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Abstract

In this paper we define a/n—consistent nonparametric density estimator for funetion
data. Under mild conditions we obtain strong consistericgng orders of convergence
and derive the asymptotic distribution of the estimator. pigose a nonparametric clas-
sification rule based on local times (occupation measuré)imriude some simulations
studies.
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1. Introduction.

Recent advances in technology allow significantly more diatbe recorded over a
continuous period of time, where samples are trajectories siochastic process, for a
given number of individuals. Such data are common ftedent fields, including health
sciences, engineering, physical sciences, chemomsdiriaace and social sciences. The
set of statistical tools for analyzing such data is callettfional data analysis, FDA from
now on, an expression coined by Ramsay and Dalzell [22].

The books of Ramsay and Silverman [23, 24] describe in asyte way some tech-
niques for exploration of functional data. Further resoéia be found in Ferraty and Vieu
[12].
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In general the data come from discretized functions. Thet pasular approaches to
deal with these kind of data sets are to start by a “regultiizgorocedure” (Hastie et al,
1995) (that tends to exclude from consideration the funetithat are “too wiggly”) or
by a “filtering method”, which leads to replacement of evarmgdtion by its cofficients
with respect to the basis of a suitable finite-dimensionapace. On the contrary, in our
setting “too wiggly” will be a good property under which wellWe able to attain para-
metric rates of convergence, and so, we will focus on stdithpsocesses with irregular
trajectories.

In this paper we consider a sample of curiégt), . . ., X,(t)} generated from a stochas-
tic processX(t) given by

X(t) = u(t) +et), teT, (1)

wherep(t) stands for the mean function, aet) is a zero mean, first-order stationary
stochastic process with density unknown functfon

The problem we address is the nonparametric density estimatthe context of func-
tional data, i.e. estimate the densityXqt) whennindependent trajectories of a continuous
time stochastic processes verifying (1) are observed. \Mh&oonstant, this problem has
been considered by several authors inféedent setup, mainly when a single sample path
is observed over an increasing intervalTdand T grows to infinity. This problem of esti-
mating the marginal probability density function in depentdcontexts have been studied
starting in Rosenblatt [25], Nguyen [20], and mainly by @Haha and Leadbetter [6],
where it is shown that for continuous time processes a pdramspeed of convergence is
attained by kernel type estimates. More recently, it hasla¢en considered by Blanke and
Bosq [4], Blanke [3], Kutoyants [16] among others. In partés, Labrador [17] propose a
k—nearest neighbor type estimate using local time ideas.

We share with Labrador the use of local times (occupationsomed in order to define
nearest neighbor estimates in two cases: wk#énis a constant independent of time and
when it is not constant. In Section 2 we consider the first emskobtain strong consis-
tency, strong order of convergence and the asymptotidlalision of the estimator under
mild conditions. A parametricy/n speed of convergence is attained for the asymptotic
distribution. In Section 3 we consider the second case atalrobtrong consistency and
strong orders of convergence. In Section 4 we applied oultss® obtain a new classifi-
cation rule for FDA. Moreover, some small simulations séigdare given. All proofs are
given at the Appendix.

2. Estimating the density function of stationary processes

In this section we define a density estimator for stationémghsastic processes, i.e.
in model (1) we considen(t) = u a constant independent bEo thatX(t) has the same



properties ag(t). Let T c R a finite interval, andX(t) : t € T} a real-valued measurable
continuous time stationary process with continuous ttajees which admits a local time.
Let{X.(1),..., Xn(t)} be a set of iid trajectories with the same distributiorXé3. Assume
that X(t) has an unknown density functidn

Definel,) = [x—r,x+r] and for{k,}, ky < n for eachn, a positive real numbers
sequence converging to infinity, we define the random vagidll = H,(X) such that
{Xa(1), ..., Xa(t)} spend timek, atln,x). Thatis,

kn = Z:‘ ﬁﬂl(an(x))(Xi (t)) dt = ; fTHHXi(t)—Xlan(x)}(t) dt. (2)

We define the estimator for the densftyas

kn

"0 AT

2.1. Consistency, strong convergence rates and asymglistrdoution.

In Theorem 1 we prove, under mild conditions, the almost detepconvergence of
the estimator of the densitf. Under some additional assumptions we obtain in Theorem
2 sharp bounds for strong rates of convergence and asymptotnality with parametric
rates of convergence in Theorem 3. The assumptions in theséhkeorems are closely
related to those given in Castellana and Leadbetter [6] evlieés shown that for contin-
uous time processes a parametric speed of convergencaimgedtby kernel type density
estimators.

The assumptions we consider are the following.

H1 The sequencgX(t),1 <i <n,te T} are iid random elements with the same distri-
bution asX(t), where{X(t) : t € T} is a stochastic process which admits a local
time.

H2 X(t) is a first order stationary stochastic process with an uwkndensity function
f.

H3 {k,} is a positive real numbers sequence converging to infinith siatk,/n = o(1)

andZ exp (ck,) < o for eachc > 0.
n=1

H4 The densityf is a Lipschitz function.



H5 For eactt > 0,

c‘zcngff f (fsi(u,v) — f(u)f(v))dudvdsdt
T JT Jixju-x<ce} J{x|v-xi<ce}

- (fsi(x, X) — F4(x))ds dt= c3(x) > O,
TXT

wherec, =
Theorem 1. Strong consistencyUnder H1-H3, for almost atk € R,

lim f,(x) = f(x) a.co.
n—oo

Here “a.co.” stands for the almost complete convergence.

Remark 1. If f is Lipschitz the convergence is for alle R.

Theorem 2. Strong rates of convergenceAssuming H1, H2 and H4, choose two se-
quencegk,} and{v,} of positive real numbers converging to infinity such ttigyn) v, =

o(1), and that for each > 0, Z exp(—c(kn/vy)) < 0. For thatk, let us suppose that H5
=1
holds. Then, for alk € R, "

r!Lngovn(f;(x) - f(x) =0 a.co.

Remark 2. Suppose thak, = n® andv, = n”. Since the hypothesig,/n = o(1) and
(kn/N) Vi, = 0(1) have to be true we ne¢l< 1 andB — 1+ y < 0. Then, for any < 1/2,
that is,y = 1/2 — € for some 0< € < 1/2, we can choosg = 1/2 + ¢/2 < 1 so that
L-1+vy<O.

Theorem 3. Asymptotic Normality. Assume H1, H2, H5 and that the densithas two
bounded derivatives. K, is such thatyn/k, = o(1), k,/n®* = o(1) then, for allx € R,

2T )

V(00 = £(9) = N(o, 2



3. Estimating the density function of non—stationary procsses.

In this section we define a density estimator for non—statypstochastic processes.
This means that, in model (L)t) is deterministic but non constant with respect.to

X(t) = p(t) + &t),
whereu(t) is a continuous function areft) is a zero mean, first-order stationary stochastic
process with unknown density functidii. The density function oK(t) will be denoted
fxt,
Let {Xy(t),..., Xn(t)} be independents trajectories with the same distributiok(8s
We define the estimator of the density functibff as

(%) = T2 = Xa(D)), (3)
where

2 Kn

u -
09 = SaTHIC)
with u = {Upy, ..., Unn} given by

Uni(t) = Xi(t) — Xa(t) = &(t) - &(1). (4)
Here{e(t), ..., e\(t)} is a random sample &t), e,(t) = % Z g(t) andHy} is defined as in
i=1

(2) by replacing Xy (1), ..., Xy(t)} by u.

The sequencJy(t), ..., Unn(t)} have the same density distribution for eadiut they
are not necessarily independent and therefore we can ndiresdly the theorems proved
in Section 2.1. However we can still prove the complete coyerece of the estimator of
f*! and obtain strong rates of convergence.

Theorem 4. For fixed t, let €t) be a stochastic process satisfying the assumptions of The-
orem 2, i.e. suppose H1, H2 and H4, holds wift) exstead of Xt) and f¢ instead of f.
Choose two sequencés,} and {v,} of positive real numbers converging to infinity such

that (k,/n) v, = o(1), for each c> 0O, Zexp(—c(kn/vn)) < oo and w(n/ky)le(t)] — 0

=1
a.co. For that k let us suppose that H?S holds witf ihstead of f. Then, for all ¥ R,
lim v, (f09 - ¥1(9) =0 aco

Remark 3. Suppose that, = n® andv, = n”. By Billingsley [2] we know thate,(t) =
o(n*) with @ < 1/2, on the other hand, since the hypotheSis> 0 andvy[é(t) — O
have to be true we neggl< 1 andy + 1 - 8- a < 0. Then, for anyy < 1/2, that is,
v=1/2—-€eforsomeO< € < 1/2, we can choose=1-¢/4 < landa =1/2-€¢/4<1/2
sothaty+ 1-8—a <0.



3.1. k selection

In order to compute the number of “nearest-neighbdgsive use the least squared
cross-validation method introduced by Rudemo [27] and Bawijb]. They propose to
compute the parameté&y by minimizing an unbiased estimat&, (k) of the mean inte-
grated squared errdf IS E,(K) = E (IS E,(k)) minus a quantity independent of the param-
eterk. The integrated squared eri@ E, is given by

fo (209 - £09) dx

I: fr?(x)dx—ZI: f;(x)f(x)d“[: £2(x) dx

Heref:o f2(x) dx does not depend dnand can be ignored as far as minimization dver
is concerned. Therefore, instead of minimizi&E,(k) we will minimize

15,0 = [ Bedx-2 [ Teotedx )

IS Ex(K)

Let us note thaf:> fr?(x) dxcan be calculated from the data. On the other hand, and since
f in unknown, we will replace the second term

[ Twt9ax=(fe0).

by its leave-one-one estimator

— 1 n T

E(f(X)) = ﬁJZf (6(t),
whit K

() =

2(n = 1)[THq(X)
computed with all the elements in the sample exégpTherefore in (5) we get

sm= [ B 23 R

i=1 j=1

Is easy to prove that

E(LS(K) = E (IS Ex(K) - f " 20 dx

so the value ok, which minimizes S (k) indeed also minimizes an unbiased estimate of
the mean integrated squared errofifof



4. A new classification rule for functional data.

In this section, we apply our estimation results to obtairew classification rule for
functional data. The main goal in pattern recognition ossification problems is to clas-
sify individuals into groups. Information about these gysus provided by a training
sample{(Xi, Y;) : 1 < i < n}, where each curv¥; has a labeY; attached, indicating which
group it belongs to. A new observatidhis given without its label and we want to predict
the unknown label.

The classical books by Devroye et al. [10], Duda and Stork &htl Hastie et al. [14]
provide a broad coverage of these topics, for the standattivanate case where the
variableX takes values ifR¢.

However, the definitions are mainly the same for an arbitnagyric spacde. Given a
finite set{l1, ..., m} and a metric spack, an observation is a paik,(y) € E x {1,..., m},
wherex is known andy is a class or label that denotes the unknown nature of the-obse
vation. A mapping : E — {1,...,m} is called a classifier and represents our guess of
the classy given its associated elemente E. The classification is wrong if given an
observationX, y), g(x) # .

Let (X,Y) € E x{1,...,m} be a random pair. Since an error occurg(iK) # Y,
probability of misclassification fog is

L(9) = P(a(X) #Y). (6)

Then the best possible classifier is the functgthat minimizes (6). The minimum error
probability (the Bayes error) is denoted by = L(g").

To obtaing®, the distribution of X, Y) should be known, but this is not typically the
case. One must build up a classifier based on a training saohptelependent pairs
{(X,Y);1 < i < n}, with the same distribution as the pak, {¥) and knownYy,..., Y,
values. Then a classifier is a function

On( i XL Yoo X Ya) tEX(Ex{L,...,m)" > {1,...,m},
with probability of misclassification given by the condita error probability
I—n(gn) = P(gn(x, Xl, Yl’ LI Xn, Yn) ;t Y|Xl7 Yl’ LB xn, Yn)

A sequence of classifiefgn; n > 1} is called a rule.

In the finite dimensional case, there are several univgrsalhsistent classification
rules. An important dference between the finite and the infinite-dimensional sans
arises, however, with regard to consistency. Stone [29]idecgeneral results for the uni-
versal consistency of a wide class of nonparametric claasiin rules, which in particular
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imply the consistency of most classical nonparametricstule particular, the most pop-
ular k-NN classifiers arainiversally (weakly) consisterprovided thak = k, — oo and
k/n — 0, asn — co. This means that, for thegeNN classifiersL, — L*, in probability,
asn — oo (or equivalentlyE(L,) — L*), with no restriction at all on the underlying dis-
tribution of (Xj, Yj). In the infinite-dimensional case his result is no longeetrThis has
been pointed out by Cérou and Guyader [7] who have studeddhsistency of thieNN
classifier wherk is a metric space. Some recent results regarding clasgficaethods
for functional data can be found in Cuevas et al. [9], CuevakFraiman [8], Cerou and
Guyader [7], Devroye et al. [10], Duda and Stork [11], Ghostl @haudhuri [13], James
and Hastie [15], Li and Yu [18], Lopez-Pintado and Romo [F@kda et al. [21] and Rossi
and Villa [26].

4.1. The rule

LetE = C(T,||-1|) be the space of continuous functionsrand|| - || a norm onE. We
want to classify a new daf&(t) € E into one of thenclasses;, j € J = {1,...,m} using
a training samplé(Xi(t), Y;); 1 < i < n} of iid random elements with the same distribution
as the pairX(t), Y) and knownYi, ..., Y, labels. We will assume that for each population
¥ the model (1) holds; that is

Xp(t) = uip(®) + ey (1),

wherey ;) (t) stands for the mean function of the population j € 7 andeg(t) is a zero
mean, first-order stationary stochastic process with tensknown functionf;).
For eaclt fixed, the Bayes rule chooses the cl#&ssf and only if

fiy (X(®) = iy (®) > fro(X(t) — o), Yk # ],

This motives defining our classification rule in the follogiway: we will classifyX(t)
into the class}, | € J (and defineY = ) if and only if

A({t: B5o) > Texoy)) > a(fe: o) < Fixan)).  vk=j @)
wheref ! is the estimator of "

5. Algorithm and simulation studies.

In order to illustrate the use of our estimation method, iis 8ection, we perform
some simulation studies of nonparametric functional dgrestimation and functional
discrimination.



Figure 1: Estimated (dashed curve) and theoretical (salide) density functions oX(t) for k, = 43.196.

5.1. Algorithm.
We built two samples from the original data set, lbarning sampl€X(t), Y))ic, and
the testing sampl€X; (t) Yj)jer- With the learning sample we compute the den5|ty esti-

mator for each groupfg,(l), e n(m)) using the crossvalidated vallk@(,),j =1,.

In order to measure the discriminant power of our method, vatuate the estlmators ob-
tained with the learning samples at the testing sample anclagsify it according to the
rule given by (7). Finally, we compute tiMisclassification Ratas

: 1
Misclas = T Z LiGv,)

€T

Example 1. Let X(t) be s stochastic process defined by

X(t) = ut) + oet), teT=]0,1], (8)
where
et) = 7) with w(t) the standard Wiener process

In a first stage we conside(t) = 0 ando = 1 so thatX(t) is stationary and, for eadh
X(t) ~ N(0O,1). Figure 1 shows the theoretical density functiorX@f) and its estimator
computed from a sample of size 200 measured at 100 equaltedmints on [01]. As
we can see in Figure 1 the estimator fits very well the trueitdeascept in the tails where,
due to the nature of the processes, we have not enough dagedonp a good estimation.

To assess the performance of our classification method, @t@nsl stage we consi-
dered two classes under the model (8), both witk 1 but one of them withu constant
and equal to 0, and the another one with mgaf 0. In particular, we will consider the

9
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Figure 2: Boxplot of the misclassification error from 50 runs

cases wherg = 0.5,1.5, 2.5, 3.5. We generate a learning sample of size 200 (100 of each
class) measured at 150 instants of time in the interval][@nd a testing sample of the
same size. With the learning sample we compute the estimfioeach class and then,

in order to obtain the misclassification error, we evaluhgsrt in the testing sample. We
repeat this procedure 50 times in order to obtain 50 misiiees$on rates for each case
which are shown in Figure 2.

Note how the errors decrease exponentially: this is dueddatt that, sincer = 1,
when we classify two populations which are very close in mibayy are almost super-
posed. For instance, when we classify the population witanr@against the one with
mean (5 (see Figure 3 (a)) we obtain big errors, as we can see in gidbx of Figure
2. However as the means goes far apart (see Figure 3 (b))assifatation method has a
good behavior as we can see in the last box of 2.

Figure 3: (a) Density Estimator for/&(0, 1) (dashed curve) and for/&(0.5, 1) (solid curve). (b) Density
Estimator for aV(0, 1) (dashed curve) and for/s((3.5, 1) (solid curve).
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Figure 4: Estimated (dashed curve) and theoretical (solidve) density functions ofX;(t) for
t=0.0130.180,0.347,0.513 0.680, 0.847.

Example 2. Let X,(t) andX,(t) as defined in Shin [28],
Xi(t) = 3V2 cosgt) + V2coq2at) + S(t) and Xo(t) = V2cog2nrt) + S(t),
with

30
S(t) = Z i~Y2U; V2 cos{nt),
i=1

whereU; are iid standard normal random variables. Let us obsentddhaacht,
30
Xi(t) ~ N [3 V2 cosgt) + V2 cos(at), 2 Z co(nti) /i)
i=1

and

30
Xo(t) ~ N( V2 cos(at), 2 Z co(nti) /i) :
i=1

For each class, we generate a learning sample of size 20@{£d@h class) measured
at 150 instants of time in the interval,[0] and a testing sample of the same size. Figure 4
and Figure 5 shows, respectively, the density estimatottamtheoretical density function
of X.(t) and X,(t) for some instants of time, the dashed curves corresportietdensity
estimators and the solid curves correspond to the thealetensity function. As in the
stationary case (Example 1) the density estimator fits vety thve true density except in
the tails where we do not have enough information.

11



Figure 5: Estimated (dashed curve) and theoretical (solidve) density functions ofXp(t) for
t=0.0130.180,0.347,0.513 0.680 0.847.

Next, we evaluate this estimators in the testing samplederdaio obtain the misclassi-
fication error. This procedure was replicated an additid@aimes by randomly building
49 learning samples and 49 testing samples. Finally, we @ehiSclassification rates.
Figure 6 shows that our classification rule works as well astassification defined in the
original paper (Shin [28]).

As we can see in this example, the process@¥ = X, (t)—3 V2 cosft)+ V2 cos(at) =
S(t) andey(t) = Xo(t) — V2 cos(at) = S(t) are not stationaries since their variance (and
consequently their distribution) depend on the time. Thigwss that our classification
method is robust to the non stationarity.

Figure 6: Boxplot of the misclassification error from 50 runs

12



6. Conclusions.

In this paper we have proposed a nonparametric density astimmethod for func-
tional data following the model

X(t) = u(t) + et), teT,

wherepu(t) stands for the deterministic mean function, &)l is a zero mean, first-order
stationary stochastic process which admits a local time density unknown functior.

Whenu(t) = u is constantX(t) inherits the properties a(t) which means that it
is stationary. In this context we obtained an estimator lier mnarginal density function
of X(t), which is the same for all. We show that it is strongly consistent with rate of
convergence®, for anya < 1/2 and that it has asymptotic normal distribution with rate
y/n. Though this is not new in nonparametric setting (see dasgeland Leadbetter [6]),
it is a surprising and desired property.

Whenu(t) is nonconstant with respect to the tim&t) does not inherit the stationarity
of g(t) and it therefore has aftierent marginal density function for eathin this context
the estimator has shown to be strongly consistent for eaath the same rate as before.

In simulations studies, we computed the density estimatdivee applied the estima-
tion results to obtain a new classification rule for functibdata.

Appendix A.

Proor oF THeorREM 1. Let

a9 - 109] > e}.

e

By definition of almost complete convergence we need to shastvz P(C,) < o for all

n=1
€ > 0. Let fixedx so that the Lebesgue ferentiation Theorem holds fdrin x. For this
X wWe can write
Ch=AUB,,

3 Kn
Ao = {H”(X) < 20T + e)}

with

and

B, = (Ha(X) > st 109 > e
0 if f(x)<e.

13



It will be sufficient to show that

Z P(A,) <o and Z P(B,) < . (A.1)

n=1

The proof of the right side inequality of (A.1) is similar ot one of the left side inequality
and therefore it will be omitted. In order to prove the leflesinequality of (A.1) let us

: _ Ky
definea, = FTCITR Then, we have

Ho < an © Z fﬂ.(w)(xi(t))dt > Kn.
i-1 T

=Yni

whereY,,; are independent random variables and

P(A) = P(Z Yoi > kn).
i=1

Let p, = f{u:|u—x|<an} f(u)du. Since the marginal distributions & are the same for eac¢h
we get -

E(Yn) = E(fT [} oy (Xi (1)) dt) = fTP(Xi (1) € lxay) dt=[TIps (A.2)

and using Cauchy-Schwartz inequality

2
E(Y:) = E(( fT Hux,an)(xi(t))dt))ﬂTlE( fT (Iipy (1)) dt)=|T|2pn.

Let us define¥y = Yni — E (Yq). Then, using (A.2), we get

(o) (o)

DIPA) = D) P[Z Vi > ko - n|T|pn]

n=1 n=1

Z [Z Yoi > k”( 2an(f(x) + e))) (A-3)

n=1 i=1

where in the last equality we have used the relation betvegemdk,. Sincea, — 0
by the Lebesgue [Hierentiation Theorem we have that/2a, — f(x). Therefore, there
existsN; = N¢(x), such that ifn > N;(X)

pn Pn €
2an 2a,(f(x) + e) 2(f(x) + e)

14

C(x, €) := (A.4)

-f(¥)|<e/2=>1-




By Bernstein inequality (Bernstein [1]), using this lasitsment and the fa4:7ni| < 2[T|,
var(Vni) < [TI?p, we conclude that fon > N;(X),

(ZYn.>kn( 2an(f(x)+e))] < P(i:1 Yni>knC)

e
2n[T2pn + 4|T|knC)'

< 2 exp(—

In order to bound the exponent we use that (A.4) impties: (f(X) + €)2a, = k,/n|T| and
as a consequence
kﬁCZ kﬁcZ CZ

mnﬁm+mﬂmc>aﬂm+mﬂmczhﬂﬂa+29'

Replacing this bound into (A.3) we get, for> N;(x), that
(Z Yhi > kn( 2an(f(x) T o) )) < 2exp(—ck,)

with ¢ =

ﬁix). Finally hypothesis H3 impliesz exp(—k,C) < c and the Theorem

n=Nz(x)
follows.

Proor oF THEOREM 2. Let
Cn = {Vn

m@-uw>§,

we need to prove thail P(C,) < o for all e > 0. We do the analysis analogous that in

n=1
Theorem 1, replacing by e, = - and we get (A.3) fok,. This is

Z P(A,) = Z (IZ Yhi > kn( m)) (A.5)

The Mean Value Theorem and the Lipschitz Condition fa@nsure the existence &f €
[(x, a,) for which p,/2a, = f(X,). Using this and the Lipschitz Condition again we get

\2” - f(x)\ 1) = FO] < Ko - X < K. (A6)

15



Now, by the definition of,, the fact thak, — 0 and the hypothesig{/n)v, = o(1), for
all e > 0 there exist®N; such that fom > N;(x)

ke 1le ¢
Ka, < C]_(X)F < EV_ = En (A7)
n

Therefore from (A.6) and (A.7) we have

1 paKa G
f(X)+en2a,  f(X)+e&  Vn

With this in (A.5),

Now, sincea, ~ k,/n, from H5 we get

%var(vm) = (A-8)

iszf f (fs(u,v) — f(u)f(v)) dudvdtds— c§ >0,
an T JT J{ulu-x<an} J{v:lv-x<an}

then forn > Ny(x), var(Yy) < Csa2. Applying Bernstein inequality witY,| < 2/T|,
var(Vni) < CzaZ, we get forn > Na(x) = max{N;(x), Na(X)}

Cs kn

In order to bound the exponent we use the fact khat — 0 and then we get

[ee)

Z P(A,) < ZZ exp{—Cavﬁn} < o0,

n=1

Finally using thatZ exp(—c(kn/Vp)) < oo, for eachc > 0 we get the Theorem.

n=1
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Proor oF THEorREM 3. We do the analysis analogous to Theorem 1 where we replage
n

€ = % and we get calling, = Z Y, ands? = var(S)
i=1

P(Vn(fu®) - f(¥) <t) < P(S”_:(S”)sk”_;'ﬂp”) (A.10)

Now, since by (A.8)s2 = O(n&), by Lindenberg Theorem

Sn—ESn) | N(O, 1), (A.11)

where the convergence is in distribution. On the other hand,

- nTlps  20&ITICF) +t/ ) = niT| [T f(u)du

Sh Sh

_ X 2na,[T]t
T f(x) — f(u))du+

Sh . (f(x) — f(u) 5 vh

e
By Taylor Theorem, there exists a numbébetweenx andu such that

. (A.12)

fxx+an(f(x) — f(u))du= —% fxmn f7(x")(u - x)? du.

—an —an

Sincef has two derivatives bounded

<Cs'na’.

s:In|T| fj+an(f(x) — f(u))du

Therefore, in (A.12) we have

Kn = NITIpn
S

2na,|T]t
SV

= O(s;'nad) +

st
Sinces;'na — 0 and by (A.8)s%/(n&d) — ¢,

im ko —E(Sn) _ 2|T|t_
oo S Co

Finally from this, (A.11) and (A.10) we get the result.
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In order to prove Theorem 4 we need to define the quantities

— kn ) n
€ -_—— = € . .
fn (X) = 2n|T|Hﬁ(x) with kn izgl ﬁﬂ{la (t)—XISHn(X)}(t) dt (A 13)

Observe that these are theoretical quantities since (f)are not observable and they can
not be computed.

Lemma 5. Under H1-H4 with €) instead of Xt) and f¢ instead of f, for fixed t, for all
xeR
lim vy (T(x = Xa(t)) = TS(x = p(t))) =0, aco.

In order to prove this Lemma we need an auxiliary result:

Lemma 6. For fixed t, let H and e,(t) as defined in (4) where & {Up, ..., Uny} with
Uni(t) = Xi(t) — Xa(t) = &(t) — e,(t) and H as defined in (A.13). Then, for eachxn

[HE(x = Xa(t) = HS(x = (®)] < 218 (D)1
Proor oF LEmma 6. It is an immediate consequence of
(i) [Ha0x=Xa(0) = Ha(x = ()] < 1&:(1).

(i) [HA(x = u() = HE(x = u(®)] < @ (®)l-
We will prove only (i) since the proof of (i) is analogous. tbefixed, using that,(t) =
u(t) + e,(t) we get

{t:]Uni® = (x= Xa®)] < Hy(x= Xa()} € {t 2 1Uni(t) = (x = p®)] < Hi(x = Xa(D) + @01}

therefore

n n
kn:Z fT L Uni) -S| <Hex-aey} (B A< Z fT L0~ Gu)IHx- o)+ o) () A,
i=1 i=1

and for the definition ok, we get

HU(X = (1)) < HE(X = Xa(t)) + [E(t)!- (A.14)
In the same way we can prove that
HE(X = Xn(t)) < HA(X = u(1)) + [E(D)I- (A.15)

And from (A.14) and (A.15) we have
|HE(x = Xa(t)) = HE(x = ()] < [&(D)I-

18



Proor oF LEmma 5. Lete > 0, X, t fixed, f,?(-) as defined in (A.13), then

KoV [HE(X = () = HY(X = Xa (1))
2n[T| HY(X — Xa(O))HE(X — p())
KoV 2le(t)]

20T HY(X — Xa(©))HE(X — u(t))’

Vo | FRx = Xa(0)) = T(x— (D)

Where in the last inequality we have used Lemma 6. By Theoreri/f(k - u) <
fe(x — u(t)) + e for all n > Ny(x, €, t), this implies that

kn

Ha(x — (1) > Ca(x.t, e)% =G (A.16)

By Lemma 6 and (A.16)

HI( - Xo(0) + 2801 = G- (A.17)
Since by hypothesi\&ﬁ@(tﬂ — 0, for alln > Ny(X, €,t) we have that
n
Kn
Replacing in (A.17) we obtain

_ 1 _ 1
len(t)] < ch and thereforeC1% = 2le\(t)] = EQ%.

HI( - Xo(0) 2 o2 — 28,0 2 222 (A19)
So from (A.16) and (A.18), for ath > maxN;, N,} we get
1 KaVn _[Ea(D)l
Ti'n Ghcs

- cgvn%@n(m.

Vi [ FR(X = Xa(0) = FEx = u(®))

Finally,

i P(vn

n=1

n

kn

T o) - Tc-u)] 2 ¢) < Y P(Coug (01> o
S n_ €
- Zl P vy 10l = C_3)

= Z P Vn%|§n(t)| > 60) < oo,

which concludes the proof.
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Proor oF THEOREM 4. By definition (3) and sinc&(t) satisfies the model (1) we need to
prove . _
lim vo (10X = Xa(1)) = F9(x - u(t))) = 0,  aco.

Let e > 0 andx, t fixed.

(v

0= %) = 10— )] 2 €} < fu] FOx= %) - Totx- )] = €2
U {vn o0 () = 19— ()] 2 6/2} —1ull.

The result follows applying Lemma 5 and Theorem 2.
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