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Abstract.
Transient free surface flows are numerically simulated by a finite element interface capturing method

based on a level set approach. The methodology consists of the solution of two-fluid viscous incom-
pressible flows for a single domain, where the liquid phase is identified by positive values of the level
set function, the gaseous phase by negative ones, and the free surface by the zero level set. The numer-
ical solution at each time step is performed in three stages: (i) a two-fluid Navier–Stokes stage, (ii) an
advection stage for the transport of the level set function, and (iii) a bounded reinitialization with contin-
uous penalization stage for keeping smoothness of the level set function. The proposed procedure, and
particularly the renormalization stage, are evaluated in three typical two and three-dimensional problems.
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1 INTRODUCTION

Free Surface (FS) flows are a particular case of multiphase flows, where there are a liquid
phase and a gaseous phase, the last one lighter than the first. Flows with a FS are found in
several engineering disciplines, as chemical, mechanical or hydraulic, covering a wide range of
fluid properties and flow cases, such as sloshing in liquid storage tanks or open channel flows.
In this work, attention is focused on FS incompressible isothermal flows of Newtonian viscous
fluids, in the cases where the surface tension is negligible.

There are different approaches for the computation of two-fluid flows, which are described
as interface tracking and interface capturing methods (Shyy et al., 1996). On one hand, interface
tracking methods follow explicitly the FS, which is defined over specific entities, such as nodes
or faces of a mesh used with a Finite Element Method (FEM). The domain considers only the
fluid phase, and the deformation of the domain, as a consequence of the FS movement, can
be solved in different ways. The most common alternatives are Lagrangian approaches, as in
particle methods (Idelsohn et al., 2004), where fluid particles are free to move, and Arbitrary
Lagrangian-Eulerian (ALE) approaches (Hughes et al., 1981; Huerta and Liu, 1988; Chippada
et al., 1996; Rabier and Medale, 2003), where the change in the shape of the domain involves
either, the deformation of the mesh, keeping the topology constant, or a periodic remeshing,
depending on the magnitude of the displacements. In the last alternative, large FS deformations
are sometimes hard to model due to the fixed topology, avoiding merging or breaking up of
the interface. On the other hand, interface capturing strategies consider fixed tessellations of
the two-fluid domain, where the interface crosses a set of elements. The precise position of
the FS is captured by an additional quantity, as a scalar field given over the whole domain,
or a fluid fraction registered in each element crossed by the FS. Generally speaking, these
alternatives allows the folding of the interface without special considerations, although they are
not as precise as interface tracking regarding the FS displacements. The most common interface
capturing methods are Volume of Fluid (VOF) (Hirt and Nichols, 1981; Scardovelli and Zaleski,
1999) and Level Set (LS) (Osher and Sethian, 1988; Sethian, 1995). The first one is based on
the definition of a fluid fraction F on each element of the discretization, being F = 0 in the
gaseous phase, F = 1 in the liquid one and 0 < F < 1 for cells crossed by the interface, which
is recovered by specialized algorithms. On the other side, LS methods consider an additional
scalar variable, the level set function φ, which is advected by a transport equation, identifying
the liquid phase with positive values (φ > 0), the gaseous phase with negative values (φ < 0)
and the interface with null values (φ = 0).

In previous works (Battaglia et al., 2006, 2007), a FEM-ALE strategy was developed for
solving FS fluid flows such as sloshing in tanks. However, the proposal was limited to flow
cases where the uniqueness of the interface was verified. The aim of this work is the application
of a LS interface capturing approach for solving two-fluid flows in a single domain, considering
both phases as Newtonian, viscous and incompressible fluids. In the present case, each fluid is
indicated with a positive or negative value of the LS function φ, as described before. The φ-field
is continuous over the whole domain, including the transition across the FS, given naturally at
φ = 0.

The sequence of solution consist of three stages, which solve separately the following parts of
the problem: (i) the fluid state, by solving the Navier–Stokes (NS) equations over the two-fluid
domain; (ii) the transport of the LS function φ, which implies the displacement of the interface
φ = 0; and (iii) a reinitialization of the φ-field for keeping the regularity of the LS function,
which is specially important in the neighbourhood of the FS, and can be performed every certain



number of time steps, according to the complexity of the flow (Battaglia, 2009). The numerical
computation of each stage is made by different solvers of the PETSc-FEM libraries (PETSc-
FEM, 2009), which are based on the Portable Extensible Toolkit for Scientific Computation
(PETSc) libraries (Balay et al., 2008) and the Message Passing Interface (MPI, 2009) for parallel
computing. The present results are obtained with an interface capturing approach that requires
the synchronization among the three solvers involved and the development of a reinitialization
stage.

The performance of the method is shown first, for the advection-renormalization of the LS
field over a typical 2D example, and second, for two and three dimensional dam-break prob-
lems, which are compared to available experimental data (Martin and Moyce, 1952) and other
numerical results.

2 GOVERNING EQUATIONS

The Partial Differential Equations (PDE) systems presented in this section are solved by
FEM, and each one is related to each stage of solution. The NS and the advective (ADV)
solvers have been previously analyzed (Sonzogni et al., 2002; Storti et al., 2008), while the
so-called Bounded Renormalization with Continuous Penalization (BRCP) algorithm, which
renormalizes the LS function field, was introduced only for advection-renormalization prob-
lems (Battaglia et al., 2010).

The multi-physics programming paradigm for the synchronization of the FEM modules was
introduced in previous works (Battaglia et al., 2006). The three stages of solution run indepen-
dently in parallel, and they are linked by C++ synchronization programs named hooks, which
are run at certain points in the FEM modules execution. The concept of the hooks has been
borrowed from the GNU Emacs editor and from the Linux (2010) kernel. The hooks allow the
data exchange among NS, ADV and BRCP solvers through the use of queues (first-in-first-out,
FIFO). In each time step, the fluid velocities determined by the NS solver are sent to the ADV
one for performing the LS function advection. Then, the LS field is sent to the BRCP module,
where the renormalization is performed. After that, the NS stage receives the LS field, which is
needed to determine the fluid properties in the whole domain for the following time step.

The time dependence is present in two of the three stages, the NS and the ADV, for which
time integration is performed by the trapezoidal rule with parameter α, being α = 1 for the
Backward Euler method and α = 0.5 for Crank-Nicolson.

2.1 Fluid state

The fluid state in the domain Ω for time t ∈ [0, T ] is given by the NS equations system for
two incompressible and immiscible fluids, which is:

ρ(φ(x, t)) (∂tv + v · ∇v − f)−∇ · σ = 0 ;

∇ · v = 0 ;
(1)

where x ∈ Ω is the position vector, v is the fluid velocity, f is the body force by unit of mass,
ρ(φ(x, t)) is the fluid density, ∂t(...) = ∂(...)/∂t indicates the partial time derivative and φ is
the LS function.

The fluid stress tensor σ is decomposed in an isotropic −pI part and a deviatoric one T,

σ = −pI + T ; (2)



being p the pressure, I the identity tensor and T the viscous forces tensor,

T = 2 µ(φ(x, t)) ε ; (3)

which is a function of the strain rate tensor ε determined as

ε =
1

2

[
∇v + (∇v)T

]
; (4)

for Newtonian fluids, with (...)T indicating transposition and being µ = µ(φ(x, t)) the dynamic
viscosity.

The fluid properties, density and viscosity, depend on both, the position x and the evaluation
time t due to the multiphase model, which is given by the LS function φ, defined over the whole
domain Ω. The values taken by φ indicate if the region Ω is occupied by one or another fluid
(Sussman and Smereka, 1997), according to the following,

φ(x, t)


> 0 if x ∈ Ωl;

= 0 if x ∈ ΓFS;

< 0 if x ∈ Ωg;

(5)

where the subdomain Ωl corresponds to the liquid phase and Ωg is the gaseous one, while both
conditions Ω = Ωl ∪ Ωg and Ωl ∩ Ωg = ∅ are verified. Note that the subindex adopted, l and g,
correspond to the liquid and the gaseous regions, respectively. Particularly, the FS is defined as

ΓFS = {x|φ(x, t) = 0}. (6)

In this case, due to the renormalization method proposed for the LS function φ, see Sec. 2.3,
the function is bounded, i.e., −1 ≤ φ ≤ 1, and the transition between fluids is smooth.

Given the LS value φ, the fluid properties for Eqs. (1) and (4) are given as

ρ(φ) =
1

2

[(
1 + H̃(φ)

)
ρl +

(
1− H̃(φ)

)
ρg

]
;

µ(φ) =
1

2

[(
1 + H̃(φ)

)
µl +

(
1− H̃(φ)

)
µg

]
;

(7)

where the smeared Heaviside function H̃(φ) is determined through:

H̃(φ) = tanh

(
πφ

ε̃

)
; (8)

where ε̃ is a reference parameter for the transition width. In this case, for |φ| → ε̃, H̃(φ) → 1,
with the consequence of a diminishing in the width of the transition for the fluid properties
needed for the NS system in comparison to the transition between φ = −1 and φ = 1 considered
in the ADV step. In particular, ε̃ = 0.5 is adopted, reducing the transition length in about 70%.

The infinitely differentiable function H̃(φ) given in Eq. (8) is slightly different from other
smooth Heaviside-like functions found in the literature (Sussman and Smereka, 1997; Olsson
and Kreiss, 2005; Kurioka and Dowling, 2009) because it counts on a simpler mathematical
expression, and it is not piecewise defined. This condition constitutes an advantage, because
the selected function naturally fits the bounds |φ| ≤ 1 required by Eq. (7) for the interpolation
of the fluid properties.



For the fluid flow problems considered in this work, slip boundary conditions for the velocity
v in Eq. (1) are given over the solid boundaries Γwall, while in the case of the pressure, p = 0 is
imposed on top of the domain.

The solution of Eq. (1) is made through the NS solver from the PETSc-FEM libraries (Son-
zogni et al., 2002), adopting linear elements with the same interpolation for velocity and pres-
sure fields, which are stabilized with streamline upwind/Petrov-Galerkin (SUPG) (Brooks and
Hughes, 1982) and pressure stabilizing/Petrov-Galerkin (PSPG) (Tezduyar et al., 1992).

2.2 Level set function advection

The transport of the LS function φ over the domain Ω is produced by the velocity v obtained
by solving the NS equations, as follows,

∂tφ+ v · ∇φ = 0; (9)

with boundary conditions given by

φ = φ̄ over Γin; (10)

where the inflow section is Γin = {Γ| v · n < 0}. In this way, the advection procedure takes
into account the transport of the interface ΓFS in a natural way.

This transport step, named ADV, is numerically solved by the advective module of the
PETSc-FEM program (Storti et al., 2008). The numerical instabilities, which arise from the
use of a Galerkin central scheme for solving the transport equation of the LS function φ, can
be avoided by a SUPG strategy (Brooks and Hughes, 1982). Nevertheless, if the BRCP is
performed, the SUPG stabilization is not necessary for the transport of the LS function.

2.3 Reinitialization of the level set function field

Most LS approximations include a renormalization step, where a distance function equation
is solved with the aim of keeping the regularity and the smoothness of the φ-field; otherwise,
the advection of φ or the interpolation of the fluid properties across the interface would lose
precision in the numerical solution. Since some redistancing procedures are extremely expen-
sive (Hysing, 2007), they are gradually replaced by improved algorithms (Elias et al., 2007;
Mut et al., 2006). An alternative to the redistancing strategy consist of avoiding any reinitializa-
tion by performing a highly accurate transport of the LS field, such as discontinuous Galerkin
methods (Marchandise and Remacle, 2006), high order Weighted Essentially Non-Oscillatory
method, WENO (Kurioka and Dowling, 2009), or mesh adaptivity near φ = 0 (Marchandise
and Remacle, 2006), among others.

In this work, the renormalization process is focused on conserving the regularity of the tran-
sition between phases by solving a PDE, introduced in Battaglia (2009). A similar strategy is
the Conservative Level Set Method (Olsson and Kreiss, 2005; Olsson et al., 2007), although it
does not count on a penalization term as in the present work.

The reinitialization consists of solving the PDE system by FEM, where the variable is φ. The
operator BRCP is

φ (φ2 − φ2
ref)− κ∆φ+M

(
Ĥ(φ)− Ĥ(φ0)

)
= 0; (11)

where κ is a diffusive parameter, M a penalty coefficient and φref a reference value for the
variable φ, adopted as φref = 1, while φ0 is the initial LS function value for the renormalization
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Figure 1: Artificial reaction-diffusion problem for renormalization of φ depending on the diffusion coefficient κ
value.

step provided by the solution of Eq. (9). The diffusion parameter κ, with squared length units,
is related to an adopted typical element size h, usually from h2 to (3h)2, depending on the FS
behaviour, such that a lower κ provides a thinner transition.

The positive coefficient M is non-dimensional and should be adopted as O(10nd+2), with nd

the number of spatial dimensions involved. Furthermore, the function adopted for the penalizing
term, Ĥ(φ), has the continuous expression

Ĥ(φ) = tanh(2πφ) ; (12)

which is a smeared Heaviside function. The purpose of selecting a smooth function which
is continuous across the interface is to avoid a complicated numerical treatment, especially in
three dimensional problems.

The effect of Eq. (11) can be explained as follows. The first two terms constitute a steady
heat conduction equation with a source term, being φ the temperature, i.e.

κ∆φ+Q(φ) = 0; (13)

where Q(φ) = −φ(φ2 − φ2
ref) is the source term and κ acts as a thermal diffusivity parameter.

Physically, the source term Q(φ) forces φ to reach the stable equilibrium temperatures, i.e.
those φ∗ for which Q(φ∗) = 0 and Q′(φ∗) < 0, with Q′(φ) = dQ/dφ. Since Q(φ∗) = 0, a
spatially constant solution φ = φ∗ is a solution of Eq. (13). Therefore, if φ = φ∗ + δφ, with δφ
a small perturbation, the source term is negative due to the condition Q′(φ∗) < 0, and φ tends to
φ∗, independently of the sign of δφ. For renormalization method, this condition is analogous for
the roots φ∗ = ±φref . Conversely, whenQ(φ∗∗) = 0 andQ′(φ∗∗) > 0, the roots φ∗∗ are unstable
equilibrium temperatures, and any perturbation δφ produces a positive increment in the source
term, taking φ away from the equilibrium value φ∗∗, as occurs when φ = 0 in Eq. (13).

Furthermore, the Laplacian term in Eq. (13) produces a smooth transition of semiwidth δ =
O(κ1/2) between the bounds given by the stable roots of the source term, which are φ∗ = ±φref .
Therefore, it is verified that a larger value of the diffusivity leads to a wider transition. This is
shown in Fig. 1 for a steady problem with initial conditions given by piecewise-constants values
for φ0, and the solutions of Eq. (13) corresponding to different values of diffusivity.



When Eq. (11) is numerically solved over an unstructured or locally refined mesh, the
diffusivity κ should be chosen considering a given δ value, i.e. κ = O(δ2). An appropriate
transition semiwidth δ can be given by the size of two or three elements near the interface
φ = 0, regarding the precision of the numerical advection step.

The last term of Eq. (11), or penalizing term, takes into account the known values φ0, i.e.
those determined in the advection step. The aim of this term is to avoid the displacement of
φ = 0, i.e. the mass loss during the renormalization process, by weighting Ĥ(φ) − Ĥ(φ0).
Convenient values for the penalty M are O(10nd+2), while low values such as M = 1, lead
to a higher error in the interface position, and with M = 0 the algorithm fails because it lacks
the reference φ0 from the advective step. For M > O(10nd+2), the renormalization effect
is lost, because the φ-field tends to the φ0-field, and the solution given by the ADV step is
recovered (Battaglia et al. (2010)). Penalty parameters for preserving the interface position were
also proposed by other authors, as in the Edge-Tracked Interface Locator Technique (ETILT)
method (Tezduyar (2006); Cruchaga et al. (2007)).

The renormalization process acts mainly in the neighbourhood of the FS, where the loss of
precision in the FS position and the mass loss are registered (Mut et al., 2006; Cruchaga et al.,
2007). On the other side, when φ ≈ φref , i.e. far from the interface, the three terms in Eq. (11)
tend to zero. Finally, the operator of Eq. (11) is numerically solved by FEM on each time step
or every nreno time steps, after the computation of the ADV stage.

3 NUMERICAL EXAMPLES

3.1 Advection-renormalization problem: the disk of Zalesak

Rd

(x ,y )d d
hd

wd

Figure 2: Shape of φ = 0 for the disk of the Zalesak test.

The effectiveness of the renormalization method is evaluated by solving the problem pre-
sented by Zalesak (1979) and reproduced by several authors (Elias and Coutinho, 2007; Gois
et al., 2008; Mut et al., 2006), which consists of a notched disk inside a square unit domain with
0 ≤ (x, y) ≤ 1. The initial condition are shown in Fig. 2, being the radius Rd = 0.15 m,
while the notch is wd = 0.05 m wide and hd = 0.25 m height. The disk is centered at
(xd, yd) = (0.5, 0.75) m at the beginning of the computation, Fig. 3, enclosing the φ > 0
region, and the velocity field is given by

vx = 2π (y − yc) ;

vy = −2π (x− xc) ;
(14)



which produces a rigid rotation of the notched disk around the point (xc, yc) = (0.5, 0.5) m.
After one revolution, the numerical results are compared to the initial position, that should be
recovered.

Figure 3: Initial level set function field for the notched disk for h = 7.8× 10−3 m.

The problem is solved by two different strategies: using only Eq. (9), and with Eq. (9) plus
the periodic renormalization with Eq. (11), named ADV and ADV+BRCP, respectively. For
one revolution, the final time of tf = 1 s is discretized in 628 time steps of ∆t = 1/(200π) s ≈
0.0016 s, with an implicit time integration considering θ = 0.7 for the trapezoidal rule. The
finite element mesh consists of 1282 bilinear quadrilateral elements of typical size h = 7.8 ×
10−3 m.

The diffusivities for the renormalized examples are κA = 2h2 = 1.22 × 10−4 m2 in case
ADV+BRCP(A), or κB = 4h2 = 2.44 × 10−4 m2 in case ADV+BRCP(B), while the penalty
is chosen as M = 10000 in both cases. The renormalization is performed every nreno = 4
advection time steps.

The performance of the three solution alternatives are shown in Fig. 4, where the profiles of
φ = 0 in t = 1 s are represented for the three alternatives: (a) pure advection, (b) advection plus
renormalization with κA = 2h2 and (c) advection plus renormalization with κB = 4h2. Notice
that in the pure advection case the notch is almost disappeared, while in (b) it is well captured.
Furthermore, the disappearance of the notch in (c) is attributed to the wider transition induced
by a higher value of κ than in (b), as explained in Sec. 2.3. The shape distortion of the disk
in the results computed with ADV+BRCP(A) is similar to the one presented in Kurioka and
Dowling (2009) for the same problem with a 1002 elements mesh and a high order advection
solver.



(a) ADV (b) ADV+BRCP(A) (c) ADV+BRCP(B)

Figure 4: Curve of φ = 0 for the disk of Zalesak at t = 1 s solved without and with BRCP (thick lines), together
with the initial condition (thin lines).

Regarding area conservation of the φ > 0 region, there are few differences among the alter-
natives ADV and ADV+BRCP(B), where the disk gains between 9 and 10 % of area due to the
disappearance of the notch, while in case ADV+BRCP(A) the area decreases about 1 %.

Figure 5 shows the LS function field for (a) ADV and (b) ADV+BRCP(A). In the first case,
the transition from −1 to +1 is not uniform, the relief is smoothed, and the notched disk tends
to disappear. In case ADV+BRCP, the transition presents uniform width around the whole
φ = 0 curve. Then, the constant width provided by the BRCP stage replaces the redistancing
procedures classically performed in LS methods (Sussman and Smereka, 1997; Sussman et al.,
1999).

Additionally, the same problem is solved with ADV+BRCP over a 2562 elements mesh with
time step ∆tr = 8× 10−4 s, diffusivity κr = 2h2

r = 3.05× 10−5 m2, penalty Mr = 10000 and
nreno = 4. The LS function field and the final profile obtained with this refined mesh are shown
in Fig. 6.

The difference in the width of the transitions in Figs. 6(a) and 5(b) is due to the diffu-
sivity values chosen in each case, which are κr = 3.05× 10−5 m2 and κA = 1.22× 10−4 m2,
respectively. Regarding the property δ = O(κ1/2), then δr ≈ 2κ

1/2
r = 0.012 m for Fig. 6(a)

and δA ≈ 2κ
1/2
A = 0.022 m for Fig. 5(b). Furthermore, for the case ADV+BRCP(B),

κB = 2.44× 10−4 m2 and δB ≈ 2κ
1/2
B = 0.032 m > wd/2, i.e. the proposed transition is too

smooth and the method is not able to keep the notch width, as shown in Fig. 4(c).

3.2 Collapse of a liquid column in 2D

This example is a typical test for interface-capturing methods (Cruchaga et al., 2007; Elias
and Coutinho, 2007; Kurioka and Dowling, 2009; Marchandise and Remacle, 2006; Tang et al.,
2008), consisting of a two-dimensional water column which collapses after being liberated, and
is also known as the dam-break problem. Experimental results are available for different geo-
metrical configurations and fluids, e.g. see Martin and Moyce (1952); Cruchaga et al. (2007),
allowing the validation of numerical methods.

The domain Ω considered for the numerical simulation is sketched in Fig. 7, being the do-
main of width and height Wd = 0.228 m and Hd = 0.228 m, respectively, while the initial
liquid domain Ωl –the water column– is Wc = 0.057 m width and Hc = 0.114 m height, re-
sulting in an aspect ratio of ra = Hc/Wc = 2, the same as in the physical model of Martin and
Moyce (1952).

The fluids considered for the simulation are air for the gaseous phase, with density ρg =



1 kg/m3 and dynamic viscosity µg = 1.0 × 10−5 kg/(m s), and water for the liquid phase,
being its density and dynamic viscosity ρl = 1000 kg/m3 and µl = 1.0 × 10−3 kg/(m s),
respectively.

For the fluid problem, boundary conditions are a perfect slip over the whole contour, v ·n =
0, as indicated in Fig. 7, being n the unit normal to the contour, and null pressure on the top of
the domain. Boundary conditions for the transport problem are not required because there are
no inflow sections for the domain Ω.

The initial velocity field is v0 = 0 for the NS and the ADV problems, while the initial LS
function field is given such that the water column Ωl includes nodes where 0 < φ ≤ 1, while
in the rest of the domain Ω, i.e. the gaseous phase Ωg, is −1 ≤ φ < 0, and φ = 0 is the initial
FS position. For the numerical simulation, the gate is instantaneously removed and the column
collapses due to the gravity acceleration g = 9.81 m/s2.

The numerical problem is solved for a uniform structured finite element mesh composed
by quadrilaterals with typical size h ≈ 0.0023 m and approximately 10200 nodes, which is
the same for the three stages to be solved: NS, ADV and BRCP. The time step adopted is
∆t = 0.002 s along 1000 time steps, with an implicit temporal integration for the NS and the
ADV problems, considering an integration parameter θ = 0.7 for the trapezoidal rule, while the
BRCP stage is stationary each time step.

The reinitialization step is proposed with parameters κ = 2h2 = 1.04 × 10−5 m2 and M =
10000. The number of ADV steps which are performed before each reinitialization is nreno = 2
for this particular example.

The dimensionless front position xf (t∗)/Wc is represented versus the dimensionless time
t∗ = t

√
2g/Wc in Fig. 8, for the numerical results and the experimental measurements taken

from Martin and Moyce (1952). In that figure, the slope of the curve represents the velocity of
the advancing front, which is well captured.

Other reference results, also represented in Fig. 8, were numerically obtained by using the
ETILT method, from Cruchaga et al. (2007), and a VOF approach developed by Elias and
Coutinho (2007). In both references, the aspect ratio is ra = Hc/Wc = 2, which means that
there is a physical similarity of the problem solved with different Wc values, according to the
dimensionless front position and dimensionless time. Furthermore, Elias and Coutinho (2007)
solved the collapse of the column in a 3D domain instead a two-dimensional one.

The evolution of the dimensionless water height hc(t
∗)/Wc, measured over the left side of

the domain, is represented as a function of the dimensionless time t∗ = t
√

2g/Wc in Fig. 9.
In that figure, the displacement of the numerical curve from the experimental one is smaller
than in Fig. 8, and the mean descending velocity is well captured, considering the slope of the
curves. Again, numerical reference results are taken from Cruchaga et al. (2007) and Elias and
Coutinho (2007), that are also included in Fig. 9.

The FS position in different instants of the simulation are shown in Fig. 10, including early
stages without breaking, as in t = 0.14 s or t = 0.28 s, and later stages with air capture and
interface merging.

3.3 Collapse of a liquid column in 3D

The three-dimensional example presented is the numerical simulation of the collapse of a
cylindrical water column, which was also experimentally studied by Martin and Moyce (1952).
The problem was solved for one fourth of the column inside a cubic domain, as represented
in Fig. 11, with proper boundary conditions in order to keep the symmetry of the problem, as



made by other authors (Akin et al., 2007; Cruchaga et al., 2009; Tang et al., 2008).
The domain Ω consists of a cube with edge length b = 0.2284 m, in which the water col-

umn, i.e. the fluid domain Ωl, is centered in the corner of the plane coordinates (x1, x2) =
(0.2284, 0.2284) m, being its radius and height r0 = 0.0571 m and h0 = 0.1142 m, respec-
tively, giving an aspect ratio ra = 2, see Fig. 11.

The collapse is started once the column is released instantaneously at time t = 0 due to the
action of the gravity acceleration g = 9.81m/s2, given in −x3 direction. The fluid properties
for water are density ρl = 1000 kg/m3 and dynamic viscosity µl = 1.0× 10−3 kg/(m s), while
for the air are ρg = 1 kg/m3 and µg = 1.0× 10−5 kg/(m s).

The finite element mesh employed for the numerical simulation counts on 503 hexahedral
elements with uniform edge length h ≈ 4.5×10−3 m. Numerical simulation is performed along
1000 time steps of ∆t = 0.001 s with implicit integration for NS and ADV, and renormalization
at each time step, i.e. nreno = 1, adopting a penalizing parameter of M = 500000 and a
diffusion coefficient κ = 2h2 = 4.17 × 10−5 m2. Perfect slip conditions over the walls are
imposed for the NS stage, while ADV do not require boundary conditions, as in the former
case.

The dimensionless front displacement rf (t∗)/r0 of the breaking column as a function of
the dimensionless time t∗ = t

√
2g/r0 is represented in Fig. 12, where the experimental mea-

surements of Martin and Moyce (1952) are compared with the numerical results obtained
through: (i) the present NS+ADV+BRCP approach, (ii) Edge-Tracked Interface Locator Tech-
nique (ETILT) and Moving Lagrangian Interface Remeshing Technique (MLIRT), both from
Cruchaga et al. (2009), and a Least Square Finite Element Method (LSFEM) (Tang et al., 2008).

Since there are no experimental results for the dimensionless height of the top of the col-
umn, only numerical results are shown in Fig. 13, corresponding to the method introduced in
the present work and the results presented in Cruchaga et al. (2009) for ETILT and MLIRT,
considering the dimensionless column height hc(t

∗)/r0 as a function of the dimensionless time
t∗. All these results correspond to an aspect ratio of ra = Hc/Wc = 2, and then to similarity
flows. The early stages of the collapse of the column are represented in Fig. 14.

4 CONCLUSIONS

The simulation of viscous and incompressible free surface flows is numerically per-
formed by a three-stage finite element method based on the level set approximation, con-
sisting of: a Navier–Stokes solver for the fluid flow, a transport equation for the advection
of the level set function field, and a renormalization step for keeping some properties of the
scalar field, in a weak-coupling paradigm. Each of the three steps is numerically computed
over the same fixed finite element mesh, and can be solved through parallel computing.
Particularly, the application of a continuous operator, named Bounded Renormalization
with Continuous Penalization (BRCP), is introduced for two-fluid flow problems.

Appropriate values for the user-defined parameters required by the BRCP are directly
proposed as (i) a function of the number of spatial dimensions for the penalizing param-
eter M , and (ii) a diffusivity κ proportional to the square of the transition semiwidth
between the limiting bounds of the level set function φ. In the last case, the mesh size near
the interface can be taken as a reference for proposing δ.

The advection and renormalization stages are used to solve a classical test, the disk
of Zalesak in Sec. 3.1, which shows the performance of the renormalization method for
keeping the sharpness of the interface and the regularity of the level set function field



obtained. The renormalization parameters are applied according to the guidelines given
in Sec. 2.3, and the influence of the diffusivity κ over the transition width δ is verified.

Two typical two and three-dimensional transient free surface problems are solved by
the three-stage methodology, in Secs. 3.2 and 3.3, respectively. The results are in good
agreement with experimental measurements and with the results obtained through other
numerical methods taken from the literature for the early stages of the problem, showing
the ability of the proposed strategy to consider large density and viscosity ratios. Fur-
thermore, after the water impact over the walls, the present method reproduces complex
topological changes, as the breaking up and merging of the free surface. The BRCP coef-
ficients M and κ were given directly by the estimations mentioned before.

The three-stage proposal can be applied to free surface flows as well as to general two-
fluid flows problems, taking into account that the boundary conditions in the interface are
directly solved by the two-phase level set method.
ACKNOWLEDGEMENTS

This work has received financial support from Consejo Nacional de Investigaciones Cientı́ficas
y Técnicas (CONICET, Argentina, grant PIP 5271/05), Universidad Nacional del Litoral (UNL,
Argentina, grant CAI+D 2009–III-4–2) and Agencia Nacional de Promoción Cientı́fica y Tec-
nológica (ANPCyT, Argentina, grants PICT 01141/2007, PICT 1506/2006), and was partially
performed with the Free Software Foundation GNU-Project resources such as GNU/Linux OS
and GNU/Octave, as well as other Open Source resources such as PETSc, MPICH, OpenDX,
ParaView, LATEX and JabRef.
REFERENCES

J. Ed Akin, Tayfun E. Tezduyar, and Mehmet Ungor. Computation of flow problems with
the mixed interface-tracking/interface-capturing technique (MITICT). Computers & Flu-
ids, 36(1):2–11, Enero 2007. URL http://www.sciencedirect.com/science/
article/B6V26-4HPD3K1-1/2/7aec2b642a2f0ae2db334e8328b8e79d.

Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
users manual. ANL 95/11 - Revision 3.0.0, Argonne National Laboratory, 2008.

L. Battaglia, J. D’ Elı́a, M. A. Storti, and N. M. Nigro. Numerical simula-
tion of transient free surface flows using a moving mesh technique. ASME
Journal of Applied Mechanics, 73(6):1017–1025, Noviembre 2006. URL
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=
normal&id=JAMCAV000073000006001017000001&idtype=cvips&gifs=
yes.

L. Battaglia, M. A. Storti, and J. D’ Elı́a. Stabilized free surface flows. In S. Elaskar, E. Pilotta,
and G. Torres, editors, Mecánica Computacional, volume XXVI, pages 1013–1030, Cordoba,
Octubre 2-5 2007. URL http://www.cimec.org.ar/ojs/.

L. Battaglia, M. A. Storti, and J. D’Elı́a. Bounded renormalization with continuous penalization
for level set interface capturing methods. International Journal for Numerical Methods in
Engineering, 2010. (accepted).

Laura Battaglia. Stabilized Finite Elements for Free Surface Flows: Tracking and Capturing of
Interface. PhD thesis, Facultad de Ingenierı́a y Ciencias Hı́dricas, Universidad Nacional del
Litoral., 2009. In Spanish.

Alexander N. Brooks and Thomas J. R. Hughes. Streamline upwind/Petrov-Galerkin formula-
tions for convection dominated flows with particular emphasis on the incompressible Navier-

http://www.sciencedirect.com/science/article/B6V26-4HPD3K1-1/2/7aec2b642a2f0ae2db334e8328b8e79d
http://www.sciencedirect.com/science/article/B6V26-4HPD3K1-1/2/7aec2b642a2f0ae2db334e8328b8e79d
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAMCAV000073000006001017000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAMCAV000073000006001017000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAMCAV000073000006001017000001&idtype=cvips&gifs=yes


Stokes equations. Computer Methods in Applied Mechanics Engineering, 32(1-3):199–259,
Septiembre 1982. URL http://www.sciencedirect.com/science/article/
B6V29-47X87NJ-FY/2/4ca7fa459f21c3c49689df53c9e85b63.

S. Chippada, T. C. Jue, S. W. Joo, M. F. Wheeler, and B. Ramaswamy. Numerical sim-
ulation of free-boundary problems. International Journal of Computational Fluid Dy-
namics, 7(1):91–118, 1996. URL http://www.informaworld.com/10.1080/
10618569608940754.

Marcela Cruchaga, Diego Celentano, Piotr Breitkopf, Pierre Villon, and Alain Rassineux.
A surface remeshing technique for a lagrangian description of 3d two-fluid flow prob-
lems. International Journal for Numerical Methods in Fluids, n/a(-):–, 2009. URL http:
//dx.doi.org/10.1002/fld.2073. in press.

Marcela A. Cruchaga, Diego J. Celentano, and Tayfun E. Tezduyar. Collapse of a liquid column:
numerical simulation and experimental validation. Computational Mechanics, 39:453–476,
2007.

R.N. Elias and Alvaro L. G. A. Coutinho. Stabilized edge-based finite element simulation
of free-surface flows. International Journal for Numerical Methods in Fluids, 54(6-8):
965–993, Junio 2007. URL http://www3.interscience.wiley.com/journal/
114191654/abstract.

R.N. Elias, Marcos A. D. Martins, and Alvaro L. G. A. Coutinho. Simple fi-
nite element-based computation of distance functions in unstructured grids. Interna-
tional Journal for Numerical Methods in Engineering, 72(9):1095–1110, Noviembre
2007. URL http://www3.interscience.wiley.com/cgi-bin/abstract/
114250638/ABSTRACT?CRETRY=1&SRETRY=0.

Joao Paulo Gois, Anderson Nakano, Luis Gustavo Nonato, and Gustavo C. Buscaglia. Front
tracking with moving-least-squares surfaces. Journal of Computational Physics, 227(22):
9643–9669, Noviembre 2008. URL http://www.sciencedirect.com/science/
article/B6WHY-4T5CH0Y-1/2/ee4c91ef6081ba0f3d3942fac1e50fd4.

C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free bound-
aries. Journal of Computational Physics, 39(1):201–225, Enero 1981.

Antonio Huerta and Wing Kam Liu. Viscous flow with large free surface motion. Computer
Methods in Applied Mechanics and Engineering, 69:277–324, 1988.

Thomas J. R. Hughes, Wing Kam Liu, and Thomas K. Zimmermann. Lagrangian-
Eulerian finite element formulation for incompressible viscous flows. Com-
puter Methods in Applied Mechanics and Engineering, 29(3):329–349, Diciem-
bre 1981. URL http://www.sciencedirect.com/science/article/
B6V29-47X87MD-F8/1/9c2b5f4ae597f644298c2eadf346e3c5.

Shu-Ren Hysing. Numerical Simulation of Immiscible Fluids with FEM Level Set Techniques.
PhD thesis, Dortmund - Germany, 2007.
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(a) ADV

(b) ADV+BRCP(A)

Figure 5: Level set function field at t = 1 s for the case of the notched disk.



(a) LS function field

(b) initial (thin) and final (thick)
φ = 0 profiles

Figure 6: Results of the analysis for the rotating disk with the refined mesh.



W

initial FS
position

perfect slip

Hc

Wc

H

WATER

AIR

d

d

Figure 7: Geometry and boundary conditions for the collapse of a water column example in 2D.
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Figure 10: Free surface positions for several instants in the 2D dam-break problem.
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Figure 11: Geometry for the problem of the collapse of a cylindrical water column in 3D.
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2g/r0 for the problem of
the collapse of a cylindrical water column in 3D: numerical results and experimental data.



D
im

en
si

on
le

ss
 h

ei
gh

t

1.8

1.6

1.4

1.2

0.8

0.6

0.4

1

0 0.5 1 1.5
Dimensionless time

2 2.5 3 3.5

2
present work

MLIRT

ETILT

Figure 13: Dimensionless column height hc(t∗)/r0 versus dimensionless time t∗ = t
√
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Figure 14: Initial stages for the problem of the collapse of a cylindrical water column in 3D.
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