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Abstract. In this note we prove that Haar type systems are unconditional

basis in the generalized dyadic Hardy space HD1 in the setting of spaces of
homogeneous type. As a consequence, we obtain an alternative proof of the

unconditionality of such basis in Lebesgue spaces on spaces of homogeneous

type.

1. Introduction

The theory of Hardy spaces on non-isotropic settings and non-Euclidean spaces
is not new. Calderón and Torchinsky [6] initiated the study of Hardy spaces on Rn
with anisotropic dilations and Maćıas and Segovia study in [12] the Hardy spaces
in the general setting of space of homogeneous type. In 1980 L. Carlesson study the
existence of unconditional basis on the Hardy spaces H1(Rn), [7]. More precisely,
he gives an explicit wavelet basis that is unconditional in H1(Rn). In the proof
given in [7] the regularity of the basic functions is crucial. In the books [10] and
[14] conditions on the wavelets for unconditionality in H1(Rn) can also found. This
conditions are given in terms of regularity of the functions of the wavelet basis and
therefore the same proof does not hold in the dyadic context for the Haar wavelet
in Rn. Notice that on an abstract metric space (X, d), for which no smoothness
better than Lipschitz continuity makes sense, the first basic prototype of localized
wavelet is the Haar wavelet. In this note we shall proof that Haar type basis H are
unconditional bases for the atomic dyadic Hardy space HD1 , in the general context
of space of homogeneous type. As a consequence, we shall obtain a new proof of
the unconditionality of Haar systems in Lebesgue spaces on spaces of homogeneous
type. We would like to point out that in [9] the authors prove that the usual Haar
basis in the Euclidean context is an unconditional basis in the weighted dyadic
Hardy space Hp

dy(w) for every 0 < p ≤ 1 and every w ∈ Ady∞ using the maximal
approach to the definition of Hardy spaces. Our proof is addressed from an atomic
approach to the definition of Hardy spaces and therefore, for the particular case of
Rn and w = 1, we obtain a new proof of the result in [9].

The paper is organized as follows. In Section 2 we introduce the basic definitions
of dyadic family in the class D(δ) and of Haar systemH associated. Also, In Section
2 we define the dyadic Hardy space HD1 and the dyadic bounded mean oscillation
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spaces BMOD associated to a dyadic family D. Section 3 is devoted to prove our
main result which is stated at the end of Seccion 2.

2. Definitions, notation and statement of the result

Let us recall the basic properties of the general theory of spaces of homogeneous
type. Assume that X is a set, a nonnegative symmetric function d on X × X is
called a quasi-distance if there exists a constant K such that

(2.1) d(x, y) ≤ K[d(x, z) + d(z, y)],

for every x, y, z ∈ X , and d(x, y) = 0 if and only if x = y.
We shall say that (X, d, µ) is a space of homogeneous type if d is a quasi-distance

on X, µ is a positive Borel measure defined on a σ-algebra of subsets of X which
contains the balls, and there exists a constant A such that the inequalities

0 < µ(B(x, 2r)) ≤ A µ(B(x, r)) < ∞

hold for every x ∈ X and every r > 0.
The sets {(x, y) ∈ X ×X : d(x, y) < 1/n} define a basis of a metrizable uniform

structure on X and the balls B(x, r) = {y : d(x, y) < r} form a basis of neighbor-
hoods of x for the topology induced by the uniform structure. It is well known that
the d-balls are generally not open sets. Moreover, sometimes some balls are not
even Borel measurable subsets of X. Nevertheless in [11], R. Macias and C. Segovia
prove that if d is a quasi-distance on X, then there exist a distance ρ and a number
α ≥ 1 such that d is equivalent to ρα. Hence we shall assume along this paper that
(X, d, µ) is a space of homogeneous type with d a distance on X, in other words
that K = 1 in (2.1). In order to be able to apply Lebesgue Differentiation Theorem
we shall also assume that continuous functions are dense in L1(X,µ).

The construction of dyadic type families of subsets in metric or quasi-metric
spaces with some inner and outer metric control of the sizes of the dyadic sets is
given in [8]. These families satisfy all the relevant properties of the usual dyadic
cubes in Rn. Actually the only properties of Christ’s cubes needed in our further
analysis are contained in the next definition which we borrow from [3].

Definition 2.1. The class D(δ) of all dyadic families. We say that D =⋃
j∈ZDj is a dyadic family on X with parameter δ ∈ (0, 1), briefly that D belong

D(δ), if each Dj is a family of open subsets Q of X, such that

(d.1) For every j ∈ Z the cubes in Dj are pairwise disjoints.
(d.2) For every j ∈ Z the family Dj covers almost all X in the sense that µ(X −⋃

Q∈DjQ) = 0.
(d.3) If Q ∈ Dj and i < j, then there exists a unique Q̃ ∈ Di such that Q ⊆ Q̃.
(d.4) If Q ∈ Dj and Q̃ ∈ Di with i ≤ j, then either Q ⊆ Q̃ or Q ∩ Q̃ = ∅.
(d.5) There exist two constants a1 and a2 such that for each Q ∈ Dj there exists

a point x ∈ Q for which B(x, a1δ
j) ⊆ Q ⊆ B(x, 2a2δ

j).

The following properties for a dyadic family D in the class D(δ) follow from the
above definition (see [3]).

Proposition 2.2. Let D be a dyadic family in the class D(δ). Then
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(d.6) There exists a positive integer N depending only on the doubling constant
such that for every j ∈ Z and all Q ∈ Dj the inequalities 1 ≤ #(L(Q)) ≤ N
hold, where L(Q) = {Q′ ∈ Dj+1 : Q

′ ⊆ Q}.
(d.7) For every dyadic cube Q in D we have that µ(∂Q) = 0, where ∂Q is the

boundary of Q;
(d.8) There exists a finite and positive constant C such that for each j ∈ Z and

every dyadic cube Q in Dj we have that µ(Q) ≤ Cµ(Q
′
) for all dyadic cubes

Q
′

in Dj+1 with Q
′ ⊆ Q;

(d.9) X is bounded if and only if there exists a dyadic cube Q in D such that
X = Q;

(d.10) The families D̃j = {Q ∈ Dj : #({Q′ ∈ Dj+1 : Q
′ ⊆ Q}) > 1}, j ∈ Z are

pairwise disjoints.

Associated with the construction of Christ, in [2] the authors introduce the
concept of quadrant on a space of homogeneous type. We extend such definition
for our general context of dyadic families in D(δ)

Definition 2.3. Let D be a dyadic family in the class D(δ). We define, for each
dyadic cube Q in D, the quadrant of X that contain the cube Q, C(Q), by

C(Q) =
⋃

{Q′∈D:Q⊆Q′}

Q
′
.

Given a dyadic family D in the class D(δ) we can define Haar type systems
associated to D.

Definition 2.4. Haar system associated to D ∈ D(δ). Let D be a dyadic
family on X such that D ∈ D(δ). A system H of Borel measurable simple real
functions h on X is a Haar system associated to D if it satisfies

(h.1) For each h ∈ H there exists a unique j ∈ Z and a cube Q = Q(h) ∈ D̃j
such that {x ∈ X : h(x) 6= 0} ⊆ Q, and this property does not hold for any
cube in Dj+1.

(h.2) For every Q ∈ D̃ =
⋃
j∈ZD̃j there exist exactly MQ = #(L(Q)) − 1 ≥ 1

functions h ∈ H such that (h.1) holds. We shall write HQ to denote the set
of all these functions h.

(h.3) For each h ∈ H we have that
∫
X
hdµ = 0.

(h.4) For each Q ∈ D̃ let VQ denote the vector space of all functions on Q which
are constant on each Q

′ ∈ L(Q). Then the system { χ
Q

(µ(Q))1/2 }
⋃
HQ is an

orthonormal basis for VQ.

In [1] and [2] the authors built wavelets of Haar type which are supported on
Christ’s dyadic cubes. Such construction is applicable to any dyadic family D in the
class D(δ) and therefore there are always systems of functions that satisfy (h.1)
to (h.4) for any dyadic family D. The following result is an easy consequence of
Definition 2.4. We shall denote with Lp(X,µ), (p ≥ 1) the space Lp(X,µ) when
µ(X) =∞ and the space Lp0 = {f ∈ Lp(X,µ) :

∫
X
fdµ = 0} if µ(X) <∞.

Theorem 2.5. Let D be a dyadic family on X such that D belong to class D(δ).
Then every Haar type system H associated to D is an orthonormal basis in L2(X,µ).
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Now we shall introduce the dyadic Hardy space HD1 on a space of homogeneous
type (X, d, µ) following the lines in [14] for the Hardy space H1 on Rn. We start
giving the definition of dyadic atom associated to a dyadic family D in the class
D(δ).

Definition 2.6. Let D be a dyadic family in the class D(δ). For 1 < q ≤ ∞ we
shall say that a function a defined on X is a dyadic q-atom associated to D, briefly
that a ∈ Aq,D, if there exists a dyadic cube Q in D such that

(a1) supp (a(x)) ⊆ Q.
(a2)

∫
X
a(x)dµ(x) = 0.

(a3) ‖a‖Lq(X,µ) ≤ (µ(Q))
1
q−1 if q <∞ and ‖a‖L∞(X,µ) ≤ µ(Q))−1 if q =∞.

The spaces Hq,D
1 on (X, d, µ) are defined as follows.

Definition 2.7. Let D be a dyadic family in the class D(δ). For 1 < q ≤ ∞ we
define the space Hq,D

1 as the lineal space of all functions f on X, identifying those
that are equal almost everywhere with respect to µ, that can be written as

(2.2) f =
∑
n∈Z+

λn an with
∑
n∈Z+

|λn| <∞,

where an ∈ Aq,D for each n and the convergence is in the L1(X,µ) norm.

For each function f in Hq,D
1 we define the number

|||f |||1,q,D = inf

{∑
n∈Z+

|λn| <∞ : f =
∑
n∈Z+

λn an, an ∈ Aq,D

}
.

The following result is an easy consequence of Definition 2.6.

Proposition 2.8. Let D be a dyadic family in the class D(δ).
(1) If 1 < q1 < q2 ≤ ∞, then Aq2,D ⊆ Aq1,D. Moreover, if 1 < q ≤ ∞ and

a = a(x) is a q-dyadic atom, then ‖a‖L1(X,µ) ≤ 1.
(2) For each 1 < q1 < q2 ≤ ∞ we have that Hq2,D

1 (X, d, µ) ⊆ Hq1,D
1 (X, d, µ)

and ‖f‖L1(X,µ) ≤ |||f |||1,q1,D ≤ |||f |||1,q2,D.
(3) |||.|||1,q,D is a norm and

(
Hq,D

1 , |||.|||1,q,D
)

is a Banach space, for each
1 < q ≤ ∞.

Next, we need the definition of a string of spaces in duality with the spaces Hq,D
1 .

The BMODp spaces of all functions f of bounded p-mean oscillation, 1 ≤ p < ∞,
is defined by BMODp = {f : ‖f‖∗,p <∞}, where

‖f‖∗,p = sup
Q∈D

(
1

µ(Q)

∫
Q

|f(x)− fQ|pdµ(x)
)1/p

and fQ = 1
µ(Q)

∫
Q
fdµ. Since each dyadic cube Q in D is a space of homogeneous

type with uniform doubling constant, following the lines in the proof of Theorem
6.16 in [14] we can prove the following dyadic version of John-Nirenberg inequality.

Theorem 2.9. Let D be a dyadic family in the class D(δ). Then there exist two
positive constants C1 and C2 such that for every function f ∈ BMOD1 , every dyadic
cube Q ∈ D and every t ≥ 0 we have the following inequality

µ ({x ∈ Q : |f(x)− fQ| > t}) ≤ C1µ(Q)e−
C2t

‖f‖∗,1 .
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Corollary 2.10. Let D be a dyadic family in the class D(δ) and 1 ≤ p < ∞.
Then there exists a positive constant C such that for each function f ∈ BMODp we
have

‖f‖∗,1 ≤ ‖f‖∗,p ≤ C‖f‖∗,1.

Any of the equivalent norms ‖.‖∗,p will be denoted by ‖.‖BMOD . The proof of
Theorem 6.18 in [14] can be adapted to our dyadic context on space of homogeneous
type with the obvious changes to obtain the following result.

Theorem 2.11. Let D be a dyadic family in the class D(δ). For 1 < q ≤ ∞ the
spaces Hq,D

1 coincide and the norms |||.|||1,q,D are equivalent. This unique space
will be denoted by HD1 and any of the norms |||.|||1,q,D will be denoted by |||.|||1,D.
We have also that (HD1 )∗, the dual of HD1 , is BMOD in the sense that for each
continuous linear functional ϕ on HD1 there exists a unique (up to functions which
are constant on each quadrant) function b ∈ BMOD such that if f is any finite
sum of atoms we have that ϕ(f) =

∫
X
bfdµ and that the BMOD norm of b and the

functional norm of ϕ are equivalent.

Our main result in this note is contained in the next statement.

Theorem 2.12. Let (X, d, µ) be a space of homogeneous type and let H be a Haar
system associated to the dyadic family D in the class D(δ). Then the system H is
an unconditional basis of HD1 .

Now, Theorem 2.12, the L2 theory for the system H, interpolation and duality
give another technique for the proof of the unconditionality of H in Lp(X,µ),
1 < p < ∞. In fact, as in the proof of Theorem 6.23 in [14] we can obtain an
interpolation theorem from dyadic Hardy spaces in space of homogeneous type.
Thus, for each 1 < p < 2 and each finite set F ⊆ H we get, from Theorem 2.12 and
interpolation that the following inequality

||
∑
h∈F

< f, h > h||Lp(X,µ) ≤ C ||f ||Lp(X,µ),

holds for every function f ∈ Lp(X,µ), where < f, h >=
∫
fhdµ.

3. Proof of Theorem 2.12

We must show the following three basic facts for H.
(u1) The operators

∑
h∈F < f, h > h are uniformly bounded on HD1 with F

varying on the finite subsets of H.
(u2) Each h ∈ H defines, by h∗(f) =< f, h >, a continuous linear functional on

HD1 and for every h and h̃ in H holds that h∗(h̃) = 0 if h 6= h̃ and h∗(h̃) = 1
if h = h̃.

(u3) The linear span of H is dense in HD1 .
Let us start by showing (u1) for dyadic atoms.

Proposition 3.1. Let H be a Haar system associated to a dyadic family D in the
class D(δ). Then for each dyadic ∞-atom a and for each finite set F ⊆ H we have
that ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣∑
h∈F

< a, h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

≤ 1.
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Proof. Let F be a finite subset of H and let a be a dyadic ∞-atom. We shall write
Qa to denote the dyadic cube in Definition 2.6 for the dyadic atom a. Let j0 ∈ Z
such that Qa ∈ Dj0 . Set F1 = {h ∈ F : Q(h) ∈ D̃j , j ≤ j0} and F2 = {h ∈ F :
Q(h) ∈ D̃j , j > j0}, where Q(h) is the dyadic cube in D̃ given in (h.1). Let us first
consider h ∈ F1. Since Qa and Q(h) are dyadic cubes in the dyadic family D, from
(d.4) and the definition of F1 we get that Qa ⊆ Q(h) or Qa

⋂
Q(h) = ∅. Clearly, if

Qa
⋂
Q(h) = ∅ then < a, h >= 0. If Qa ⊆ Q(h) then, from (h.4), we have that h is

constant in the dyadic cube Qa. Thus, from (a2), we get that

< a, h > =
∫
Qa

a(x)h(x)dµ(x)

= c

∫
Qa

a(x)dµ(x)

= c

∫
X

a(x)dµ(x) = 0.

Hence ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
h∈F1

< a, h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

= 0.

Let us now estimate
∣∣∣∣∣∣∑

h∈F2
< a, h > h

∣∣∣∣∣∣
1,D . Set f(x) =

∑
h∈F2

< a, h > h(x).
From (h.3) we get that

(3.1)
∫
X

f(x)dµ(x) =
∑
h∈F2

< a, h >

∫
X

h(x)dµ(x) = 0.

On the other hand, from Proposition 2.8, a is a dyadic 2-atom. We shall prove
that f is also a dyadic 2-atom. In fact, from Theorem 2.5, Parseval identity, Bessel
inequality and the definition of dyadic 2-atom we get

‖f‖2L2(X,µ) =

∥∥∥∥∥∑
h∈F2

< a, h > h

∥∥∥∥∥
2

L2(X,µ)

(3.2)

=
∑
h∈F2

| < a, h > |2

≤ ‖a‖2L2(X,µ) ≤
1

µ(Qa)
.

(3.3)

Notice that, from (d.4) and the definition of F2 we have that Q(h) ⊆ Qa or
Qa
⋂
Q(h) = ∅, for any h ∈ F2. As before, if Q(h)

⋂
Qa = ∅ we get < a, h >= 0. If

Q(h) ⊆ Qa then from (h.1) we have that h(x) = 0 for all x 6∈ Qa. Thus

(3.4) supp(f) ⊆ Qa.

Therefore, from (3.1), (3.2) and (3.4) we obtain that f is a dyadic 2-atom and then
||| f |||1,D ≤ 1. Hence ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣∑
h∈F

< a, h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

≤ 1.
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�

It is well known (see [4] and [13]) that in general it is not enough to verify that an
operator is bounded on atoms to conclude that it extends boundedly to the whole
Hardy space. However, as the following result shows, this is the situation in our
case.

Theorem 3.2. Let H be a Haar system associated to the dyadic family D in the
class D(δ). Then there exists a positive constant C such that for each finite set
F ⊆ H we have that ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣∑
h∈F

< f, h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

≤ C |||f |||1,D ,

for every function f ∈ HD1 .

Proof. First notice that if f ∈ HD1 then < f, h > is well defined for every function
h ∈ H. In fact, f ∈ L1(X,µ) and h ∈ L∞(X,µ) for each h ∈ H. Thus, the result
is a consequence of Proposition 3.1 and the two following statements.

(1) If (an : n ∈ Z+) ⊆ A∞,D and (λn : n ∈ Z+) ⊆ R such that
∑
n∈Z+ |λn| <

∞, then
<
∑
n∈Z+

λnan, h >=
∑
n∈Z+

< λnan, h >,

for all function h ∈ H.
(2) For every function f ∈ HD1 with f =

∑
n∈Z+ λnan and each finite subset F

of H we have that∑
n∈Z+

λn

(∑
h∈F

< an, h >

)
h =

∑
h∈F

(∑
n∈Z+

λn < an, h >

)
h,

where the convergence is in the sense of the L1(X,µ) norm.
Take f ∈ HD1 , and suppose that (1) and (2) hold. For each ε > 0, from the definition
of HD1 , we have that f =

∑
n∈Z+ λn(ε)an(ε), where (an(ε) : n ∈ Z+) ⊆ A∞,D,

(λn(ε) : n ∈ Z+) ⊆ R with
∑
n∈Z+ |λn(ε)| <∞ and ‖|f‖|1,D + ε ≥

∑
n∈Z+ |λn(ε)|.

Let F be a finite subset of H. From (1) and (2) we have that∑
h∈F

< f, h > h =
∑
h∈F

∑
n∈Z+

< λn(ε)an(ε), h > h

=
∑
n∈Z+

∑
h∈F

< λn(ε)an(ε), h > h,

in the L1(X,µ) sense. Thus, from Proposition 3.1 we get that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
h∈F

< f, h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
n∈Z+

∑
h∈F

< λn(ε)an(ε), h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

≤
∑
n∈Z+

|λn(ε)|

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
h∈F

< an(ε), h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

≤ C
∑
n∈Z+

|λn(ε)|

≤ C |||f |||1,D + Cε,
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for each ε > 0. Hence, ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
h∈F

< f, h > h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1,D

≤ C |||f |||1,D .

Now we shall prove (1) and (2). We first show (1). Let f ∈ HD1 , f =
∑
n∈Z+

λnan

where an ∈ A∞,D for each n. Set SN =
∑N
n=1 λnan. Then, ‖f − SN‖L1(X,µ) −→ 0

when n −→∞. Thus,∣∣∣∣∣
N∑
n=1

< λnan, h > − <
∑
n∈Z+

λnan, h >

∣∣∣∣∣ =

∣∣∣∣∣< ∑
n>N

λnan, h >

∣∣∣∣∣
≤

∫
X

∣∣∣∣∣∑
n>N

λnan

∣∣∣∣∣ |h|dµ
≤ ‖f − SN‖L1(X,µ)‖h‖L∞(X,dµ).

Hence, since h ∈ L∞(X, dµ) for each h ∈ H, (1) holds. For the proof of
(2), take f ∈ HD1 , f =

∑
n∈Z+

λnan where an ∈ A∞,D for each n. Set ZN =∑N
n=0 λn

(∑
h∈F < an, h >

)
h and SN =

∑N
n=0 λnan. We shall show that if N

tends to ∞ then ZN −→
∑
h∈F < f, h > h in the sense of L1(X,µ). In fact,∫

X

|ZN −
∑
h∈F

< f, h > h|dµ ≤
∑
h∈F

∫
X

|< SN − f, h >| |h|dµ

≤
∑
h∈F

‖h‖∞ µ(Q(h)) |< SN − f, h >|

≤ ‖SN − f‖L1(X,µ)

∑
h∈F

‖h‖2∞ µ(Q(h)).

�

Now we shall prove (u2). Fixed h ∈ H and f =
∑
n∈Z+ λnan ∈ HD1 , with

an ∈ A∞,D for each n. The linearity of h∗ is a trivial consequence of the linearity
of the integral. Since

∫
X
|an|dµ ≤ 1 for every n and since h ∈ L∞(X,µ) for each

h ∈ H, we get that

| < f, h > | =

∣∣∣∣∣
∫
X

h

(∑
n∈Z+

λnan

)
dµ

∣∣∣∣∣
≤ ‖h‖∞

∑
n∈Z+

∫
X

|λn||an|dµ

≤ ‖h‖∞
∑
n∈Z+

|λn|.

Therefore | < f, h > | ≤ ‖h‖∞|‖f |‖1,D. On the other hand, from Theorem 2.5 we
have that h∗(h̃) = 0 if h 6= h̃ and h∗(h̃) = 1 if h = h̃.

In order to prove (u3) we shall use the following result. In the sequel we shall
denote with V the set of all those functions g in HD1 that are finite sum of dyadic
∞-atoms.

Lemma 3.3. Let D be a dyadic family in the class D(δ). Then
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(a) g −
∑
h∈F < g, h > h belong to V for all finite subset F ⊆ H and every

function g ∈ V;
(b) V is dense in HD1 .

Proof. Statement (b) is an easy consequence from the definition of HD1 . On the
other hand, notice that from (h.1), (h.3) and (h.4) we have that hµ(Q(h))1/2 ∈ A2,D
for every h ∈ H, where Q(h) is the dyadic cube in (h.1) for h. Then the function∑
h∈F < g, h > h ∈ V. From this fact and since A∞,D ⊆ A2,D we get (a). �

We shall use also the well known fact that the norm of a point f in a Banach
space B can be computed as the least upper bound of the evaluations ϕ(f) for
ϕ ∈ B∗ with ‖ϕ‖ = 1.

Now, we shall prove the density of the linear span of H in HD1 . For each positive
integer M we define the family FM = {F ⊆ H : #(F ) = M} and the operators
defined in HD1 by SF (f) =

∑
h∈F < f, h > h for F ∈ FM and M ∈ Z+. We shall

show that for each f ∈ HD1 and each ε > 0 there exists a positive integer Mε and
a set Fε ∈ FMε such that |‖f − SFε(f)|‖1,D < ε. From Theorem 3.2, we get that
|‖SF (f)|‖1,D ≤ C|‖f |‖1,D for some positive constant C independent of F ∈ FM
and of M ∈ Z+. Set C̃ = sup{‖SF ‖ : F ∈ FM ,M ∈ Z+}. Let f be a function in
HD1 and let ε > 0 be given. From (b) in Lemma 3.3 there exists a function g ∈ V
such that

(3.5) |||f − g|||1,D ≤
ε

C̃ + 3
.

Also, there exists a positive integer Mε,g and a set Fε,g ∈ FMε,g
such that

(3.6) |‖g − SFε,g
(g)|‖1,D <

2ε
C̃ + 3

.

In fact. From (a) in Lemma 3.3 we get that g − SF (g) belong to V for each finite
set F ⊆ H. Thus, from the above remark on the norm of an element in a Banach
space via duality and Theorem 2.11 we have that for each F ∈ FM and M ∈ Z+

there exists a function ϕ
g,F
∈ BMOD such that ‖ϕ

g,F
‖BMOD = 1 and

(3.7) ‖|g − SF (g)|‖1,D ≤
∣∣∣∣∫
X

(g − SF (g))ϕ
g,F
dµ

∣∣∣∣+
ε

C̃ + 3
.

Since g−SF (g) belong to V and supp(h) ⊆ Q(h), where Q(h) is the closure of Q(h),
it is clear that there exists a finite index set I ⊆ Z+ and a family {Qn : n ∈ I} of
disjoint dyadic cubes in D such that

(3.8)
∣∣∣∣∫
X

(g − SF (g))ϕ
g,F
dµ

∣∣∣∣ =
∣∣∣∣∫
X

(g − SF (g))φ
g,F
dµ

∣∣∣∣ ,
where φ

g,F
= (χ

∪
n∈I

Qn
)ϕ

g,F
. Notice that since ϕ

g,F
∈ BMOD, then for some

constants Cn with n ∈ I we get that

‖φ
g,F
‖L2(X,µ) =

∑
n∈I

(∫
Qn

|ϕ
g,F
|2dµ

)1/2

≤
∑
n∈I

((∫
Qn

|ϕ
g,F
− Cn|2dµ

)1/2

+
(∫

Qn

|Cn|2dµ
)1/2

)
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=
∑
n∈I

(
µ(Qn)1/2

(
1

µ(Qn)

∫
Qn

|ϕ
g,F
− Cn|2dµ

)1/2

+ Cnµ(Qn)1/2
)

≤
∑
n∈I

(
‖ϕ

g,F
‖BMOD + Cn

)
µ(Qn)1/2 <∞.

Hence φ
g,F
∈ L2(X,µ). Thus, since

∫
X
Sf (g)φ

g,F
dµ =

∫
X
gSf (φ

g,F
)dµ, from

Schwartz inequality we get that∣∣∣∣∫
X

(g − SF (g))φ
g,F
dµ

∣∣∣∣ =
∣∣∣∣∫
X

g(φ
g,F
− SF (φ

g,F
)dµ
∣∣∣∣

≤ ‖g‖L2(X,µ)‖φg,F
− SF (φ

g,F
‖L2(X,µ),

for each F ∈ FM and each M ∈ Z+. Therefore, since H is a orthonormal basis in
L2(X,µ), there exists a positive integer Mε,g and a set Fε,g ∈ FMε,g

such that

‖φ
g,F
− SFε,g (φ

g,F
)‖L2(X,µ) ≤

ε

‖g‖L2(X,µ)(C̃ + 3)
,

which prove that (3.6) holds. Thus, from (3.5) and (3.6) we obtain that

|||f − SFε,g
(f)|||1,D ≤ |||f − g|||1,D + |||g − SFε,g

(g)|||1,D + |||SFε,g
(g − f)|||1,D

≤ 3ε
C̃ + 3

+ |||SFε,g (g − f)|||1,D

≤ 3ε
C̃ + 3

+ ‖SFε,g
‖ |||g − f |||1,D ≤ ε.

This proves that the linear span of H is dense in HD1 which concludes the proof of
Theorem 2.12.
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