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Abstract

Shock waves and contact discontinuities usually appear in compressible flows, requiring a fine mesh in order
to achieve an acceptable accuracy of the numerical solution. The usage of a mesh adaptation strategy is convenient
as uniform refinement of the whole mesh becomes prohibitive in three-dimensional problems. An unsteady h-
adaptive strategy for unstructured finite element meshes is introduced. The non- conformity of the refined mesh
and a bounded decrease in the geometrical quality of the elements are some features of the refinement algorithm.
A three-dimensional extension of the well known refinement constraint for two-dimensional meshes is used to
enforce a smooth size transition among neighbour elements with different levels of refinement. A density-based
gradient indicator is used to track discontinuities. The solution procedure is partially parallelized, i.e: the inviscid
flow equations are solved in parallel with a streamline upwind Petrov-Galerkin finite element formulation with
shock capturing terms while the adaptation of the mesh is sequentially performed. Results are presented for
a spherical blast wave driven by a point-like explosion with an initial pressure jump of 105 atmospheres. The
adapted solution is compared to that computed on a fixed mesh. Also, results provided by the theory of self-
similar solutions are considered for the analysis. In this particular problem, adapting the mesh to the solution
accounts for approximately 4% of the total simulation time and the refinement algorithm scales almost linearly
with the size of the problem.
keywords: Mesh adaptation, unstructured grids, hanging nodes, refinement constraints, blast waves.

1 Introduction
Transonic and supersonic inviscid flow problems are common candidates for being adaptively solved because
discontinuities usually develop in very thin regions compared to some characteristic length of the problem. The
adaptation of the mesh allows to reduce the computational effort required to solve the numeric problem since
smaller elements are introduced only where they are needed. In this work, a mesh enrichment procedure based on
elements subdivision is introduced for unstructured linear tetrahedra finite element meshes. A desirable feature of
any adaptation method is to minimize the geometrical quality degradation of the mesh. The refinement scheme
used in this work has shown, through a series of numerical experiments [Ríos Rodriguez et al., 2009], to produce
high quality elements without incurring high computational costs. Hanging nodes appear in the refined mesh be-
cause no transition elements are used to match zones with differente levels of refinement.
The adaptation stage is sequentially performed while the solution of the Euler equations is computed in parallel
using the PETSc-FEM software [Storti et al., 1999-2010]. This latter code uses both a finite element SUPG formu-
lation to stabilize the advective terms of the equations and a shock capturing method for the treatment of shocks
[Brooks and Hughes, 1980, 1982, Hughes and Mallet, 1986a,b, Tezduyar and Senga, 2006]. Both stages of the
adaptive procedure are coupled through an interface which automates the solution computation. In this way, the
boundary conditions for the problem are specified for the starting mesh and are automatically updated. Also, a
projected state is given in order to resume the flow computation.
The strategy described in this work is used to solve the spherical blast wave problem driven by a point-like explo-
sion. Besides, the set of ordinary differential equations derived under the Taylor-Sedov self-similar assumptions
[Thorne, 2002] are determined. The solutions computed with the adaptive strategy are compared to those obtained
on a fixed mesh and also to the self-similar ones.
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Figure 1: Tetrahedron refinement sequence.

Time measurements of the two main stages in the adaptive solution procedure are realized for analysing the adap-
tation algorithm from the computational effort point of view as well as its scalability.

2 Refinement schemes and constraints
Since the work of Babuska and Aziz [1976] it is known that the accuracy of the solution in the finite element
method strongly depends on the shape of the elements in the mesh. More recently Shewchuck [2002] describes
the relationship among the interpolation error, the condition number of the global stiffness matrix in the finite
element method and the geometry of the elements. Since refinement procedures usually reduce the quality of the
mesh, some care has to be taken when deciding how to refine the elements. The approach taken in this work only
applies regular (isotropic) 1:8 subdivision patterns to the elements. However, as no regular 1:8 subdivision exists
for tetrahedra, a refinement scheme that shows a good trade-off between the requiered computational effort and
the geometrical quality of the resulting tetrahedra is desirable. In Ríos Rodriguez et al. [2009] it is shown through
numerical experiments that in most of the cases, refining a tetrahedron by joining the midpoints of its edges and
choosing then the shortest diagonal of the inner octaedron (see Fig.1) allows to maximize the minimum value of
the quality index for the resulting elements. Also, the successive application of this refinement scheme to the
minimum quality element shows that the minimum quality diminishes only in the first refinement and then keeps
constant. The geometrical quality of the tetrahedra was measured with both the minimum dihedral angle and the
mean ratio shape measure η introduced by Liu and Joe [1994], namely

η(T ) =
12(3V )2/3

∑i=1...6 l2
i

(1)

where V is the volumen of the tetrahedron T and li are the lenghts of its edges.
But besides the shape’s quality of the elements, their size distribution also influence the condition number of the

stiffness matrix in the finite element method [Shewchuck, 2002]. A smooth change in the size among neighbour
elements in the mesh is required in this sense. Because no transition elements are used to match zones with
different levels of refinement, some refinement rule must be assumed. We adopt the 1-irregular mesh refinement
constraint which was initially proposed in [Babuska and Rheinboldt, 1978] and has been used in many commercial
and academic adaptive codes since then [Greaves, 2004, Popinet, 2003, Remacle et al., 2002]. The rule states that
no more than one hanging node should be shared among neighbour elements through the common edge to which
the hanging node belongs.

However, for three-dimensional meshes the neighbourhood among elements through edges and faces as well
as the refinement of orphan edges on triangular faces have to be considered. In this work, we call orphan edge to
that one which is not obtained by the refinement of another edge.

Consider the tetrahedral mesh shown in Fig.(2.a). Assume that the element that “touches” the face defined by
the vertices a−b−c with the orphan edge n1n2 needs to be refined. Figure 2.b) shows how the refined mesh would
look like after refinement if the two-dimensional constraint were just considered. It can be seen that a difference
of more than one level of refinement would exist among nearby elements in the mesh. To avoid this situation, the
strategy developed in this work also refines the element that shares the face a−b− c if at least one of the orphan
edges on that face has to be refined. Figure 2.c) shows the refined mesh that is obtained in this latter case.
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(a) Element to be refined has an orphan
edge on a triangular shared face

(b) Refined mesh considering only the
2-D constraint

(c) Refinement of the neighbour ele-
ment through the face with an orphan
edge to be refined

Figure 2: Refinement constraint for 3-D meshes - Orphan edge case.

3 Mesh adaptation strategy
The adaptive solution of the problem begins by solving the Euler equations on a conforming mesh, hereafter called
the base mesh. After a fixed number of time steps (nsteps), the regions of the base mesh that need to be refined
are selected. In this work the selection criterion is based on the magnitude of the density gradient computed in an
element-wise fashion. All the elements whose gradient magnitude is equal to or greater than a percentage of the
maximum gradient for all the elements in the mesh are refined

c1 ≤
‖ ∇iρ ‖ ·hi

maxi(‖ ∇iρ ‖ ·hi)
(2)

where c1 is a constant set beforehand by the user, hi is a measure of the element size and ‖∇iρ ‖ is the magnitude of
the density gradient computed for the element. The accurate choice of c1 mostly depends on the user’s experience.

A succession of nested non-conforming meshes is then generated by applying the refinement rules described in
the previous section until a maximum level of refinement is reached. This constraint on the number of refinement
levels is applied because in problems where discontinuities in the solution exist, there is no stopping criterion if
eq.(2) is used to select the elements to be refined.

It is worth to mention that although the adapted meshes introduce hanging nodes on the edges or faces of an
element and assuming that linear finite elements are used, constraining the solution at these hanging nodes to the
average at the nodes which define those edges or faces, ensures the solution’s continuity among nearby elements.

As the base mesh in refined, the state computed by the solver is linearly interpolated and the boundary condi-
tions are updated. When the maximum level of refinement is attained the interpolated state is used as the initial
condition to resume the numerical solution procedure.

After the solution is advanced nsteps time steps, the selection criterion given by eq.2 is applied again to the
last computed solution and elements are marked to be refined. The adaptation strategy here developed assumes
that all the elements that are not selected for refinement should be unrefined up to the base mesh level. Also,
since a maximum level of refinement is imposed, only those elements that do not belong to the maximum level
of refinement are finally included in the list of elements to be refined. On the other hand, an element is unrefined
if only all its brothers (7 in three dimensions and 3 in two dimensions) are also marked to be unrefined. If this
is so, they are replaced by their parent element in the mesh. This search parent procedure is recursively applied
on the data structure that stores the hierarchical relationship of the elements in the mesh until the base mesh level
is attained. It must be taken into account that although some elements are initially marked to be unrefined, the
subsequent application of the refinement and unrefinement constraints may not allow it.

A few words about the frequency for the adaptation of the mesh would like to be mentioned, since it is set
constant for the whole simulation. First of all, the time step size for the fluid flow problem is updated after every
mesh adaptation in order to satisfy the Courant-Friedrich-Lewy (CFL) condition for compressible flows [Laney,
1998] so the time simulated between two successive adaptations of the mesh is not constant. Because the most
refined regions of the mesh are expected to be at the discontinuities, the time step size will be dictated by the size
of those elements. This helps to prevent the discontinuities to move outside of the most refined regions until the
mesh is adapted again.
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The proper choice of the adaptation frequency depends on various factors. Several authors [Remacle et al.,
2002, Ripley et al., 2004, Waltz, 2004] find in practice that the adaptation of the mesh takes just a small fraction of
the overall simulation time (approximately less than 5 per cent). This result induce us to choose a high updating
frequency for the mesh for not compromising the overall performance of the adaptive solution procedure. If
the time required by the adaptation of the mesh were found to be a greater percentage of the overall simulation
time, then a lower updating frequency should be chosen. However, in this latter case a bigger cost would be
transferred to the flow computation stage since the refined regions of the mesh would need to be wider to ensure
that discontinuities will be kept inside them until the mesh is adapted again. Choosing a higher frequency for
adapting the mesh enables to use narrower refined regions around discontinuities and the fluid flow problem is less
expensive to solve.

The boundary conditions and other properties applied to the mesh entities are handled by a property identifier
or flag associated to the entities of the base mesh. This flag is inherited from a parent entity to its children during
the adaptation procedure. The flag is defined by the user and can describe a set of features of different nature for
an entity (e.g. the identifier assigned to a face could mean that a slip boundary condition has to be enforced on that
face and also that the face belongs to a curved surface which defines a particular section of the boundary). The user
must supply a list of vertices which define the entities of the mesh that have a particular set of properties. Then
the flag is only assigned to an entity provided certain conditions on the list of vertices are satisfied (e.g. if a set of
properties is to be applied to faces then the condition might be that all the vertices of the faces should be in the list
for the identifier to be assigned). After refinement, the entities with the same properties are identified in order to
update the boundary conditions supplied to the flow solver.

4 The spherical blast wave problem
The blast wave problem was formerly and independently studied by Taylor [1946, 1950a,b] and Sedov [1959],
and describes what happens if a point-like explosion occurs in a uniform density gas. After a short lapse of time
one expects to find a spherical shock wave travelling radially outward at supersonic speeds with a transonic flow
behind it. This shock wave comes to an end because the source of pressure (.i.e. the release of energy) also comes
to an end. This allows the rarefaction wave generated in the center of the explosion to weaken the spherical shock
until it becomes a pressure wave. When this kind of phenomena takes place it is said that a blast wave happens.

4.1 Self-similar solutions
Taylor and Sedov analysis assumes a self-similar solution for the problem, which means that the solution profiles
for the density ρ, velocity u and pressure p keep their shape in time and depend only on a single parameter ξ that
is defined as the ratio of the radial coordinate r measured from the center of the explosion to the position of the
spherical shock front R, so that 0 ≤ ξ ≤ 1. Taylor and Sedov formulate the following relationship between the
physical variables and the self-similar profiles for the velocity U(ξ), density Ω(ξ) and pressure P(ξ)

u = ṘU(ξ), ρ = ρ0Ω(ξ), p = ρ0Ṙ2P(ξ) (3)

This solution holds as long as the mass swept up by the spherical shock front is much greater than the mass of
the explosive material and as long as the shock wave can be considered strong. The equations for the self-similar
solutions are derived from the Euler equations in radial coordinates

∂ρ

∂t
+

1
r2

∂

∂r

(
r2

ρu
)

= 0 (4)

∂u
∂t

+u
∂u
∂r

+
1
ρ

∂p
∂r

= 0 (5)

∂p
∂t

+u
∂p
∂r
− c2

s

(
∂ρ

∂t
+u

∂ρ

∂r

)
= 0 (6)

The latter can be reduced to a system of ordinary differential equations if it is further assumed that the density
shows a power law dependence in space and time and the shock front position obeys to a power law in time. The
ODE’s are then numerically integrated with a fourth order Runge-Kutta method assuming the following boundary
conditions inmediately behind the shock front (at ξ = 1)
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Figure 3: Self-similar profiles for the spherical blast wave problem (γ = 1.4).

U =
2

γ+1
, Ω =

γ+1
γ−1

, P =
2

γ+1
(7)

The self-similar computed profiles plotted against the similarity parameter are shown in Fig.(3). It is seen that
the pressure in the center of the blast wave is almost half the maximum pressure inmediately behind the shock and
it is fairly uniform within the blast wave. It can also be seen that most of the ambient gas mass processed by the
shock wave is compressed within a thin spherical shell inmediately behind the shock which moves slightly slower
than the shock itself (u' 0.83Ṙ if γ = 1.4). Finally the velocity profile is almost linear in the blast wave, with the
fluid being at rest in the center of the explosion.

By a simple dimensional analysis it can be found that

R(t) ∝

(
Ex

ρ0

)1/5

t2/5 (8)

where Ex is the energy released by the explosive material. The constant Q that allows to equate both sides of Eq.(8)
can be computed by numerical integration of the total energy profile for a given time instant given by

Ex =
Z R

0

(
p

γ−1
+

ρu2

2

)
4πr2dr (9)

Changing to variable ξ and substituting u, p and ρ from Eqs.(3) in the integral of Eq.(9), taking into account
that Ṙ = 2

5
R
t , then replacing Ex given by Eq.(9) into Eq.(8) and finally solving for Q it is found

Q =
(

16π

25

Z 1

0

(
P(ξ)
γ−1

+
Ω(ξ)U(ξ)2

2

)
ξ

2dξ

)−1/5

(10)

If a value of γ = 1.4 is assumed, the approximate value for Q is 1.165.

4.2 Finite element solutions
The finite element problem is solved on a spherical domain of radius Rext = 5m. Although the problem has spherical
symmetry, it is solved as 3-D since one the goals of the simulation, besides verifying if there is an improvement in
the shock resolution, is both to evaluate how much of the total computation time is required to adapt 3-D meshes
and how the recursive refinement algorithm scales with the size of the problem.

The assumed initial conditions are: the resting ambient gas is air, at a constant pressure and density equal to
p0 = 101325Pa and ρ0 = 1.225kg/m3, and the energy released by the explosive instantly raises the pressure to
pblast = 105 · p0 in a small spherical region of radius Rblast ' 0.25m. The initial explosion that generates these state
is not simulated in the work but it is assumed that it is a constant volume evolution. The pressure fixation at the
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Figure 4: Shock wave position as a function of time.

surface of the spherical domain is the only boundary condition prescribed. This condition can be applied as long
as the shock wave does not reach the domain’s boundary.

Tetrahedral elements are used to subdivide the problem domain with elements of smaller size prescribed to-
wards the center of the sphere. The resulting mesh has 421.000 tetrahedra and 76.500 vertices approximately. This
mesh is used as the base mesh for the adaptive simulation and as the fixed mesh for the non-adaptive one.

The Euler equations are solved in parallel with 15 processors on a cluster of workstations and a Backward-
Euler scheme is used for time integration. It is recalled that the magnitude of the density gradient is chosen as an
indicator for the adaptive simulation since the flow field generated by the blast wave is dominated by a strong shock
and an expansion wave. A value of c1 ' 0.15 is used in Eq.2 for the simulation. Also, an adapting frequency of 10
time steps is chosen and a maximum of 2 levels of refinement is prescribed. The final time for both simulations is
equal to t f ' 0.001s.

4.3 Simulation results
In comparing the position of the shock front to that given by Eq.(8) it should be taken into account that the FEM
solution profiles will just approximate those of the self-similar ones after a few time steps because the initial
conditions for the flow variales are not those of the self-similar profiles from the theory. Bearing this in mind,
Fig.(4) shows the shock wave position as a function of time for both the adapted and fixed mesh simulations
superposed to the analytical solution given by Eq.(8). It can be stated that although there is a good agreement for
the first time instants, both simulations lug behind the analytical one by almost 15% (adaptive) and 14% (non-
adaptive) at t = 0.00045s.

The Mach number and the logarithm of the pressure along the radius for different time instants are shown in
Figs.(5.a) and (5.b), computed with both the adapted mesh and the fixed one. Figure (5.b) shows that the pressure
within the blast wave behaves like that predicted by the self-similar solution, that is, it is fairly uniform and has a
value that is half the maximum reached immediately behind the shock. The Mach number within the blast wave is
depicted in Fig.(5.a) showing that it is in the transonic-subsonic regime in agreement with the theory. Both figures
show that the entire flow field is better resolved using the adaptive procedure because no spurious oscillations
appear in the expansion region behind the shock wave and the shock front is sharply defined. As a consequence,
higher values for the pressure are reached at the shock front and within the blast wave. The shock wave travels
roughly at an average speed of 3000m/s at the simulated final time t f , i.e. it travels at mach number MS ' 9, so
that the strong shock assumption of the self-similar solutions holds. Figure (6) depicts a cut of the mesh on a
plane of symmetry at t = 0.645ms. This figure shows that the region of two-level refined elements propagates in a
thin region of one-level refined elements because of the refinement constraint. This mesh has approximately 2.34
million tetrahedra and 428000 vertices.
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Figure 5: Time evolution of the flow field within the blast wave.

Figure 6: Adapted mesh on a plane of symmetry at time t = 0.645ms.
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4.4 Mesh adaptation cost
To evaluate the mesh adaptation code performance, clock time to perform the adaptation of the mesh and to
compute the equations solution is measured throughout the simulation. The adaptation time tadapt is defined as
that required to realize all the necessary tasks to adapt the mesh, namely the error indication computation, the
refinement of the elements, the boundary conditions update, the state projection, the time step size update using
the CFL condition and the writting to disk of all the files requiered by the flow solver. On the other hand, the
solution time tsol takes into account both the time requiered to advance the solution plus the overhead incurred
to restart the flow computation. Overall time is then defined as tall = tadapt + tsol . Figure (7) shows that the ratio
tadapt/tall keeps almost constant and equal to 0.04, which enables to state that, for this particular problem, the
adaptation of the mesh takes just a small fraction of the solution time. Given that the biggest effort is involved in
the solution of the flow equations, maybe a higher updating frequency for the mesh could have been used.

On the other hand the refinement algorithm scalability is depicted in Fig.(8), where the clock time measured
taken by the recursive algorithm of refinement is shown in the ordinates and the refined elements number is shown
in abscissa. It is seen that an almost linear scalability is attained, at least for the range of refined elements 50.000 <
Nelere f < 240.000. A linear fit is superimposed in the same picture as a reference.
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5 CONCLUSIONS
The mesh adaptation strategy is used to solve the spherical blast wave problem, improving the sharpness of the
shock front and removing the spurious oscillations in the expansion which are present in the non-adapted mesh
solution. The behaviour of the flow field variables agrees rather well with the theoretical results from the Taylor-
Sedov self-similar solution. Although the shock front position is not so accurately predicted this cannot be ascribed
to the adaptation of the mesh since the non-adapted solution also shows a similar lack of precision. It is thought
that a deeper research of the flow modelling is needed in this sense.

The overhead introduced by the adaptation of the mesh is just a small percentage of the time required to
compute the flow, thus allowing to greatly reduce the computational effort. If we were to solve the problem with
a fixed mesh to get a similar accuracy (in fact, if each tetrahedron of the base mesh used for the simulations and
then all their sons were refined following the 1:8 pattern used by the adaptation procedure) a fixed mesh made up
of 26.9 million would have been requiered. So it is concluded that true benefits are achieved because of adapting
the mesh, namely an accuracy improvement and a reduction of the computational effort.
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