogeneous of degree −n+2 with
respect to the usual dilations in IRn: Γ(λx) = λ−n+2Γ(x) for every x ∈ IRn − {0}
and λ > 0; the function Γ(x, t) is parabolically homogeneous of degree−n. Precisely
Γ(λx, λ2t) = λ−nΓ(x, t) for every x ∈ IRn, t ∈ IR and λ > 0.

In both cases, elliptic and parabolic, the mean value formulas on the solid balls
are equivalent to the corresponding mean value formulas on the spherical shells.
We would like to mention also the results in [6] and [4] where mean values for more
general linear hypoelliptic PDEs are considered.

In the applications to some problems in PDE (see [1]), sometimes it is important
to have smooth versions of the mean value formulas. Smoothness here means that
the indicator functions of B(x, r) or of E((x, t), r) can be substituted by compactly
supported C∞ functions whose level surfaces are ∂B(x, ρ) and ∂E((x, t), ρ). In
order to get these smooth formulas all we need are the mean value identities on the
surfaces ∂B and ∂E.

In this note we show that this behavior is a general fact concerning the computa-
tion of the volume of a level set of a generalized homogeneous function in terms of
the radial integral of some specific measures supported on the corresponding level
surfaces.

We shall consider generalized nonisotropic dilations induced by an n×n diagonal
matrix A with eigenvalues 1 ≤ a1 ≤ a2 ≤ . . . ≤ an of the type

Tλ =

(
λa1 0

. . .
0 λan

)

for λ > 0. We say that a function Γ : IRn − {0} → IR+ ∪ {0} is A-homogeneous of
negative degree m if the identity Γ(Tλx) = λmΓ(x) holds for each x ∈ IRn−{0} and
each λ > 0. Let us define the set E(α) of the function Γ as E(α) = {x ∈ IRn−{0} :
Γ(x) > αm} for α > 0. With ∂α we shall denote the topological boundary of the
closure in IRn of E(α).

The main result of this note is contained in the next statement.

Theorem 1.1. Let Γ be a nontrivial and nonnegative A-homogeneous function of
degree m < 0. Assume that Γ is C 1 on Sn−1, the unit sphere of IRn. Then for each
r > 0 there exists a regular, finite and positive Borel measure µr supported on ∂r

such that the identity

(1.3)
∫∫

IRn

ψ(x)dx =
∫ ∞

0

(∫

∂r

ψ(y)dµr(y)
)

dr

holds for every ψ smooth and compactly supported. Moreover, µr is absolutely con-
tinuous with respect to the surface area measure σr on ∂r and the Radon-Nikodym
derivative is given by dµr

dσr
(z) = Az· ~nr(z)

r , where ~nr is the unit outer normal vector
for ∂r.

Let us notice that for the parabolic case, regarding IRn as {(x, t) : x ∈ IRn−1; t ∈
IR} we have that Γ(x, t) defined as in (1.1) is A-homogeneous of degree −n with
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the matrix

A =

( 1 0

. . .
0 1

2

)
.

If u(x, t) is a solution of the heat equation ∂u
∂t = ∆u =

∑n−1
i=1

∂2u
∂x2

i
, then from (1.2)

and (1.3) we see that

u(x, t) =
1

Rn−1

∫ R

0

(∫

∂E(r)

u(y, s)
|x− y|2
(t− s)2

dµr(y, s)

)
dr.

By taking the derivative with respect to R in the above formula, we get

0 = (−n + 1)R−1u(x, t) +
1

Rn−1

∫

∂E(R)

u(y, s)
|x− y|2
(t− s)2

dµR(y, s).

On the other hand, Theorem 1.1 shows that each µR is given by the surface measure
on ∂E(R), the boundary of the heat ball. Hence, for each r > 0

(1.4) u(x, t) =
1

(n− 1)rn−1

∫

∂E(r)

u(y, s)
|x− y|2
(t− s)2

(y, 2s) · ~nr(y, s) dσr(y, s).

Actually the basic result in the proof of Theorem 1.1 is contained in the next
statement.

Theorem 1.2. Let Γ be a nonnegative A-homogeneous function of degree m < 0.
Assume that Γ is C 1 on the unit sphere of IRn. Then the function ηψ(α) =∫∫

E(α)
ψ dx is C 1(IR) for every ψ ∈ C∞

0 (IRn) and for any r > 0 the linear func-

tional which to each ψ ∈ C∞
0 (IRn) assigns the real number dηψ

dα (r) defines a positive
distribution in D′(IRn) of order zero. Precisely,

(1.5)
dηψ

dα
(r) =

1
r

∫

∂r

ψ(y)Ay · ~nr(y) dσr(y).

From this result the proof of Theorem 1.1 is fairly easy. In fact, we only have to
integrate both sides of (1.5) with respect to r.

We observe that vol(E(α)) is an increasing function. In fact, for 0 < s < 5r and
ψ ≡ 1 on E(5r), we see that

vol(E(s)) =
∫

E(s)

ψ dx = ηψ(s).

Hence d
dsvol(E(s)) = dηψ

ds (s) which is positive from (1.5).

2. Some properties of generalized homogeneous function

For a given diagonal matrix A with eigenvalues 1 ≤ a1 ≤ . . . ≤ an, we have an
associated polar description of each point x ∈ IRn − {0}. In fact, it is easy to see
that given such point x there exists only one λ > 0 and only one y ∈ Sn−1 such
that Tλy = x. In fact, take yi = xi

λai
. The function

∑n
i=1

(
xi

λai

)2 as a function of λ
is continuos and decreasing, then there exists only one λ > 0 such that it takes the
value 1.

The next lemma collects some elementary properties of the level sets of A-
homogeneous functions, which shall be used in the proof of Theorem 1.2.
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Lemma 2.1. Assume that A and Γ satisfy the condition of Theorem 1.1. Set
E(α) = {x ∈ IRn − {0} : Γ(x) > αm} for α > 0. Then

(2.1.i) each E(α) is a nonempty bounded and measurable subset of IRn;
(2.1.ii) if α < β, then E(α) ( E(β);
(2.1.iii) for each α > 0 we have that E(α) = Tα(E(1));
(2.1.iv) |E(α)| = ατ |E(1)|.
Proof. Property (2.1.iii) follows from the homogeneity of Γ,

Tα(E(1)) = {Tαx : Γ(x) > 1}
=

{
y : Γ

(
(Tα)−1 (y)

)
> 1

}

= {y : Γ (Tα−1(y)) > 1}

=
{

y :
1

αm
Γ(y) > 1

}

= E(α)

for α > 0. So that to prove (2.1.i) it shall be enough to show that E(1) is bounded.
Take x ∈ E(1). As we observe above there exists yx ∈ Sn−1 and λ(x) > 0 such that
x = Tλ(x)(y(x)). Applying the homogeneity of Γ we have λ(x)mΓ(y) = Γ(x) > 1.
Since Γ is C 1 function and since m < 0 we get that 0 < λ(x)|m| < Γ(y) ≤ κ for
some κ. Then

|x|2 =
n∑

i=1

x2
i =

n∑

i=1

λ(x)2aiy(x)2i ≤ max{1, κ
2an

|m| } |y|2 .

In order to prove (2.1.ii), notice first that for α < β the inclusion E(α) ⊂ E(β)
holds. Let us show that E(α) and E(β) can not coincide. Since Γ in nontrivial,
then for some point ξ 6= 0 we must have Γ(ξ) > 0. Hence Γ(Ts(ξ)) = smΓ(ξ) a
function of s is one to one and onto IR+. To prove that E(α) 6= E(β) it is enough
to take s = α+β

2(Γ(ξ))1/m . The formula in (2.1.iv) follows directly from (2.1.iii). ¤

Notice that for the parabolic case considered in the introduction Γ(x, t) is smooth
on Sn−1, but it vanishes exactly on the whole hemisphere {(x, t) ∈ Sn−1 : t ≤ 0}.
Moreover, each level surface Σα = {(x, t) ∈ IRn − {0} : Γ(x, t) = αm}, α > 0, has
a limit point at the origin 0 of IRn. So that in general the topological boundary ∂α

of E(α) is not exactly the level surface Σα.

Lemma 2.2. Let Γ be as in Theorem 1.1, then
(1) Γ is positive if and only if d(Σ1, 0) > 0;
(2) ∂1 = Σ1 in IRn − {0};
(3) Γ is positive if and only if d(Σα, 0) > 0 for each α > 0;
(4) ∂α = Σα in IRn − {0}.

Proof. Let us start by noticing that for each α > 0 we have Σα = Tα(Σ1) and
∂α = Tα(∂1). Hence (3) and (4) are consequences of (1) and (2).

To prove (1) let us start by assuming that Γ > 0 everywhere. Take x ∈ Σ1.
Then there exist y(x) ∈ Sn−1 and λ(x) > 0 such that x = Tλ(x)(y(x)). Hence
1 = Γ(x) = Γ(Tλ(x)(y(x))) = λ(x)mΓ(y(x)). Since Γ is positive and continuous on
the unit sphere of IRn we have that 0 < A ≤ Γ(y(x)) ≤ B for some constants A
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and B which do not depend on x. So that 0 < B− 1
m ≤ λ(x) ≤ A−

1
m < ∞ for every

x ∈ Σ1. Then

|x|2 =
n∑

i=1

x2
i =

n∑

i=1

λ2ai(x)y2
i (x) ≥ γ |y|2 = γ > 0

where γ is a positive lower bound for λ(x)2ai . This proves that d(Σ1, 0) > 0.
Assume now that there exists y ∈ Sn−1 such that Γ(y) = 0 and that d(Σ1, 0) > 0.
Take ε > 0 such that B(0, ε) ∩ Σ1 = ∅. Let x be a point in Σ1. For small λ we
have that Tλx and Tλy belong to B(0, ε). But Γ(Tλx) = λmΓ(x) = λm > 1 and
Γ(Tλy) = 0. Hence there must be a point ξ in B(0, ε) such that Γ(ξ) = 1. This
contradicts the choice of ε. Then Γ is positive on the unit sphere. So it is positive
on the whole IRn.

To prove (2) let us take x ∈ Σ1. Then x 6= 0 and Γ(x) = 1. We need to prove
that x is a limit point of E(1) and of E(1)c. To see this, notice that x can be
approximated by Tλ(x) for λ ↗ 1 and λ ↘ 1. The first gives points in E(1) and
the second in its complement.

Finally, given x ∈ ∂1, x 6= 0, there exist two sequences {xk} in E(1) and {yk}
in E(1)c, both converging to x. Since Γ is continuous on IRn − {0} we have that
Γ(xk) → Γ(x) and Γ(yk) → Γ(x). But Γ(xk) > 1 and Γ(yk) ≤ 1. Hence Γ(x) must
be 1. In other words x ∈ Σ1. ¤

Lemma 2.3. Let Γ be as in Theorem 1.1. Then Γ vanishes at some point in
IRn − {0} if and only if 0 is a limit point of Σ1.

Proof. Assume 0 is not a limit point of Σ1. Then, for some positive δ we have
d(0, Σ1) > δ. Since Γ vanishes at some point ξ ∈ IRn − {0}, then Γ vanishes along
the whole curve Ts(ξ). In particular Γ vanishes on some y ∈ Sn−1.

Let us consider, as before, the curves Tλy and Tλx for some x ∈ Σ1 and λ small.
Then from continuity of Γ we find a point η in B(0, δ) with Γ(η) = 1 which is
impossible. ¤

Corollary 2.4. Let Γ be as above. If Γ > 0, then ∂E(1) is a compact set on
IRn − {0} and d(∂E(1), 0) > 0.

Proof. We have that Σ1 = {x ∈ IRn − {0} : Γ(x) = 1} = Γ−1({1}) = F . Since Γ is
continuous F is closed IRn − {0}, then Σ1 is closed. ¤

Lemma 2.5. Let Γ be as before. Then the following statements are equivalent
(2.5.a) Γ > 0 for every point of IRn − {0};
(2.5.b) Γ > 0 on Sn−1;
(2.5.c) 0 /∈ ∂1;
(2.5.d) 0 /∈ ∂α for any α > 0.

Proof. The equivalence of (2.5.a) and (2.5.b) follows directly from the homogeneity
of Γ. Notice that (2.5.b) implies (2.5.c) follows from Corollary 2.4.

Properties (2.5.c) and (2.5.d) are equivalent from the homogeneity of Γ. From
Lemma 2.2 we see that (2.5.c) implies (2.5.a).

¤

In the following lemma we give a generalized version of Euler’s formula for gen-
eralized homogeneous functions.
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Lemma 2.6. Let A and Γ be as before. The identity

(2.1) mΓ(x) = ∇Γ(x) ·A(x)

holds for every x ∈ IRn − {0}.
Proof. From the homogeneity of Γ we have that λmΓ(x) = Γ(Tλx) for every λ > 0.
Taking derivative with respect to λ for fixed x we have

mλm−1Γ(x) =
d

dλ
(Γ(Tλx)) =

d

dλ

(
Γ(eA log λx)

)

=
n∑

i=1

DiΓ(eA log λx) ·
(

A

λ
eA log λx

)

i

= ∇Γ(eA log λx) ·
(

A

λ
eA log λ

)
(x).

With λ = 1 we get (2.1).
¤

In the next lemmas we show that the level sets E(α) are adequate for the appli-
cation of Gauss divergence theorem.

Lemma 2.7. Let A and Γ be as in Theorem 1.1. Then

(2.7.A) the level set Σ1 is a C 1 surface contained in IRn − {0};
(2.7.B) for each α > 0 each Σα is a C 1 surface contained in IRn − {0}.
Proof. From the implicit function theorem we only here to prove that for each
x ∈ Σ1 the gradient of Γ at x does not vanish. Applying the generalized Euler
formula (2.1) we have that

0 > m = ∇Γ(x) ·A(x).

Hence ∇Γ(x) 6= 0. ¤

Lemma 2.8. (a) If Γ > 0, then E(1) ∪ {0} is a Gauss domain in IRn.
(b) If Γ vanishes at some points, then E(1) is a Gauss domain in IRn.

3. Proof of Theorem 1.2

Let ur be a linear functional which to each ψ ∈ C∞
0 (IRn) assigns the real numbers

dηψ

dα (r). It is immediate that ur is well defined and linear. We shall prove that ur

is a Schwartz distribution od order zero and positive. Actually we shall obtain an
implicit formula for the underlying measure. In order to do this, let us start by
computing the derivative of ηψ(α). From (2.1.iii) we have that

ηψ(α) =
∫∫

E(α)

ψ(x)dx =
∫∫

x ∈ Tα(E(1))

ψ(x)dx

= ατ

∫∫

y∈E(1)

ψ (Tαy) dy(3.1)



7

For an α, ν positive from (2.1.iii) we get E(να) = Tν(E(α)). So that

ηψ(να)− ηψ(α)
(ν − 1)α

=
1

(ν − 1)α

(∫∫

E(αν)

ψ −
∫∫

E(α)

ψ

)

=
1
α

∫∫

E(α)

ντψ (Tνy)− ψ(y)
ν − 1

dy.

Taking limit for ν → 1, we get

(3.2)
dηψ

dα
(r) =

1
r

∫∫

E(r)

d

dλ
(λτψ (Tλy))|λ=1 dy.

Since ψ (Tλy) = ψ(λa1y1, . . . , λ
anyn), its derivative with respect to λ is given by

d

dλ
ψ (Tλy) = ∇ψ (Tλy) · (a1λ

a1−1y1, . . . , anλan−1yn

)

=
1
λ
∇ψ (Tλy) ·A (Tλy)(3.3)

If ~F (z) = ψ(z)Az we have that

(3.4) ∇ψ (Tλy) ·A (Tλy) = div~F (Tλy)− τψ (Tλy) .

From (3.3) and (3.4) we obtain

d

dλ
(λτψ (Tλy)) = τλτ−1ψ (Tλy) + λτ d

dλ
(ψ (Tλy))

= τλτ−1ψ (Tλy) +
λτ

λ

[
div~F (Tλy)− τψ (Tλy)

]

= λτ−1 div~F (Tλy) ,

which for λ = 1 gives
d

dλ
(λτψ (Tλy))|λ=1 = div~F (y).

By substitution in (3.2) we get

dηψ

dα
(r) =

1
r

∫∫

E(r)

div~F (y) dy.

Since, from Lemma 2.8, each E(r) is a Gauss domain in IRn, we have that
∫∫

E(r)

div~F (y) dy =
∫

∂E(r)

ψ(y)Ay · ~nr(y) dσr(y).

From which (1.5) follows immediately.
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