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Abstract

In this paper we define a
√

n–consistent nonparametric density estimator for functional
data. Under mild conditions we obtain strong consistency, strong orders of convergence
and derive the asymptotic distribution of the estimator. Wepropose a nonparametric clas-
sification rule based on local times (occupation measure) and include some simulations
studies.
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1. Introduction.

Recent advances in technology allow significantly more datato be recorded over a
continuous period of time, where samples are trajectories of a stochastic process, for a
given number of individuals. Such data are common in different fields, including health
sciences, engineering, physical sciences, chemometrics,finance and social sciences. The
set of statistical tools for analyzing such data is called functional data analysis, FDA from
now on, an expression coined by Ramsay and Dalzell [22].

The books of Ramsay and Silverman [23, 24] describe in a systematic way some tech-
niques for exploration of functional data. Further resultscan be found in Ferraty and Vieu
[12].
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In general the data come from discretized functions. The most popular approaches to
deal with these kind of data sets are to start by a “regularization procedure” (Hastie et al,
1995) (that tends to exclude from consideration the functions that are “too wiggly”) or
by a “filtering method”, which leads to replacement of every function by its coefficients
with respect to the basis of a suitable finite-dimensional subspace. On the contrary, in our
setting “too wiggly” will be a good property under which we will be able to attain para-
metric rates of convergence, and so, we will focus on stochastic processes with irregular
trajectories.

In this paper we consider a sample of curves{X1(t), . . . ,Xn(t)} generated from a stochas-
tic processX(t) given by

X(t) = µ(t) + e(t), t ∈ T, (1)

whereµ(t) stands for the mean function, ande(t) is a zero mean, first-order stationary
stochastic process with density unknown functionf .

The problem we address is the nonparametric density estimation in the context of func-
tional data, i.e. estimate the density ofX(t) whenn independent trajectories of a continuous
time stochastic processes verifying (1) are observed. Whenµ is constant, this problem has
been considered by several authors in a different setup, mainly when a single sample path
is observed over an increasing interval [0,T] andT grows to infinity. This problem of esti-
mating the marginal probability density function in dependent contexts have been studied
starting in Rosenblatt [25], Nguyen [20], and mainly by Castellana and Leadbetter [6],
where it is shown that for continuous time processes a parametric speed of convergence is
attained by kernel type estimates. More recently, it has also been considered by Blanke and
Bosq [4], Blanke [3], Kutoyants [16] among others. In particular, Labrador [17] propose a
k–nearest neighbor type estimate using local time ideas.

We share with Labrador the use of local times (occupation measure) in order to define
nearest neighbor estimates in two cases: whenµ(t) is a constant independent of time and
when it is not constant. In Section 2 we consider the first caseand obtain strong consis-
tency, strong order of convergence and the asymptotic distribution of the estimator under
mild conditions. A parametric

√
n speed of convergence is attained for the asymptotic

distribution. In Section 3 we consider the second case and obtain strong consistency and
strong orders of convergence. In Section 4 we applied our results to obtain a new classifi-
cation rule for FDA. Moreover, some small simulations studies are given. All proofs are
given at the Appendix.

2. Estimating the density function of stationary processes.

In this section we define a density estimator for stationary stochastic processes, i.e.
in model (1) we considerµ(t) = µ a constant independent oft so thatX(t) has the same
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properties ase(t). Let T ⊂ R a finite interval, and{X(t) : t ∈ T} a real–valued measurable
continuous time stationary process with continuous trajectories which admits a local time.
Let {X1(t), . . . ,Xn(t)} be a set of iid trajectories with the same distribution asX(t). Assume
thatX(t) has an unknown density functionf .

Define I(x,r) = [x − r, x + r] and for {kn}, kn < n for eachn, a positive real numbers
sequence converging to infinity, we define the random variable Hn � Hn(x) such that
{X1(t), . . . ,Xn(t)} spend timekn at I(x,Hn(x)). That is,

kn =

n∑

i=1

∫

T
II(x,Hn(x))(Xi(t)) dt =

n∑

i=1

∫

T
I{|Xi(t)−x|≤Hn(x)}(t) dt. (2)

We define the estimator for the densityf as

f̂n(x) �
kn

2n|T |Hn(x)
.

2.1. Consistency, strong convergence rates and asymptoticdistribution.

In Theorem 1 we prove, under mild conditions, the almost complete convergence of
the estimator of the densityf . Under some additional assumptions we obtain in Theorem
2 sharp bounds for strong rates of convergence and asymptotic normality with parametric
rates of convergence in Theorem 3. The assumptions in these last theorems are closely
related to those given in Castellana and Leadbetter [6] where it is shown that for contin-
uous time processes a parametric speed of convergence is attained by kernel type density
estimators.

The assumptions we consider are the following.

H1 The sequence{Xi(t), 1 ≤ i ≤ n, t ∈ T} are iid random elements with the same distri-
bution asX(t), where{X(t) : t ∈ T} is a stochastic process which admits a local
time.

H2 X(t) is a first order stationary stochastic process with an unknown density function
f .

H3 {kn} is a positive real numbers sequence converging to infinity such thatkn/n = o(1)

and
∞∑

n=1

exp (−ckn) < ∞ for eachc > 0.

H4 The densityf is a Lipschitz function.
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H5 For eachc > 0,

c−2c−2
n

∫

T

∫

T

∫

{x:|u−x|≤ccn}

∫

{x:|v−x|≤ccn}
( fst(u, v) − f (u) f (v)) du dv ds dt

→
∫

T×T
( fst(x, x) − f 2(x))ds dt� c2

0(x) > 0,

wherecn =
kn
n .

Theorem 1. Strong consistency.Under H1-H3, for almost allx ∈ R,

lim
n→∞

f̂n(x) = f (x) a.co.

Here “a.co.” stands for the almost complete convergence.

Remark 1. If f is Lipschitz the convergence is for allx ∈ R.

Theorem 2. Strong rates of convergence.Assuming H1, H2 and H4, choose two se-
quences{kn} and{vn} of positive real numbers converging to infinity such that(kn/n) vn =

o(1), and that for eachc > 0,
∞∑

n=1

exp(−c (kn/vn)) < ∞. For thatkn let us suppose that H5

holds. Then, for allx ∈ R,

lim
n→∞

vn( f̂n(x) − f (x)) = 0 a.co.

Remark 2. Suppose thatkn = nβ andvn = nγ. Since the hypothesiskn/n = o(1) and
(kn/n) vn = o(1) have to be true we needβ < 1 andβ − 1+ γ < 0. Then, for anyγ < 1/2,
that is,γ = 1/2 − ǫ for some 0< ǫ < 1/2, we can chooseβ = 1/2 + ǫ/2 < 1 so that
β − 1+ γ < 0.

Theorem 3. Asymptotic Normality. Assume H1, H2, H5 and that the densityf has two
bounded derivatives. Ifkn is such that

√
n/kn = o(1), kn/n3/4

= o(1) then, for allx ∈ R,

√
n( f̂n(x) − f (x))→ N

(
0,

2|T |
c0(x)

)
.
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3. Estimating the density function of non–stationary processes.

In this section we define a density estimator for non–stationary stochastic processes.
This means that, in model (1)µ(t) is deterministic but non constant with respect tot.

X(t) = µ(t) + e(t),

whereµ(t) is a continuous function ande(t) is a zero mean, first-order stationary stochastic
process with unknown density functionf e. The density function ofX(t) will be denoted
f X,t.

Let {X1(t), . . . ,Xn(t)} be independents trajectories with the same distribution asX(t).
We define the estimator of the density functionf X,t as

f̂ X,t
n (x) = f̂ u

n (x− X̄n(t)), (3)

where

f̂ u
n (x) �

kn

2n|T |Hu
n(x)

with u = {Un1, . . . ,Unn} given by

Uni(t) = Xi(t) − X̄n(t) = ei(t) − ēn(t). (4)

Here{e1(t), . . . , en(t)} is a random sample ofe(t), ēn(t) =
1
n

n∑

i=1

ei(t) andHu
n is defined as in

(2) by replacing{X1(t), . . . ,Xn(t)} by u.
The sequence{Un1(t), . . . ,Unn(t)} have the same density distribution for eacht but they

are not necessarily independent and therefore we can not usedirectly the theorems proved
in Section 2.1. However we can still prove the complete convergence of the estimator of
f X,t, and obtain strong rates of convergence.

Theorem 4. For fixed t, let e(t) be a stochastic process satisfying the assumptions of The-
orem 2, i.e. suppose H1, H2 and H4, holds with e(t) instead of X(t) and fe instead of f .
Choose two sequences{kn} and {vn} of positive real numbers converging to infinity such

that (kn/n) vn = o(1), for each c> 0,
∞∑

n=1

exp(−c (kn/vn)) < ∞ and vn(n/kn)|ēn(t)| → 0

a.co. For that kn let us suppose that H5 holds with fe instead of f . Then, for all x∈ R,

lim
n→∞

vn

(
f̂ X,t
n (x) − f X,t(x)

)
= 0 a.co.

Remark 3. Suppose thatkn = nβ andvn = nγ. By Billingsley [2] we know that ¯en(t) =
o(n−α) with α < 1/2, on the other hand, since the hypothesiskn

n → 0 andvn
n
kn
|ēn(t)| → 0

have to be true we needβ < 1 andγ + 1 − β − α < 0. Then, for anyγ < 1/2, that is,
γ = 1/2−ǫ for some 0< ǫ < 1/2, we can chooseβ = 1−ǫ/4 < 1 andα = 1/2−ǫ/4 < 1/2
so thatγ + 1− β − α < 0.
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3.1. kn selection
In order to compute the number of “nearest-neighbors”kn we use the least squared

cross-validation method introduced by Rudemo [27] and Bowman [5]. They propose to
compute the parameterkn by minimizing an unbiased estimateLSn(k) of the mean inte-
grated squared errorMIS En(k) = E (IS En(k)) minus a quantity independent of the param-
eterk. The integrated squared errorIS En is given by

IS En(k) =
∫ ∞

−∞

(
f̂n(x) − f (x)

)2
dx

=

∫ ∞

−∞
f̂ 2
n (x) dx− 2

∫ ∞

−∞
f̂n(x) f (x) dx+

∫ ∞

−∞
f 2(x) dx.

Here
∫ ∞
−∞ f 2(x) dx does not depend onk and can be ignored as far as minimization overk

is concerned. Therefore, instead of minimizingIS En(k) we will minimize

LSn(k) =
∫ ∞

−∞
f̂ 2
n (x) dx− 2

∫ ∞

−∞
f̂n(x) f (x) dx. (5)

Let us note that
∫ ∞
−∞ f̂ 2

n (x) dxcan be calculated from the data. On the other hand, and since
f in unknown, we will replace the second term

∫ ∞

−∞
f̂n(x) f (x) dx= E

(
f̂n(X)

)
,

by its leave-one-one estimator

̂
E

(
f̂n(X)

)
=

1
nT

n∑

i=1

T∑

j=1

f̂n,−i(Xi(t j)),

whit

f̂n,−i(x) =
k

2(n− 1)|T |Hn(x)
computed with all the elements in the sample exceptXi. Therefore in (5) we get

LSn(k) =
∫ ∞

−∞
f̂ 2
n (x) dx− 2

nT

n∑

i=1

T∑

j=1

f̂n,−i(Xi(t j)).

Is easy to prove that

E (LSn(k)) = E (IS En(k)) −
∫ ∞

−∞
f 2(x) dx,

so the value ofkn which minimizesLSn(k) indeed also minimizes an unbiased estimate of
the mean integrated squared error off̂n.
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4. A new classification rule for functional data.

In this section, we apply our estimation results to obtain a new classification rule for
functional data. The main goal in pattern recognition or classification problems is to clas-
sify individuals into groups. Information about these groups is provided by a training
sample{(Xi ,Yi) : 1 ≤ i ≤ n}, where each curveXi has a labelYi attached, indicating which
group it belongs to. A new observationX is given without its label and we want to predict
the unknown label.

The classical books by Devroye et al. [10], Duda and Stork [11] and Hastie et al. [14]
provide a broad coverage of these topics, for the standard multivariate case where the
variableX takes values inRd.

However, the definitions are mainly the same for an arbitrarymetric spaceE. Given a
finite set{1, . . . ,m} and a metric spaceE, an observation is a pair (x, y) ∈ E × {1, . . . ,m},
wherex is known andy is a class or label that denotes the unknown nature of the obser-
vation. A mappingg : E → {1, . . . ,m} is called a classifier and represents our guess of
the classy given its associated elementx ∈ E. The classification is wrong if given an
observation (x, y), g(x) , y.

Let (X,Y) ∈ E × {1, . . . ,m} be a random pair. Since an error occurs ifg(X) , Y,
probability of misclassification forg is

L(g) = P(g(X) , Y). (6)

Then the best possible classifier is the functiong∗ that minimizes (6). The minimum error
probability (the Bayes error) is denoted byL∗ = L(g∗).

To obtaing∗, the distribution of (X,Y) should be known, but this is not typically the
case. One must build up a classifier based on a training sampleof independent pairs
{(Xi ,Yi); 1 ≤ i ≤ n}, with the same distribution as the pair (X,Y) and knownY1, . . . ,Yn

values. Then a classifier is a function

gn( · ; X1,Y1, . . . ,Xn,Yn) : E × (E × {1, . . . ,m})n→ {1, . . . ,m},

with probability of misclassification given by the conditional error probability

Ln(gn) = P(gn(X; X1,Y1, . . . ,Xn,Yn) , Y|X1,Y1, . . . ,Xn,Yn).

A sequence of classifiers{gn; n ≥ 1} is called a rule.
In the finite dimensional case, there are several universally consistent classification

rules. An important difference between the finite and the infinite-dimensional situations
arises, however, with regard to consistency. Stone [29] provide general results for the uni-
versal consistency of a wide class of nonparametric classification rules, which in particular

7



imply the consistency of most classical nonparametric rules. In particular, the most pop-
ular k-NN classifiers areuniversally (weakly) consistent, provided thatk = kn → ∞ and
k/n→ 0, asn→ ∞. This means that, for thesek-NN classifiers,Ln → L∗, in probability,
asn→ ∞ (or equivalentlyE(Ln) → L∗), with no restriction at all on the underlying dis-
tribution of (X i ,Yi). In the infinite-dimensional case his result is no longer true. This has
been pointed out by Cèrou and Guyader [7] who have studied the consistency of thek-NN
classifier whenE is a metric space. Some recent results regarding classification methods
for functional data can be found in Cuevas et al. [9], Cuevas and Fraiman [8], Cèrou and
Guyader [7], Devroye et al. [10], Duda and Stork [11], Ghosh and Chaudhuri [13], James
and Hastie [15], Li and Yu [18], Lopez-Pintado and Romo [19],Preda et al. [21] and Rossi
and Villa [26].

4.1. The rule

Let E = C(T, || · ||) be the space of continuous functions onT, and|| · || a norm onE. We
want to classify a new dataX(t) ∈ E into one of themclassesF j, j ∈ J = {1, . . . ,m} using
a training sample{(Xi(t),Yi); 1 ≤ i ≤ n} of iid random elements with the same distribution
as the pair (X(t),Y) and knownY1, . . . ,Yn labels. We will assume that for each population
F j the model (1) holds; that is

X( j)(t) = µ( j)(t) + e( j)(t),

whereµ( j)(t) stands for the mean function of the populationF j, j ∈ J ande( j)(t) is a zero
mean, first-order stationary stochastic process with density unknown functionf( j).

For eacht fixed, the Bayes rule chooses the classF j if and only if

f( j)(X(t) − µ( j)(t)) > f(k)(X(t) − µ(k)(t)), ∀ k , j,

This motives defining our classification rule in the following way: we will classifyX(t)
into the classF j, j ∈ J (and definêY = j) if and only if

λ
({

t : f̂ X,t
n, j (X(t)) > f̂ X,t

n,k (X(t))
})
> λ

({
t : f̂ X,t

n, j (X(t)) ≤ f̂ X,t
n,k (X(t))

})
, ∀ k , j. (7)

where f̂ X,t
n,( j) is the estimator off X,t

( j) .

5. Algorithm and simulation studies.

In order to illustrate the use of our estimation method, in this section, we perform
some simulation studies of nonparametric functional density estimation and functional
discrimination.
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Figure 1: Estimated (dashed curve) and theoretical (solid curve) density functions ofX(t) for kn = 43.196.

5.1. Algorithm.

We built two samples from the original data set, thelearning sample(Xi(t),Yi)i∈L and
the testing sample(X j(t),Yj) j∈T . With the learning sample we compute the density esti-
mator for each group (̂fn,(1), . . . , f̂n,(m)) using the crossvalidated valuêkn,( j), j = 1, . . . ,m.
In order to measure the discriminant power of our method, we evaluate the estimators ob-
tained with the learning samples at the testing sample and weclassify it according to the
rule given by (7). Finally, we compute theMisclassification Rateas

Misclas =
1
♯T

∑

j∈T
I{Ŷj,Yj}

Example 1. Let X(t) be s stochastic process defined by

X(t) = µ(t) + σe(t), t ∈ T = [0, 1], (8)

where

e(t) =
w(t)
√

t
, with w(t) the standard Wiener process.

In a first stage we considerµ(t) = 0 andσ = 1 so thatX(t) is stationary and, for eacht,
X(t) ∼ N(0, 1). Figure 1 shows the theoretical density function ofX(t) and its estimator
computed from a sample of size 200 measured at 100 equally spaced points on [0, 1]. As
we can see in Figure 1 the estimator fits very well the true density except in the tails where,
due to the nature of the processes, we have not enough data to perform a good estimation.

To assess the performance of our classification method, in a second stage we consi-
dered two classes under the model (8), both withσ = 1 but one of them withµ constant
and equal to 0, and the another one with meanµ , 0. In particular, we will consider the
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Figure 2: Boxplot of the misclassification error from 50 runs.

cases whereµ = 0.5, 1.5, 2.5, 3.5. We generate a learning sample of size 200 (100 of each
class) measured at 150 instants of time in the interval [0, 1] and a testing sample of the
same size. With the learning sample we compute the estimators for each class and then,
in order to obtain the misclassification error, we evaluate them in the testing sample. We
repeat this procedure 50 times in order to obtain 50 misclassification rates for each case
which are shown in Figure 2.

Note how the errors decrease exponentially: this is due to the fact that, sinceσ = 1,
when we classify two populations which are very close in meanthey are almost super-
posed. For instance, when we classify the population with mean 0 against the one with
mean 0.5 (see Figure 3 (a)) we obtain big errors, as we can see in the first box of Figure
2. However as the means goes far apart (see Figure 3 (b)) our classification method has a
good behavior as we can see in the last box of 2.
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Figure 3: (a) Density Estimator for aN(0, 1) (dashed curve) and for aN(0.5, 1) (solid curve). (b) Density
Estimator for aN(0, 1) (dashed curve) and for aN(3.5, 1) (solid curve).
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Figure 4: Estimated (dashed curve) and theoretical (solid curve) density functions ofX1(t) for
t = 0.013, 0.180, 0.347, 0.513, 0.680,0.847.

Example 2. Let X1(t) andX2(t) as defined in Shin [28],

X1(t) = 3
√

2 cos(πt) +
√

2cos(2πt) + S(t) and X2(t) =
√

2cos(2πt) + S(t),

with

S(t) =
30∑

i=1

i−1/2Ui

√
2 cos(iπt),

whereUi are iid standard normal random variables. Let us observe that for eacht,

X1(t) ∼ N
3
√

2 cos(πt) +
√

2 cos(2πt), 2
30∑

i=1

cos2(πti)/i



and

X2(t) ∼ N

√

2 cos(2πt), 2
30∑

i=1

cos2(πti)/i

 ,

For each class, we generate a learning sample of size 200 (100of each class) measured
at 150 instants of time in the interval [0, 1] and a testing sample of the same size. Figure 4
and Figure 5 shows, respectively, the density estimator andthe theoretical density function
of X1(t) andX2(t) for some instants of time, the dashed curves correspond to the density
estimators and the solid curves correspond to the theoretical density function. As in the
stationary case (Example 1) the density estimator fits very well the true density except in
the tails where we do not have enough information.
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Figure 5: Estimated (dashed curve) and theoretical (solid curve) density functions ofX2(t) for
t = 0.013, 0.180, 0.347, 0.513, 0.680,0.847.

Next, we evaluate this estimators in the testing sample in order to obtain the misclassi-
fication error. This procedure was replicated an additional49 times by randomly building
49 learning samples and 49 testing samples. Finally, we get 50 misclassification rates.
Figure 6 shows that our classification rule works as well as the classification defined in the
original paper (Shin [28]).

As we can see in this example, the processese1(t) = X1(t)−3
√

2 cos(πt)+
√

2 cos(2πt) =
S(t) ande2(t) = X2(t) −

√
2 cos(2πt) = S(t) are not stationaries since their variance (and

consequently their distribution) depend on the time. This shows that our classification
method is robust to the non stationarity.
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Figure 6: Boxplot of the misclassification error from 50 runs.
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6. Conclusions.

In this paper we have proposed a nonparametric density estimation method for func-
tional data following the model

X(t) = µ(t) + e(t), t ∈ T,

whereµ(t) stands for the deterministic mean function, ande(t) is a zero mean, first-order
stationary stochastic process which admits a local time with density unknown functionf .

Whenµ(t) = µ is constant,X(t) inherits the properties ofe(t) which means that it
is stationary. In this context we obtained an estimator for the marginal density function
of X(t), which is the same for allt. We show that it is strongly consistent with rate of
convergencenα, for anyα < 1/2 and that it has asymptotic normal distribution with rate√

n. Though this is not new in nonparametric setting (see Castellana and Leadbetter [6]),
it is a surprising and desired property.

Whenµ(t) is nonconstant with respect to the time,X(t) does not inherit the stationarity
of e(t) and it therefore has a different marginal density function for eacht. In this context
the estimator has shown to be strongly consistent for eacht with the same rate as before.

In simulations studies, we computed the density estimator and we applied the estima-
tion results to obtain a new classification rule for functional data.

Appendix A.

P  T 1. Let
Cn =

{∣∣∣∣ f̂n(x) − f (x)
∣∣∣∣ > ǫ

}
.

By definition of almost complete convergence we need to show that
∞∑

n=1

P(Cn) < ∞ for all

ǫ > 0. Let fixedx so that the Lebesgue Differentiation Theorem holds forf in x. For this
x we can write

Cn = An ∪ Bn,

with

An =

{
Hn(x) <

kn

2n|T |( f (x) + ǫ)

}

and

Bn =

{ {
Hn(x) > kn

2n|T |( f (x)−ǫ)

}
if f (x) > ǫ

∅ if f (x) ≤ ǫ.
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It will be sufficient to show that
∞∑

n=1

P(An) < ∞ and
∞∑

n=1

P(Bn) < ∞. (A.1)

The proof of the right side inequality of (A.1) is similar to the one of the left side inequality
and therefore it will be omitted. In order to prove the left side inequality of (A.1) let us
definean =

kn
2n|T |( f (x)+ǫ) . Then, we have

Hn < an⇔
n∑

i=1

∫

T
II(x,an)(Xi(t)) dt

︸               ︷︷               ︸
�Yni

> kn.

whereYni are independent random variables and

P(An) = P


n∑

i=1

Yni > kn

 .

Let pn =
∫
{u:|u−x|≤an}

f (u)du. Since the marginal distributions ofX are the same for eacht
we get

E (Yni) = E

(∫

T
II(x,an)(Xi(t)) dt

)
=

∫

T
P(Xi(t) ∈ I(x,an)) dt = |T |pn (A.2)

and using Cauchy-Schwartz inequality

E
(
Y2

ni

)
= E


(∫

T
II(x,an)(Xi(t)) dt

)2 ≤ |T |E
(∫

T

(
II(x,an)(Xi(t))

)2
dt

)
= |T |2pn.

Let us definẽYni � Yni − E (Yni). Then, using (A.2), we get

∞∑

n=1

P(An) =
∞∑

n=1

P


n∑

i=1

Ỹni > kn − n|T |pn



=

∞∑

n=1

P


n∑

i=1

Ỹni > kn

(
1− pn

2an( f (x) + ǫ)

) ; (A.3)

where in the last equality we have used the relation betweenan andkn. Sincean → 0
by the Lebesgue Differentiation Theorem we have thatpn/2an → f (x). Therefore, there
existsN1 = N1(x), such that ifn ≥ N1(x)

∣∣∣∣∣
pn

2an
− f (x)

∣∣∣∣∣ < ǫ/2⇒ 1− pn

2an( f (x) + ǫ)
>

ǫ

2( f (x) + ǫ)
= C(x, ǫ) := C. (A.4)
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By Bernstein inequality (Bernstein [1]), using this last statement and the fact
∣∣∣Ỹni

∣∣∣ ≤ 2|T |,
var

(
Ỹni

)
≤ |T |2pn we conclude that forn ≥ N1(x),

P


n∑

i=1

Ỹni > kn

(
1− pn

2an( f (x) + ǫ)

) ≤ P


n∑

i=1

Ỹni > knC



≤ 2 exp

(
− k2

nC
2

2n|T |2pn + 4|T |knC

)
.

In order to bound the exponent we use that (A.4) impliespn < ( f (x)+ ǫ)2an = kn/n|T | and
as a consequence

k2
nC

2

2n|T |2pn + 4|T |knC
>

k2
nC

2

2|T |kn + 4|T |knC
= kn

C2

2|T |(1+ 2C)
.

Replacing this bound into (A.3) we get, forn ≥ N1(x), that

P


n∑

i=1

Ỹni > kn

(
1− pn

2an( f (x) + ǫ)

) ≤ 2 exp(−ckn)

with c = C2

2|T |(1+2C) . Finally hypothesis H3 implies
∞∑

n=N1(x)

exp(−knc) < ∞ and the Theorem

follows.

P  T 2. Let
Cn =

{
vn

∣∣∣∣ f̂n(x) − f (x)
∣∣∣∣ > ǫ

}
,

we need to prove that
∞∑

n=1

P(Cn) < ∞ for all ǫ > 0. We do the analysis analogous that in

Theorem 1, replacingǫ by ǫn = ǫ
vn

and we get (A.3) forǫn. This is

∞∑

n=1

P(An) =
∞∑

n=1

P


n∑

i=1

Ỹni > kn

(
1− pn

2an( f (x) + ǫn)

) ; (A.5)

The Mean Value Theorem and the Lipschitz Condition forf ensure the existence ofxn ∈
I (x, an) for which pn/2an = f (xn). Using this and the Lipschitz Condition again we get

∣∣∣∣∣
pn

2an
− f (x)

∣∣∣∣∣ = | f (xn) − f (x)| ≤ K|xn − x| ≤ Kan. (A.6)
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Now, by the definition ofan, the fact thatǫn → 0 and the hypothesis (kn/n)vn = o(1), for
all ǫ > 0 there existsN1 such that forn ≥ N1(x)

Kan ≤ C1(x)
kn

n
≤ 1

2
ǫ

vn
=
ǫn

2
. (A.7)

Therefore from (A.6) and (A.7) we have

1− 1
f (x) + ǫn

pn

2an
≥ ǫn − Kan

f (x) + ǫn
≥ C2

vn
.

With this in (A.5),
∞∑

n=1

P(An) ≤
∞∑

n=1

P


n∑

i=1

Ỹni > C2
kn

vn

 .

Now, sincean ∼ kn/n, from H5 we get

1
a2

n

var
(
Ỹni

)
= (A.8)

=
1
a2

n

∫

T

∫

T

∫

{u:|u−x|≤an}

∫

{v:|v−x|≤an}
( fst(u, v) − f (u) f (v)) du dv dt ds→ c2

0 ≥ 0,

then forn ≥ N2(x), var
(
Ỹni

)
≤ C3a2

n. Applying Bernstein inequality with
∣∣∣Ỹni

∣∣∣ ≤ 2|T |,
var

(
Ỹni

)
≤ C3a2

n, we get forn ≥ N3(x) = max{N1(x),N2(x)}

∞∑

n=1

P(An) ≤
∞∑

n=1

P


n∑

i=1

Ỹni > C2
kn

vn



≤ 2 exp

−


C3

C4
kn
n +C5


kn

vn

 . (A.9)

In order to bound the exponent we use the fact thatkn/n→ 0 and then we get

∞∑

n=1

P(An) ≤ 2
∞∑

n=1

exp

{
−C6

kn

vn

}
< ∞,

Finally using that
∞∑

n=1

exp(−c (kn/vn)) < ∞, for eachc > 0 we get the Theorem.
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P  T 3. We do the analysis analogous to Theorem 1 where we replaceǫ by

ǫn =
t√
n

and we get callingSn =

n∑

i=1

Yni ands2
n = var(Sn)

P
(√

n
(
f̂n(x) − f (x)

)
≤ t

)
≤ P

(
Sn − E(Sn)

sn
≤ kn − n|T |pn

sn

)
(A.10)

Now, since by (A.8)s2
n = O(na2

n), by Lindenberg Theorem

Sn − E(Sn)
sn

→ N(0, 1), (A.11)

where the convergence is in distribution. On the other hand,

kn − n|T |pn

sn
=

2nan|T |( f (x) + t/
√

n) − n|T |
∫ x+an

x−an
f (u)du

sn

= s−1
n n|T |

∫ x+an

x−an

( f (x) − f (u))du+
2nan|T |t

sn
√

n
. (A.12)

By Taylor Theorem, there exists a numberx∗ betweenx andu such that
∫ x+an

x−an

( f (x) − f (u)) du= −1
2

∫ x+an

x−an

f ′′(x∗)(u− x)2 du.

Since f has two derivatives bounded
∣∣∣∣∣∣s
−1
n n|T |

∫ x+an

x−an

( f (x) − f (u))du

∣∣∣∣∣∣ ≤ Cs−1
n na3

n.

Therefore, in (A.12) we have

kn − n|T |pn

sn
= O(s−1

n na3
n) +

2nan|T |t
sn
√

n
.

Sinces−1
n na3

n→ 0 and by (A.8)s2
n/(na2

n)→ c2
o,

lim
n→∞

kn − E(Sn)
sn

=
2|T |
c0

t.

Finally from this, (A.11) and (A.10) we get the result.
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In order to prove Theorem 4 we need to define the quantities

f̂ e
n (x) =

kn

2n|T |He
n(x)

with kn =

n∑

i=1

∫

T
I{|ei (t)−x|≤He

n(x)}(t) dt. (A.13)

Observe that these are theoretical quantities since theei(t) are not observable and they can
not be computed.

Lemma 5. Under H1-H4 with e(t) instead of X(t) and fe instead of f , for fixed t, for all
x ∈ R

lim
n→∞

vn

(
f̂ u
n (x− X̄n(t)) − f̂ e

n (x− µ(t))
)
= 0, a.co.

In order to prove this Lemma we need an auxiliary result:

Lemma 6. For fixed t, let Hu
n and ēn(t) as defined in (4) where u= {Un1, . . . ,Unn} with

Uni(t) = Xi(t) − X̄n(t) = ei(t) − ēn(t) and He
n as defined in (A.13). Then, for each n, x,

∣∣∣Hu
n(x− X̄n(t)) − He

n(x− µ(t))
∣∣∣ ≤ 2|ēn(t)|.

P  L 6. It is an immediate consequence of

(i)
∣∣∣Hu

n(x− X̄n(t)) − Hu
n(x− µ(t))

∣∣∣ ≤ |ēn(t)|.

(ii)
∣∣∣Hu

n(x− µ(t)) − He
n(x− µ(t))

∣∣∣ ≤ |ēn(t)|.

We will prove only (i) since the proof of (ii) is analogous. Let x fixed, using thatX̄n(t) =
µ(t) + ēn(t) we get
{
t :

∣∣∣Uni(t) − (x− X̄n(t))
∣∣∣ ≤ Hu

n(x− X̄n(t))
}
⊂

{
t : |Uni(t) − (x− µ(t))| ≤ Hu

n(x− X̄n(t)) + |ēn(t)|
}
,

therefore

kn =

n∑

i=1

∫

T
I{|Uni(t)−(x−X̄n(t))|≤Hu

n(x−X̄n(t))}(t) dt ≤
n∑

i=1

∫

T
I{|Uni(t)−(x−µ(t))|≤Hu

n(x−X̄n(t))+|ēn(t)|}(t) dt,

and for the definition ofkn we get

Hu
n(x− µ(t)) ≤ Hu

n(x− X̄n(t)) + |ēn(t)|. (A.14)

In the same way we can prove that

Hu
n(x− X̄n(t)) ≤ Hu

n(x− µ(t)) + |ēn(t)|. (A.15)

And from (A.14) and (A.15) we have
∣∣∣Hu

n(x− X̄n(t)) − Hu
n(x− µ(t))

∣∣∣ ≤ |ēn(t)|.
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P  L 5. Letǫ > 0, x, t fixed, f̂ e
n (·) as defined in (A.13), then

vn

∣∣∣∣ f̂ u
n (x− X̄n(t)) − f̂ e

n (x− µ(t))
∣∣∣∣ =

knvn

2n|T |

∣∣∣He
n(x− µ(t)) − Hu

n(x− X̄n(t))
∣∣∣

Hu
n(x− X̄n(t))He

n(x− µ(t))

≤ knvn

2n|T |
2|ēn(t)|

Hu
n(x− X̄n(t))He

n(x− µ(t))
.

Where in the last inequality we have used Lemma 6. By Theorem 1, f̂ e
n (x − µ(t)) <

f e(x− µ(t)) + ǫ for all n ≥ N1(x, ǫ, t), this implies that

He
n(x− µ(t)) > C1(x, t, ǫ)

kn

n
= C1

kn

n
. (A.16)

By Lemma 6 and (A.16)

Hu
n(x− X̄n(t)) + 2|ēn(t)| ≥ C1

kn

n
. (A.17)

Since by hypothesisvn
n
kn
|ēn(t)| → 0, for all n ≥ N2(x, ǫ, t) we have that

n
kn
|ēn(t)| ≤

1
4

C1 and thereforeC1
kn

n
− 2|ēn(t)| ≥

1
2

C1
kn

n
.

Replacing in (A.17) we obtain

Hu
n(x− X̄n(t)) ≥ C1

kn

n
− 2|ēn(t)| ≥

C1

2
kn

n
. (A.18)

So from (A.16) and (A.18), for alln ≥ max{N1,N2} we get

vn

∣∣∣∣ f̂ u
n (x− X̄n(t)) − f̂ e

n (x− µ(t))
∣∣∣∣ <

1
|T |

knvn

n
|ēn(t)|

C1
2

kn
n C1

kn
n

= C3vn
n
kn
|ēn(t)|.

Finally,
∞∑

n=1

P
(
vn

∣∣∣∣ f̂ u
n (x− X̄n(t)) − f̂ e

n (x− µ(t))
∣∣∣∣ ≥ ǫ

)
≤

∞∑

n=1

P

(
C3vn

n
kn
|ēn(t)| ≥ ǫ

)

=

∞∑

n=1

P

(
vn

n
kn
|ēn(t)| ≥

ǫ

C3

)

=

∞∑

n=1

P

(
vn

n
kn
|ēn(t)| ≥ ǫ0

)
< ∞,

which concludes the proof.
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P  T 4. By definition (3) and sinceX(t) satisfies the model (1) we need to
prove

lim
n→∞

vn

(
f̂ u
n (x− X̄n(t)) − f e(x− µ(t))

)
= 0, a.co.

Let ǫ > 0 andx, t fixed.
{
vn

∣∣∣∣ f̂ u
n (x− X̄n(t)) − f e(x− µ(t))

∣∣∣∣ ≥ ǫ
}
⊂

{
vn

∣∣∣∣ f̂ u
n (x− X̄n(t)) − f̂ e

n (x− µ(t))
∣∣∣∣ ≥ ǫ/2

}

∪
{
vn

∣∣∣∣ f̂ e
n (x− µ(t)) − f e(x− µ(t))

∣∣∣∣ ≥ ǫ/2
}
= I ∪ II .

The result follows applying Lemma 5 and Theorem 2.
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