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Abstract. In this work, a reinitialization procedure oriented to regularize the Level Set (LS) function
field is presented. In LS approximations for two-fluid flow simulations, a scalar function indicates the
presence of one or another phase and the interface between them. In general, the advection of such
function produces a degradation of some properties of the LS function, such as the smoothness of the
transition between phases and the correct position of the interface. The methodology introduced here,
denominated bounded renormalization with continuous penalization, consists of solving by the finite ele-
ment method a partial differential equation with certain distinguishing properties with the aim of keeping
the desirable properties of the LS function. The performance of the strategy is evaluated for several typ-
ical cases in one, two and three-dimensional domains, for both the advection and the renormalization
stages.
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1 INTRODUCTION

It is well known that there are two main approaches for the computation of two-phase or free
surface flows: interface tracking or interface capturing Shyy et al. (1996). The first approach
consists of following explicitly the interface because it is defined over discrete entities such as
nodes or elements of a finite element mesh. An interface capturing strategy generally counts
on a fixed or Eulerian mesh where the frontier between fluids crosses the elements and must be
captured by an additional component, such as an auxiliary variable or a fluid fraction.

On one side, interface tracking methods can be purely Lagrangian, as particle methods Idel-
sohn et al. (2004), or they are developed as Arbitrary Lagrangian-Eulerian (ALE) approaches Hughes
et al. (1981); Huerta and Liu (1988); Battaglia et al. (2006), where the interface is defined over
grid entities such as facets or edges. Then, the interface movement produces the displacement of
such entities and, in ALE approximations, the mesh must be deformed or regenerated in order to
take into account that deformation. By the other side, interface capturing methods as volume of
fluid (VOF) Hirt and Nichols (1981); Scardovelli and Zaleski (1999) or level set (LS) Osher and
Sethian (1988); Sethian (1995) were developed for modelling topological changes like merg-
ing or breaking up of the interfaces involved, and both of them require an additional parameter
for detecting the presence of the interface in an Eulerian referential. Particularly, LS methods
are not limited to incompressible flows. It is also used for simulating crystal growth Osher
and Fedkiw (2001), in image processing Osher and Fedkiw (2001); Gloger et al. (2009), the
material distribution within microstructure in solid mechanics Hettich and Ramm (2006), the
interaction of a compressible high-speed flow and a highly flexible thin-shell structure Cirak and
Radovitzky (2005), or computational biophysics Maitre et al. (2009), among other phenomena.
Regarding advantages and disadvantages of classic numerical methods for interface simula-
tions, hybrid methodologies arised with the aim of improving the results. Some examples are
the combined LS and VOF method (CLSVOF) from Sussman and Puckett Sussman and Puckett
(2000), the Particle Level Set from Enright et al. Enright et al. (2002), or the combination of
front tracking and front capturing techniques, as the one presented by Shin and Juric Shin and
Juric (2009).

In LS interface capturing approaches, for the general case of two-fluid flows, each phase
is usually indicated with a positive or negative value of the LS function φ, being φ > 0 for
one phase, φ < 0 for the other one, and φ = 0 is the level set corresponding to the interface
position Osher and Sethian (1988). The LS function φ is defined over the whole domain of
analysis, is continuous across the interface φ = 0 and is used for indicating the fluid properties
when the flow problem is numerically solved. According to the physics of the problem, the LS
function evolves in time following an advection equation, where the advective velocity depends
on the problem to be solved Osher and Fedkiw (2001). This kind of approximation counts
on numerous variants which were generated in order to avoid some problems associated to the
advection of the LS function φ Sussman and Smereka (1997), such as volume variation in one of
the phases involved and the loss of the smoothness of the transition between fluids. Then, some
approaches work on the advection scheme for φ to avoid these problems, by applying high order
integration schemes as essentially non oscillatory (ENO) and weighted-ENO (WENO) Osher
and Sethian (1988); Osher and Fedkiw (2001), or discontinuous Galerkin methods Marchandise



and Remacle (2006); Di Pietro et al. (2006).
Other LS approaches are complemented by a reinitialization for the φ field in order to keep

their smooth properties and, in some cases, compensate or avoid the volume loss at the same
time Sussman and Smereka (1997); Mut et al. (2006). Generally speaking, reinitialization of the
LS function φ field consists of a redistancing procedure where the φ values are determined as
the distance of each point to the φ = 0 curve. This can be done through brute force algorithms,
which are extremely expensive Elias et al. (2007), by solving similar problems related to the
distance to the interface Sussman and Smereka (1997); Elias et al. (2007); Mut et al. (2006), or
by proposing an auxiliary advection-diffusion like problem Olsson and Kreiss (2005); Olsson
et al. (2007), among others.

In this work, an advection-renormalization strategy for an LS method is presented. The algo-
rithm consists of two stages solved alternately: the first one is a typical advection stage, which
determines the transport of the φ function due to the application of a velocity field; the second
one, which can be done every certain number of temporal steps, keeps the regularity of the LS
function φ, mainly in the neighbourhood of the interface. The renormalization stage, denomi-
nated as bounded renormalization with continuous penalization (BRCP), consists of solving a
partial differential equation with particular properties, leading to a smooth, continuous, bounded
LS field such that it allows the resolution of problems like two-fluid flows, where the proper-
ties of each fluid are interpolated across a narrow strip near the interface throughout certain
functions of the LS field. Part of this strategy was introduced before for solving free surface
fluid flows Battaglia (2009); Battaglia et al. (3-6 November 2009), though only the aspects
that concern the transport of the LS function φ and its reinitialization by BRCP are considered
here. Each instance is numerically solved by a finite element method (FEM) through the use
of libraries from the PETSc-FEM code PETSc-FEM (2009), which is based on the Portable
Extensible Toolkit for Scientific Computation (PETSc) Balay et al. (2008), and the Message
Passing Interface (MPI) libraries for parallel computing MPI (2009).

The LS formulation is described in Section 2, including the LS field advection problem, and
a brief description of a renormalization method that precedes the one introduced in this work
is described in Section 3. Then, the advection-renormalization methodology is evaluated in
Section 4 for typical problems found in literature for two- and three-dimensional cases, whereas
one-dimensional examples are introduced for discussing the renormalization parameters to be
taken into account. Finally, Section 5 includes the concluding remarks.

2 LS FORMULATION

2.1 LS function

The LS function φ = φ(x, t) represents a continuous field defined over the whole domain of
analysis Ω, and is given for the position x ∈ Ω at time t in the case of transient problems. The
evolution of the φ field is governed by the physical phenomena involved in the simulation, e.g.
by the fluid velocity v(x, t) in the case of two-fluid flows Osher and Fedkiw (2001).

The LS scalar field describes which part of Ω is occupied by one phase or the other, and



particularly where the interface is placed between them, in the following way,

φ(x, t)


> 0 if x ∈ Ω1

= 0 if x ∈ ΓI

< 0 if x ∈ Ω2

(1)

where Ω1 and Ω2 are the subdomains occupied by one or the other phase, which verify Ω =

Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. The interface is captured as

ΓI = {x | φ(x, t) = 0}. (2)

Regarding the method proposed for the renormalization of φ in Section 3, the LS function
verifies −1 ≤ φ ≤ 1, with a smooth continuous transition between these values.

2.2 Advection of the LS field

The transport of the LS function φ over the domain Ω is generated by the velocity field v

given by the phenomena simulated, as the Navier–Stokes equations in the case of viscous and
incompressible two fluid flows, and can be written as follows,

∂tφ+ v · ∇φ = 0 (3)

where ∂t(...) = ∂(...)/∂t indicates the partial time derivative and the boundary conditions over
the frontiers of the domain Γ are given by

φ = φ̄ over Γin (4)

where inflow sections are Γin = {Γ | v · n < 0}, with n being the outgoing unit normal of
the boundary. This advection procedure takes into account the transport of the interface ΓI

in a natural way. Moreover, in the one-dimensional cases presented in Section 4.1, periodic
boundary conditions are used.

The numerical resolution of this advection problem is made by FEM with some of the li-
braries of the PETSc-FEM code PETSc-FEM (2009). Since the Galerkin formulation is used
for the resolution of the transport of φ given by Equation (3), the typical numerical instabil-
ities should be avoided, e.g. by using the streamline upwind/Petrov-Galerkin (SUPG) strat-
egy Brooks and Hughes (1982); Tezduyar and Osawa (2000).

2.3 Simultaneous advection-renormalization

Instead of the pure advection problem given in Equation (3), other formulation was proposed
in Battaglia et al. (10-13 November 2008) and Battaglia (2009), with the aim of renormalizing
the LS function φ at the same time the φ field is advected, avoiding the use of a renormalization
stage. Then, two additional terms were introduced at the right hand side of the φ advection
equation,

∂tφ+ v · ∇φ = C φ (φ2 − φ2
ref)︸ ︷︷ ︸

R

−κ(φ)∆φ︸ ︷︷ ︸
D

(5)



while the boundary conditions are the same as in Equation (4). The arbitrary positive constant
C, or regularizing parameter, is given in time−1 units. Numerical tests with 0 < C ≤ 10 s−1

have not shown neither numerical instabilities nor severe precision loss. Results showed that
C = 10 s−1 provided the higher error in ΓI position, while C = 1 s−1 gave an acceptable
performance Battaglia et al. (10-13 November 2008). Note that in case C = 0, Equation (3) is
recovered.

The Laplacian operator is ∆, and κ(φ) is a diffusive parameter determined as follows,

κ(φ) = κref min(|φ|/φref , 1) (6)

with the reference value for the variable φref = 1 and κref proposed such as

κref = ε2 C (7)

in length2/time units. The length ε is given by the user, and represents the width of half the
transition strip between the bounds ±φref , in such a way that ε/h establishes the quantity of
elements in one half of this transition strip, being h a typical element size.

This reaction-diffusion formulation on the right hand side of Equation (5) was proposed for
reproducing a behaviour similar to those found in combustion phenomena Logan (1994), where
the roots φ = ±φref of R give the stable “on/off” states, while the diffusive term D provides
a continuous smooth transition between them. The remaining root φ = 0 in R ensures that
this term is null for the transport of the zero LS, as well as in D, where from Equation (6)
results κ(0) = 0. Then, when φ tends to zero, Equation (3) is recovered, and the position
of the interface ΓI should not be affected by these additional terms, at least in a continuous
formulation.

The problem given by Equation (5) is numerically solved by FEM, considering the SUPG
strategy for the advective terms in case numerical stabilization was needed, as mentioned in
Section 2.2.

The results obtained through this strategy showed that the transition strip width was not
constant, and some results were more diffusive and less precise than expected Battaglia et al.
(10-13 November 2008); Battaglia (2009). As a consequence, the simultaneous advection-
renormalization stage was divided into separated procedures, keeping the idea of a continuous
operator as the base for the reinitialization procedure of Section 3.

3 REINITIALIZATION OF THE LS FUNCTION

The reinitialization or renormalization procedure presented here was introduced in Battaglia
(2009), and consists of the resolution of a PDE system by FEM, where the variable is the
LS function φ. This procedure is a consequence of the methodology accounted in Section 2.3,
where advection and renormalization of the LS function were solved at the same time. A similar
approach is given in Olsson and Kreiss Olsson and Kreiss (2005), and Olsson et al. Olsson et al.
(2007) as part of the so-called Conservative Level Set Method, although the reinitialization
procedure given in those references lacks of penalization term.

The operator to be applied after solving Equation (3), denominated BRCP and presented in
this work, is proposed as

φ (φ2 − φ2
ref)− κ∆φ+M

[
Ȟ(φ)− Ȟ(φ0)

]
= 0 (8)



being κ a diffusive parameter or diffusivity, M a penalty coefficient, and φref a reference value
for the variable φ, in this case adopted as φref = 1, whereas φ0 is the initial LS function value
for the renormalization step provided by the solution of Equation (3). The diffusive parameter
κ is given in length2 units, and is related to a typical element size h for the mesh, usually from
h2 to (3h)2, depending on the interface behaviour: a lower κ provides a thinner transition.

The penalizing term of Equation (8), where the penalty coefficient M is used, allows taking
into account the known values φ0, i.e. those determined in the advection stage. The aim of
this term is avoiding the displacement of the interface, represented by the zero LS φ = 0,
by weighting Ȟ(φ) − Ȟ(φ0). In this term, the penalty coefficient M is positive and non-
dimensional, and the penalization function Ȟ(φ) is chosen as the continuous (C∞) expression

Ȟ(φ) = tanh(2πφ). (9)

The choice of such function for the penalization term is motivated by the advantages of us-
ing a smooth, bounded, infinitely differentiable function against discontinuous ones, as the
classical Heaviside function, which would require special numerical treatment, particularly
in three-dimensional problems. The argument of the function in Equation (9) is chosen for
concentrating the effect of the penalizing term nearby the interface, e.g. the penalty term at
half the transition from φ = 0 and φ = 1 is Ȟ(0.5) − Ȟ(0.49) = 5 × 10−4, whereas it is
Ȟ(0.1) − Ȟ(0.09) = 4.5 × 10−2 close to the interface. In coupled advection-renomalization
problems, convenient values for the penalizationM areO(10nd+2) with nd the number of spatial
dimensions of the problem considered, as will be shown in Section 4. Low values for M , such
as M = 1, lead to high error in the ΓI position, and M = 0 makes the algorithm fail because
it lacks the reference φ0 from the advective step. For values of M higher than O(10nd+2), the
renormalization effect is lost, because the φ field tends to the φ0 field, i.e., the solution obtained
with pure advection is recovered. Other interface capturing method with penalty parameter
for preserving the interface position is the edge-tracked interface locator technique (ETILT)
method Tezduyar (2006); Cruchaga et al. (2007).

As an example of how the first two terms of Equation (8) act over the φ field, their effect will
be analysed over a one-dimensional domain 0 ≤ x ≤ L,

Cr φ (φ2 − φ2
ref)− κ∆φ = 0 (10)

which is a stationary reaction-diffusion-like equation, where φref is a given value and Cr is a
non-dimensional regularizing coefficient, different from the one in Equation (5) because this
problem is stationary. Dirichlet boundary conditions are given.

For analysing the behaviour of each term in Equation (10), the Laplacian part is eliminated
with κ = 0; then, the roots of the remaining reactive equation are φ = ±φref = ±1 and
φ = 0, and there are infinite solutions, which are piecewise-constant, and where each segment
takes one of the roots values. If the diffusivity κ is reintroduced, each pair of segments of the
contiguous solution for κ = 0 is smoothly connected in a continuous way, as seen in Figure 1.

The behaviour of the roots of the reactive term of Equation (10) is analysed throughout an
analogy with a steady heat conduction equation with a nonlinear source term, where φ repre-



sents the temperature. Effectively, this equation can be put in the form

0 = κ∆φ+Q(φ), (11)

where there are a source term Q(φ) = −Cr φ(φ2 − φ2
ref) and a conduction term with a thermal

diffusivity κ. Physically, the source term Q(φ) tends to force φ to reach the stable equilibrium
temperatures, i.e. those φ∗ for which

Q(φ∗) = 0, and Q′(φ∗) < 0 (12)

where Q′(φ) = −Cr(3φ2 − φ2
ref). Owing to the first condition of Equation (12), the source

term is null at these temperatures, so that a spatially constant solution φ = φ∗ is a solution of
Equation (11). Now, if φ changes slightly from φ∗, e.g. φ = φ∗ + δφ with δφ > 0, then the
source term becomes negative due to the second condition in Equation (12), so that it tends to
bring φ back to φ∗, and the same occurs if δφ < 0. This condition is analogous for the roots
φ∗ = ±φref of Equation (10). Conversely, for those roots that satisfy

Q(φ∗) = 0, and Q′(φ∗) > 0 (13)

the feedback given by the source term is positive, so that it tends to take away φ from the
equilibrium value φ∗, and it is an unstable equilibrium temperature, which is analogous for
φ∗ = 0 in Equation (10).

In LS methods, the key is the definition of the regions occupied by one or another phase,
which correspond to non-null values for the LS function φ, and the interface is an entity of
one dimension less than the spatial domain studied; other cases are meaningless in this context.
Then, regarding Equation (10), if the initial conditions for the reinitialization process takes
φ values different from zero, or at most takes this value in one point between φ > 0 and
φ < 0, then the instability of the near-zero region will provide that the zero LS will be crossed
by the solution curve at most on one point for one dimensional problem, over a line for two
dimensional ones, or over a surface in three dimensional cases.

See for example Figure 1 for the case κ = 0, where solutions of Equation (10) are constant
and take values φ = ±φref . If the diffusivity κ is reintroduced, each pair of segments of the
contiguous solution for κ = 0 is smoothly connected in a continuous way, as seen also in the
same figure.

The transition width from −φref to φref is given by

γ = O
(√

κ

Cr

)
(14)

Then, by adopting Cr = 1 for all the cases, the LS function transition strip is governed by the
diffusivity κ. For appreciating this, in Figure 1 there are two solutions for two different values
of κ, where the higher one provides a wider transition.

10truecm
Regarding the choice of the free parameter values, diffusivity κ and penalization M , in cases

where the interface would suffer breaking up or would fold several times, it is convenient to
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Figure 1: Artificial reaction-diffusion problem for renormalization of φ depending on the diffusion coefficient κ
values.

adopt a low κ value and a high M one, because transitions should be thinner and M would
avoid the disappearance of the drops.

The regions placed far from the interface are not affected by the renormalization process
because, when φ → φref , then all the three terms in Equation (8) tends to zero. On the other
hand, the higher influence of the operator from Equation (8) is registered in the neighbourhood
of φ = 0, where the lower precision in the interface position and mass loss is observed Mut
et al. (2006); Cruchaga et al. (2007).

The operator presented in Equation (8) is numerically solved as a steady problem by a stan-
dard FEM, taking as initial condition φ0 the φ values transported by the previous advection step.
Besides, the regularization can be applied each time step or every nreno time steps.

4 NUMERICAL EXAMPLES

A battery of numerical tests is proposed in order to show the advantages of the application of
the BRCP strategy for renormalization of LS-like functions φ. These examples will be solved
in two ways:

• advection, with or without SUPG stabilization;

• advection plus renormalization;

which are named ADV and ADV+BRCP, respectively, in order to shorten the description of the
examples. The performances of both strategies are compared and the application field for BRCP
is established. Linear finite elements are used in all the cases, for both stages of resolution.

4.1 One-dimensional fields

For illustrating the effect of the advection-renormalization sequence and the selection of ap-
propriate values for the diffusivity κ and the penalty parameterM in BRCP, two one-dimensional



Elapsed time t = 1 s t = 3 s
Numerical method and mesh ∆0 [m] ∆l [m] ∆0 [m] ∆l [m]
ADV 8.4× 10−3 1.5× 10−2 4.3× 10−2 8.0× 10−2

ADV+BRCP, κ = 2h2 4.9× 10−3 6.8× 10−3 1.0× 10−2 7.1× 10−3

ADV+BRCP, κ = 4h2 5.6× 10−3 9.2× 10−3 1.5× 10−2 2.1× 10−2

Table 1: Maximum zeros displacements ∆0 and variation of the distance between consecutive zeros of φ, ∆l, for
the sinusoid problem after one lap (t = 1 s) and three laps (t = 3 s) around the periodic domain.

problems are considered. Both are solved over a domain of length L = 1 m, divided in 100

finite elements of length h = 0.01 m and considering an advection velocity of v = 1 m/s.
Other common issues for the following examples are the frequency of renormalization, every

nreno = 10 time steps, and the use of periodic boundary conditions between x = 0 and x = L.
Then, for each lap around the periodic domain, for example for a final time tf = 1 s, the
advected field should be equal to the initial one, at least regarding the φ = 0 coordinate, which
indicates the position of the interface in higher dimensional problems.

The time step adopted is ∆t = 0.005 s, giving in all the cases a Courant number Co = 0.5,
which implies that the advective step will provide stable and a little diffusive solutions. Besides,
the temporal integration in the solution of the advection problem is implicit due to the adoption
of an integration coefficient 0.7 < θ ≤ 1.0 for the trapezoidal rule Donea and Huerta (2003). It
should be noted that solutions with numerical stabilization are explicitly indicated.

4.1.1 Sinusoid

The first example consists of the evaluation of a travelling sinusoid solved by two alterna-
tives, ADV and ADV+BRCP, represented together with the initial condition in Figure 2, given
by

φ(x) = sin (s+ 6πx) + 0.30 (15)

for 0 ≤ x ≤ (L− 0.01 m). The shift s = 0.01 m in x direction is used for avoiding problems at
the measurement of the position of φ = 0 in case the wave suffers a delay in the displacements
for the periodic domain. Moreover, the displacement in φ of 0.30 is introduced in order to reach
an initial condition with different sizes of positive and negative region lengths in the x-axis,
regarding the LS function value, i.e., φ > 0 or φ < 0, respectively.

12truecm
The resolution is performed with an integration coefficient θ = 0.7 for the time integration

with the trapezoidal rule, and the purpose of this example is showing the influence of the diffu-
sive parameter κ over the resulting curves, as well as the volume preservation properties of the
BRCP scheme.

12truecm
The solution obtained with ADV shows a loss of amplitude, especially in the negative peaks,

and the zeros positions are displaced, see Figure 2. Such displacement, which is not present in
ADV+BRCP cases, is due to the symmetry of the curve with respect to the mean value φ = 0.30

computed with ADV. On the contrary, BRCP solutions are obtained in such a way that the length
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Figure 2: Travelling sinusoid solved by ADV, ADV+BRCP for different values of diffusivity κ, and the initial
condition.

of the positive and negative regions in x-direction is kept independently of the amplitude in φ-
direction. Then, when fields with different sizes and shapes of positive and negative regions
are solved, the strategy ADV+BRCP performs better than the ADV without reinitialization.
Moreover, the results obtained with ADV+BRCP tends to maintain the amplitude forced by the
renormalization operator, i.e. φ = ±1, particularly for κ = 2h2, although the peaks are a little
lower in the case κ = 4h2. This difference between the two of the BRCP solutions is due to
a higher diffusivity κ induces a wider transition between −φref and +φref , and in this example
the transitions are superimposed because of the narrowness of the initial condition in negative
peaks. Both of the BRCP final states were determined with penalization M = 1000.

13truecm
The maximum zeros displacements ∆0 for the solutions plotted in Figure 2 are included

in Table 1, as well as the variation of the length of the segments defined between zeros ∆l,
regarding either positive or negative value for the LS function φ, after one lap (t = 1 s) and
three laps (t = 3 s) around the periodic domain, for a uniform mesh. Through this table, it is
possible to confirm that the zeros tracking error is higher for ADV than for the ADV+BRCP
alternatives, and that the renormalized cases show a better length preservation, regarding the ∆l

column values, with one order of magnitude of difference, particularly for BRCP with κ = 2h2.
The evolution of the maximum displacements of the φ = 0 positions, ∆0, is represented in
Figure 3 as a function of time, for the solutions obtained with ADV, and with ADV+BRCP
considering κ = 2h2, where the tendency of such error is always higher for ADV. This is due to
the loss of amplitude of the ADV solution, which also tends to the disappearance of the regions
of φ < 0 as the problem evolves in time, whereas BRCP avoids it.

11truecm
This example is also solved over a non-uniform node distribution randomly generated, with



∆0

0.04

0.03

0.02

0.01

0
0 0.5 1 1.5 2 2.5 3

Time [s]

[m]

ADV

ADV+BRCP

Figure 3: Variation in time of the maximum zeros displacements ∆0 for the resolution with ADV, and ADV+BRCP
in the case of the travelling sine function.

a mean h value which corresponds to the element size from the previous analysis, showing
a maximum element size of hM = 0.0208 m and a minimum one of hm = 0.0004 m. The
curves obtained with ADV+BRCP for the same reinitialization parameters with uniform mesh,
i.e. diffusivity κ = 2h2 and penalization M = 1000, are practically superimposed for both the
uniform and non-uniform meshes, showing the proportionality between the diffusivity κ and
the transition width, see Figure 4.

4.1.2 A normalized cardinal sine like function

The effects of the penalization term from Equation (8) is shown through a symmetric exam-
ple with three steps, considering a time integration coefficient θ = 0.7 and two different mesh
sizes, h = 0.01 m and h′ = h/2 = 0.005 m. The LS function field is generated in two stages.
First, a cardinal sine like function is proposed,

φ̃ =
sin [7π (x− f)]

2π (x− f)
(16)

with f = 0.50 m the displacement of the function vertex in x-direction. The field given by
Equation (16) is later normalized in order to work with φ values inside the bounds proposed by
the BRCP method, as follows,

φ = sign
(
φ̃
)

(17)

where the sign function is defined as:

sign(φ) =


−1 for φ < 0

0 for φ = 0

1 for φ > 0.

(18)



non−uniform

1

0.5

0

−0.5

−1

0 0.2 0.4 0.6
x [m]

10.8

φ

initial uniform

Figure 4: Travelling sinusoid solved by ADV+BRCP and initial condition, for uniform and non-uniform mesh
spacings.

11truecm The periodic advection problem is numerically solved with ADV+BRCP, consid-
ering a diffusive parameter κ = 2h2 = 2× 10−4 m combined with different penalty coefficient
M values. The results are plotted in Figure 5 together with the initial condition obtained from
Equations (16) and (17) for a final time tf = 2 s, which corresponds to two laps around the
periodic domain. The differences among penalizations M = 1, M = 1000 and M = 10000 re-
garding the zeros position is that the lower penalty value gives the highest zeros delay, whereas
M = 1000 and M = 10000 are closer to the position of the null LS function values φ = 0. By
the other side, for M = 1000 the bounds imposed to φ, given by φref = 1, are more respected
than for M = 10000, because a high M value tends to get a curve attached to the advective
solution φ0, which suffers a smoothing due to the proximity of peaks and the different sizes of
the positive and negative regions of the LS function φ. Considerations about the smoothing of
the solution and the Values of M between M = 1 and M = 1000 provide intermediate curves
to those presented in Figure 5. The maximum zeros displacements ∆0 and maximum absolute
variation of the length ∆l of LS positive or negative regions are summarized in Table 2, where
the lowest variation in the length of a segment defined by a pair of zeros in the LS function, ∆l,
is registered for M = 1000.

14truecm
As a mesh convergence test, the same problem is solved with an element size of h′ = h/2 =

0.005 m and time step ∆t = 0.0025 s using ADV+BRCP with the same penalty coefficient
values, M = 1, M = 1000 and M = 10000, and renormalizing every nreno = 20 time steps.
The diffusive parameter adopted is κ′ = 2 (2h′)2 = 2× 10−4 m, i.e. the same numerical value
than in the discretization with element length h = 0.01 m, with the aim of reproducing the same
transition width in both cases. After performing two laps around the periodic domain, the results
show a similar behaviour as in Figure 5, though with lower zeros displacements with respect
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Figure 5: A normalized cardinal sine like function solved with ADV+BRCP, h = 0.01 m, and different penalties
M after two laps.

Element size h = 0.01 m h′ = 0.005 m
Penalty ∆0 [m] ∆l [m] ∆0 [m] ∆l [m]
M = 1 2.0× 10−2 8.5× 10−4 2.7× 10−3 3.0× 10−5

M = 1000 6.9× 10−3 1.7× 10−4 6.4× 10−3 9.2× 10−5

M = 10000 5.1× 10−3 1.8× 10−3 1.9× 10−3 1.2× 10−4

Table 2: Maximum zeros displacements ∆0 and variation of the distance between consecutive zeros ∆l for the
cardinal sine like function after two laps solved with ADV+BRCP, and h = 0.01 m.

to the theoretical solution and a better fit for the LS function proposed bounds, φref , and with a
lower decrease of the peaks for a penalization of M = 10000. Notice that the transition widths
for M = 1 and M = 1000 values are the same as in the case with mesh size h = 0.01 m due to
the use of the same value for κ for both discretizations. The maximum zeros displacements ∆0

and maximum absolute variation of the length ∆l of LS positive or negative regions for a final
time tf = 2 s are included in Table 2, which are in all the cases lower than the corresponding
ones determined with h, considering the M values as reference and allowing the verification of
the convergence according to the mesh size.

The imposition of initial conditions bounded to ±φref is recommended. These initial condi-
tions could be obtained with the application of different functions over a field where φ = 0 is
defined, such as tanh (π φ), a distance function, or sign(φ̃). Nevertheless, as soon as the BRCP
is performed, the φ field is smoothed, as seen in Figure 5.



4.2 Two-dimensional vortex example

A typical test case for the advection-renormalization strategy consists of solving the defor-
mation of a disc of radius r = 0.15 m with φ > 1 inside, centered in (xc, yc) = (0.50, 0.75) m

for a square domain with side length of 1 m, i.e. x and y-coordinates vary from 0 to 1 m. This
disc, represented exactly by the zero LS φ = 0, is submitted to a velocity field defined by a
stream function

Ξ = − 1

π
sin2(πx) sin2(πy) (19)

from which the velocity field over the domain is given by the following components,

vx = −∂Ξ

∂y
= − sin(2πy) sin2(πx) (20)

vy = +
∂Ξ

∂x
= sin(2πx) sin2(πy). (21)

This example, or slightly different ones, is taken as reference for evaluating the perfor-
mance of several interface-capturing methods such as LS Di Pietro et al. (2006); Enright et al.
(2002); Gois et al. (2008); Olsson and Kreiss (2005), VOF Elias and Coutinho (2007) or hybrid
ones Shin and Juric (2009). 12truecm

The selected variant is the application of the velocity field from Equations (20,21) up to
a final time tf = 5 s. The results obtained by the FEM advection-renormalization strategy
are compared to the position of some particles initially disposed over the contour of the circle
and transported by the given velocity field. In this way, the comparison between the FEM
resolution and the theoretical deformation allows the evaluation of the ability of the method for
reproducing the disc deformation and the capabilities related to area preservation.

14truecm
The results of this problem are obtained in the following ways:

A. advection (ADV) over a uniform tesselation of around 131000 linear triangular elements,
with N = 256 elements in each boundary side;

B. as in A, with SUPG stabilization.

C. ADV+BRCP, renormalizing every nreno = 10 time steps over the same discretization as
A, with diffusivity κ = 2h2 = 3.06× 10−5 m2 and penalization M = 10000;

D. ADV+BRCP for N = 512 triangular elements by side, nreno = 20, with diffusivity
κ = 2(2h)2 = 3.06× 10−5 m2 and penalization M = 10000;

All the solutions for this case count on an initial field with linear variation from φ = −1

to φ = 1, with an interface semi-width of 0.05 m, i.e. around 13 times the element size for
h = 1/256 m. In all the cases, the Courant number is taken as Co = 0.5, which leads to a time
step ∆t = 1.95× 10−3 s in cases A, B and C, whereas ∆t = 9.77× 10−4 s corresponds to case
D. The time integration is made with an integration coefficient θ = 0.5 for the trapezoidal rule.

10truecm The interface obtained through FEM, indicated with φ = 0, is represented in Figure
6 with continuous trace, whereas the reference particles are plot with crosses. This figure shows
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Figure 6: Curves of φ = 0 in tf = 5 s for the 2D vortex solved with ADV (A), ADV+SUPG (B), ADV+BRCP (C),
and ADV+BRCP in a refined domain (D).

little difference between the curves obtained in cases A and C, a higher performance in D, which
is attributed to the refinement of the mesh, and an important loss of the positive LS function area,
i.e. where φ > 0, in B.

The evolution of the positive LS function area is shown in Figure 7 for all the cases. In spite
of the small differences between the results of cases A and C up to time t = 4 s, the resolution
in C shows less than 0.5% of area loss, the same order as in D, whereas in case A the positive
area (φ > 0) is diminished in 3%, approximately. It is clear from Figure 6 that the area loss in
B is much higher than those mentioned above, around 27%.

As a reference, it should be mentioned that the results obtained by Olsson and Kreiss Ols-
son and Kreiss (2005) with a similar renormalization proposal showed higher mass loss and
fragmentation of the φ > 0 area than case C, for time t = 4 s and a 2562 elements mesh.

From another point of view, the analysis of the LS function profile along a section at y =
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Figure 7: Area evolution of the region with positive LS function (φ > 0) for the 2D vortex solved through ADV
(A), ADV+SUPG (B) and ADV+BRCP for different mesh sizes (C,D).

0.5 m, represented in Figure 8, shows differences among the ADV solution in case A, with
numerical instabilities, a smooth ADV+BRCP solution without numerical stabilization in the
advection stage in C, and a stabilized ADV solution in case B, where the use of SUPG lead to
the dissapearance of part of the area with φ > 0 due to the diffusion introduced by the SUPG
method.

4.3 Three-dimensional vortex example

The three-dimensional extension of the two-dimensional vortex of Section 4.2 was pro-
posed by LeVeque LeVeque (1996) and considered later by several authors such as Elias and
Coutinho Elias and Coutinho (2007), Enright et al. Enright et al. (2002), Gois et al. Gois et al.
(2008) and Shin and Juric Shin and Juric (2009), among others.

The example consists of the deformation of a sphere with radius re = 0.15 m defined by
the LS corresponding to φ = 0, centered in coordinates (0.35, 0.35, 0.35) m of the unit cube,
submitted to a velocity field given as follows,

vx = 2 sin2(πx) sin(2πy) sin(2πz) cos
(
πt
Te

)
vy = − sin(2πx) sin2(πy) sin(2πz) cos

(
πt
Te

)
vz = − sin(2πx) sin(2πy) sin2(πz) cos

(
πt
Te

) (22)

where the period is Te = 3 s. The proposed time evolution generates two contra-rotating vortices
that produce a deformation of the region delimited by the interface φ = 0 between t = 0 and
t = 1.5 s, resulting in a thin, squashed form. Then, the velocity field is inverted and the sphere
should be recovered in t = 3 s.

10truecm
The FEM simulation is made over a 1283 hexahedral elements regular mesh, giving h =

7.8×10−3 m for the element size, with nreno = 10 time steps and a time step of ∆t = 0.00195 s.
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Figure 8: Section at y = 0.5 m for the 2D vortex problem in tf = 5 s for ADV (A), ADV+SUPG (B) and
ADV+BRCP (C).

For the BRCP instance, the diffusivity κ = 4h2 = 2.44 × 10−4 m2 and the penalty coefficient
M = 100000 is adopted as a result of numerical experiments, from which the practical rule is
proposing M of O(10nd+2). The initial condition is proposed as a linear transition of φ across
the interface.

Figure 9 shows the evolution of the interface φ = 0 in different time instants. Because of
the periodic character of the velocity field, the shapes registered in t = 3 s and t ≈ 0 should be
equal, as well as t = 2.617 s and t = 0.390 s, and the other corresponding pairs. A final volume
loss of 5.4 % is registered for the example solved under these conditions, and the evolution of
this parameter is shown in Figure 10.

Similar spatial discretizations were employed for other authors for solving the 3D vortex.
Those obtained by Enright et al. Enright et al. (2002) for a classical LS method with 1003 el-
ements showed 80 % of volume loss, while a particle LS for the same discretization of 1003

elements showed a 2.6 % reduction of the volume. For VOF extensions, with a fully implicit
parallel edge-based SUPG finite element formulation for the advection of the volume fraction,
Elias and Coutinho Elias and Coutinho (2007) performed several tests with variants of the for-
mulation over meshes with tetrahedral elements of typical size h = 7.5 × 10−3 for a unit side
cube. These last results presented a minimum volume variation of −0.57 % taking into account
a mass conserving strategy, a maximum one of −64 % by adding a discontinuity capturing
term to the resolution of the transport of the volume fraction, while combining both of the last
improving strategies to the basic proposal, the volume variation is +0.96 %.

10truecm



Figure 9: Surface defined by φ = 0 in different instants for the 3D vortex solved with ADV+BRCP.

5 CONCLUSIONS

A continuous operator, named BRCP, has been proposed for regularizing the LS function in
one, two and three spatial dimensions by means of a finite element method. This operator avoids
the degradation of some properties of the LS function, as the smoothness of the transition from
one to another region, due to the advection of such field.

Two kinds of typical cases in one and two spatial dimensions have been solved by this proce-
dure: advection and advection-renormalization problems, where the BRCP strategy is strongly
tested in Section 4 and is compared in some cases to solutions obtained with advection and
SUPG stabilized advection for the LS function field. These tests, together with the three di-
mensional example, allow the definition of ranges for the two parameters involved in the BRCP
strategy, the diffusion κ and the penalization M , related to the mesh size and the number of
spatial dimensions involved, respectively. Advantages of the application of the renormaliza-
tion procedure are shown especially in long time simulations, where the LS function profile is
kept by BRCP, although this profile is not kept by either the advection or stabilized advection



V
ol

um
e 

va
ria

tio
n 

[%
]

0

−1

−2

−3

−4

−5

0 0.5 1 1.5
Time [s]

2 2.5 3

Figure 10: Shape volume evolution in time for the 3D vortex.

alternatives. Additionally, the renormalization procedure shows a numerical stabilizing effect
over the results provided by the advection stage, avoiding the use of SUPG stabilization in that
instance.

Further work would be focused on including a wider range of boundary conditions for the
advection instance, and the coupling of this strategy with a fluid flow solver with the aim of
modelling free surface and two-fluid flows cases.
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