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Abstract. In this note we give sufficient conditions on two dyadic systems

to obtain the equivalence of corresponding Haar systems on dyadic weighted
Lebesgue spaces on spaces of homogeneous type. In order to obtain these result

we prove a Fefferman-Stein weighted inequality for vector valued dyadic Hardy-

Littlewood maximal operators with dyadic weights in this general setting.

1. Introduction

One of the basic aims of the so called wavelet theory is the design of bases for
the space L2 with as much good properties as possible. In particular the metric
control of the supports of the wavelets seems an important property to preserve.

If the space L2 which we explore is defined on an abstract metric space (X, d),
for which no smoothness better than Lipschitz continuity makes sense, the first
basic prototype of localized wavelet is the Haar wavelet.

It is easy to built a Haar type basis when an adequate sequence of nested parti-
tions of the whole space is given. If the supports of such wavelets are expected to
be concentrated in some regions of the space in the metric sense, we need to have
partition with metric control.

Nested measurable partitions of measurable spaces are usually considered in har-
monic analysis and probability. The conditional expectations of a random variable
with respect to the sequence of σ−algebras generated by each partition gives rise to
the concept of martingale. On the other hand the basic algorithm of the Calderón-
Zygmund decomposition of the Euclidean space for a given integrable function re-
lies on such partition process. The dyadic cubes involved in the Calderón-Zygmund
technique have the advantage of the metric control.

The first non-trivial construction of such partitions with a complete metric con-
trol is provided by M. Christ in [9] in the setting of spaces of homogeneous type.
In [4] we define dyadic families on a space of homogeneous type with metric con-
trol. These families contain at once the classical dyadic cubes in an Euclidean
environment and those Christ’s families.

There we give sufficient conditions on two different dyadic systems on the same
space of homogeneous type, in such a way that Haar bases built on them become
equivalent on Lebesgue spaces. The equivalence of bases here is taken in the sense
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of equivalence of bases in Banach spaces given by [12] and [18]. Actually in [4] we
show that under a certain notion of equivalence of two dyadic families we obtain the
corresponding equivalence of Haar systems on Lp(w) for weights w in the Mucken-
houpt Ap (1 < p < ∞) class defined on the abstract space of homogeneous type.
The central tool there is the use of Fefferman-Stein weighted inequality for vector
valued Hardy-Littlewood maximal operators ([11]), aside from the characterization
of weighted Lebesgue spaces through the Haar coefficient ([3]).

Since we are mostly dealing with dyadic analysis, the result obtained in [4] is
somehow restricted. In fact, the natural classes of weights for the equivalence of
Haar systems in Lp(w) are those of the dyadic Muckenhoupt weights, ADp . As in
the Euclidean case these classes are typically larger than the standard Ap classes.

In this paper we obtain sufficient conditions on two dyadic families to get the
equivalence of associated Haar systems in Lp(w) with w ∈ ADp and 1 < p <∞.

The condition of equivalence of the dyadic families is strictly stronger that the
one in [4]. The basic tool is now a Fefferman-Stein weighted inequality for dyadic
vector valued Hardy-Littlewood maximal operators with dyadic weights in spaces
of homogeneous type.

The paper is organized as follows. In Section 2 we introduce the basic concepts
of the general theory of space of homogeneous type and recall the definition of
dyadic families. We also give in this section the concept of equivalence of dyadic
systems that shall be used in the main result. Here we show that different Christ’s
families with the same sequence of nets are equivalent in this sense. In Section
3 we prove that Haar systems associated to two equivalent dyadic families are
equivalent, in the sense of equivalence of Schauder bases in Banach spaces, in dyadic
weighted Lebesgue spaces. As particular case, we obtain the equivalence of Haar
bases built on equivalent Christ’s dyadic families. Section 4 is dedicated to prove a
dyadic weighted version of the Fefferman-Stein inequalities for the dyadic Hardy-
Littlewood vector valued maximal operator in the context of space of homogeneous
type.

2. Equivalence of dyadic systems

Assume that X is a set, a nonnegative symmetric function d on X ×X is called
a quasi-distance if there exists a constant K such that

(2.1) d(x, y) ≤ K[d(x, z) + d(z, y)],

for every x, y, z ∈ X , and d(x, y) = 0 if and only if x = y.
We shall say that (X, d, µ) is a space of homogeneous type if d is a quasi-distance

on X, µ is a positive Borel measure defined on a σ-algebra of subsets of X which
contains the balls, and there exists a constant A such that

0 < µ(B(x, 2r)) ≤ A µ(B(x, r)) < ∞
holds for every x ∈ X and every r > 0.

The sets {(x, y) ∈ X ×X : d(x, y) < 1/n} define a basis of a metrizable uniform
structure on X. The balls B(x, r) = {y : d(x, y) < r} form a basis of neighborhoods
of x for the topology induced by the uniform structure. A basic caveat comes from
the fact that the d-balls are generally not open sets. Moreover, it is not difficult to
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give examples of quasi-distances for which some balls are not even Borel measurable
subsets of X. Nevertheless in [13], R. Macias and C. Segovia prove that if d is a
quasi-distance on X, then there exist a distance ρ and a number α ≥ 1 such that
d is equivalent to ρα. Hence except for some simple changes of scales we can keep
working with ρ instead of ρα. So that we shall assume along this paper that d is
actually a distance on X, in other words that K = 1 in (2.1).

We shall say that a subset E of X is ε-disperse for ε > 0 if d(x, y) ≥ ε for every
x, y in E with x 6= y.

Given a set E in X we shall write diam(E) to denote its diameter. In other
words, diam(E) = sup{d(x, y) : x ∈ E, y ∈ E}. On the other hand given an open
and bounded set E in X we define its eccentricity by ε(E) = ri(E)

ro(E) , where ri(E) =
sup{r : B(x, r) ⊆ E for some x ∈ E} and ro(E) = inf{r : E ⊆ B(x, r) for some x ∈
X}.

In order to be able to apply Lebesgue Differentiation Theorem we shall also
assume that continuous functions are dense in L1(X,µ). Under the assumption of
completeness for (X, d) and regularity of the measure µ this density can be achieved
(see [14] and [15]).

As we mentioned in the introduction, a construction of dyadic type families of
subsets in metric or quasi-metric measure spaces (X, d, µ), with some inner and
outer metric control of the sizes of the dyadic sets, is given in [9]. This result shows
that the classes introduced in the next definition are non trivial in every space of
homogeneous type.

Definition 2.1. The class D(δ) of all dyadic families. Let (X, d, µ) be a
metric space of homogeneous type. We say that D =

⋃
j∈ZDj is a dyadic family on

X with parameter δ ∈ (0, 1), briefly that D belong D(δ), if each Dj is a family of
open subsets Q of X, such that

(d.1) For every j ∈ Z the cubes in Dj are pairwise disjoints.
(d.2) For every j ∈ Z the family Dj covers almost all X in the sense that µ(X −⋃

Q∈DjQ) = 0.
(d.3) If Q ∈ Dj and i < j, then there exists a unique Q̃ ∈ Di such that Q ⊆ Q̃.
(d.4) If Q ∈ Dj and Q̃ ∈ Di with i ≤ j, then either Q ⊆ Q̃ or Q ∩ Q̃ = ∅.
(d.5) There exists a positive integer N depending only on A such that for every

j ∈ Z and all Q ∈ Dj the inequalities 1 ≤ #({Q′ ∈ Dj+1 : Q
′ ⊆ Q}) ≤ N

hold.
(d.6) There exist two constants a1 and a2 such that for each Q ∈ Dj we have

that ri(Q) ≥ a1δ
j and ro(Q) ≤ a2δ

j and hence ε(Q) ≥ a1
a2

.

From property (d.6) we are able to define center functions Pj assigning to each
cube Q ∈ D points in Q which could be considered geometric centers for Q in a
sense that we proceed to describe. For each j ∈ Z set Pj : Dj −→ X given by
Pj(Q) = xQ ∈ Q such that ri(Q)

2 ≤ d(xQ, X \ Q). Hence B(xQ, a1
2 δ

j) ⊆ Q ⊆
B(xQ, 3a2δ

j). Let us observe that this center function is not unique. In fact, even
in the Euclidean setting it is possible to choose among several possible xQ for a
given Q.

The following proposition contains the main properties of center functions.
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Proposition 2.2. Let (X, d, µ) be a metric space of homogeneous type and let D
be a dyadic system in D(δ). Let Pj be a center function for each integer j. Then

(1) for each j ∈ Z we have that the set Pj(Dj) is a1
2 δ

j-disperse;
(2) the set P =

⋃
j∈Z Pj(Dj) is dense in X.

Proof. First we prove (1). Let j ∈ Z and x and y be two different points in
Pj(Dj). Let Q1 = (Pj)−1(x) and Q2 = (Pj)−1(y). Notice that Q1 and Q2 belong
to Dj and that Pj is one to one. Thus, from (d.1), Q1 ∩ Q2 = ∅. Suppose that
d(x, y) < a1

2 δ
j . Then y ∈ B(x, a1

2 δ
j) and therefore y ∈ Q1. A contradiction. Hence

d(x, y) ≥ a1
2 δ

j and Pj(Dj) is a1
2 δ

j-disperse.
To prove (2), we take x ∈ X and ε > 0. Fix j ∈ Z such that a2δ

j < ε. From (d.2)
it follows that

⋃
Q∈Dj Q is dense in X. Hence, we may assume that x ∈

⋃
Q∈Dj Q.

Let Q be the unique dyadic cube in Dj such that x ∈ Q. Then x ∈ B(Pj(Q), 3a2δ
j)

and therefore d(x,Pj(Q)) ≤ d(Pj(Q), X \Q) ≤ 3a2δ
j < 3ε. �

It is easy to give examples of dyadic systems D ([4]) such that in some regions
or at some scales the space may keep dividing in pieces that become smaller and
smaller and such that at some regions, refining scales does not involve an actual
refinement of the space. We are interested in the identification of those scales and
places of partition which shall give rise to the Haar functions. This induces the
definition of a subfamily of D containing all dyadic cubes in D with non-trivial
offspring.

Definition 2.3. The subfamily D̃ of a D in D(δ). For each D in D(δ) and
for each j ∈ Z we considered the families

D̃j = {Q ∈ Dj : #({Q
′
∈ Dj+1 : Q

′
⊆ Q}) > 1}.

We define
D̃ =

⋃
j∈Z
D̃j .

Properties (d.1) to (d.6) allow us to obtain the following result.

Proposition 2.4. Let (X, d, µ) be a metric space of homogeneous type and let D
be in D(δ). Then

(d.7) The families D̃j, j ∈ Z are pairwise disjoints.
(d.8) The function J : D̃ −→ Z given by Q 7→ J (Q) if Q ∈ D̃J (Q) is well defined.

Proof. First notice that (d.8) is an easy consequence of (d.7). For see (d.7)
notice that given a cube Q ∈ D̃j , from (d.1) we have that Q /∈ Dj+1. Moreover,
Q /∈ Dj+n for any positive integer n and hence Q /∈ D̃j+n. �

In the sequel two dyadic families D1 =
⋃
j∈ZD

j
1 and D2 =

⋃
j∈ZD

j
2 in D(δ) on

X are given. We shall denote by Q the elements of D1, by R those in D2, by Ji the
function in (d.8) for Di, i = 1, 2 and by Pji a center function for Di, i = 1, 2, j ∈ Z.
It is easy to give examples of dyadic systems such that no wavelet occurs for some
levels of resolution. Therefore, the conditions for the new notion of equivalence over
the families D1 and D2 are given on the subfamilies D̃1 and D̃2. In [4] the authors
introduce a notion of equivalence of two dyadic systems. It will became clear why
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this notion is not enough in order to reflect the rigidity of the dyadic setting. The
right notion now needs to take more care about the distance of the related dyadic
sets. With this idea in mind we make the following definition.

Definition 2.5. Equivalent dyadic families.We say that the two dyadic families
D1 and D2 in D(δ) are equivalent, briefly D1 ≈ D2, if there exist a positive integer
n and a relation R ⊆ D̃1 × D̃2 such that

(i) for each Q ∈ D̃1 there exists R ∈ D̃2 such that (Q,R) ∈ R;
(ii) for each R ∈ D̃2 there exists Q ∈ D̃1 such that (Q,R) ∈ R;

(iii) for all (Q,R) ∈ R we have |J1(Q)− J2(R)| ≤ n;
(iv) for all (Q,R) ∈ R there exists two dyadic cubes Q

′ ∈ DJ1(Q)+n
1 and R

′ ∈
DJ2(R)+n

2 such that Q
′ ∪R′ ⊆ Q ∩R.

Let us start by showing that the first non trivial example for this notion of
equivalence of dyadic systems is provided by the well know Christ’s dyadic families
on a space of homogeneous type, when they are built on the same basic nets of
points.

Let us briefly recall the construction given in [9]. Let δ > 0 be given. For each
j ∈ Z a finite or countable sequence Nj = {xjk : k ∈ Kj} which is maximal with
the property d(xjk, x

j
l ) ≥ δj , k 6= j in Kj , is given. Here Kj is an initial interval in

Z+ which may coincide with Z+. Set A = {(j, k) : j ∈ Z and k ∈ Kj}. The first
step in Christ’s construction is to introduce tree structures on the index set A that
are closely related to the metric structure on X. In other words, M.Christ define
a partial orders � on A satisfying some tree properties controlled by the distance.
The second step in [9] is the construction of a dyadic family, D, based on such
partial orders � defined on A. For a given sequence Nj , δ > 0, we shall say that
such order belongs to the class C, briefly, � ∈ C.

In the definition of partial order � the choice of ancestors in the tree is not unique
at all. This diversity translates into a corresponding diversity of families D. On
the other hand there is some rigidity which is reflected by the following property:
For each (j, k) ∈ A there exists al least one u ∈ Kj+1 such that (j + 1, u) � (j, k)
for every order � ∈ C (see [4]).

For a given �∈ C, the Christ dyadic cube at the level j located at k ∈ Kj is
defined by

(2.2) Qjk =
⋃

(i,l)�(j,k)

B(xil, aδ
i),

which for some small values of the positive constant a satisfy (d.1) to (d.8). The
set Qjk shall be called the dyadic cube associated to xjk ∈ Nj . The family D�
of all those Qjk shall be called the Christ cubes associated to the family {Nj :
j ∈ Z} of nets and the order �. Notice that different orders satisfying all the
desired properties produce different shapes for the sets Qjk corresponding to the
level-position parameters (j, k) ∈ A.

Given Di = D�i
, where �i ∈ C, i = 1, 2, we shall denote by D̃i the family in

(d.7) for Di, by Q the elements Qjk of D1, by R those cubes Rjk in D2, and by Ji
the function in (d.8) for Di.

Proposition 2.6. Let �1 and �2 be two partial orders in C with 0 < δ < 1/2.
Then D1 ≈ D2, where Di = D�i

, i = 1, 2.
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Proof. We shall use the notation Qju ' Rjk if B(z, aδj+1) ⊆ Qju ∩ R
j
k for some

z ∈ X, where a is the real number in (2.2) and j ∈ Z. Let us first notice that

(1) for every Qjk ∈ D̃1 there exist Rju ∈ D̃2 such that Rju ' Q
j
k;

(2) for every Rjk ∈ D̃2 there exist Qju ∈ D̃1 such that Qju ' R
j
k.

In fact, from Lemma 5.2 in [4] we have that for each Qjk ∈ D̃1 there exists
Rju ∈ D̃2 and (j + 1, s) ∈ A such that (j + 1, s) �1 (j, k) and (j + 1, s) �2 (j, u).
Then, clearly from the definition of Christ’s dyadic cubes (2.2), we obtain (1) with
z = xj+1

s . Analogously we prove (2).
The proof of the proposition is now an immediate consequence of (1) and (2).

In fact, let R be the subset of D̃1 × D̃2 defined as

R =

 ⋃
Qj

k∈D̃1

⋃
Rj

u:Rj
u'Qj

k

(Qjk, R
j
u)

⋃ ⋃
Rj

k∈D̃2

⋃
Qj

u:Qj
u'Rj

k

(Qju, R
j
k)

 .

Clearly R satisfies (i) and (ii) in Definition 2.5.
Now we show that (iv) also holds. Let (Qjk, R

j
u) ∈ R and (j + 1, s) ∈ A such

that B(xj+1
s , aδj+1) ⊆ Qjk ∩ Rju. Since {xml : m ∈ Z, l ∈ Km} is dense in X,

there exist two positive integers l0 and n such that d(xj+1+n
l0

, xj+1
s ) < 3a2δ

j+1+n <
aδj+1

2 , where a2 is the constant in (d.6) for D1 and D2. Then Qj+1+n
l0

∪Rj+1+n
l0

⊆
B(xj+1

s , aδj+1) ⊆ Qjk ∩Rju. In fact, for each z ∈ Qj+1+n
l0

∪Rj+1+n
l0

we have

d(z, xj+1
s ) ≤ d(z, xj+1+n

l0
) + d(xj+1+n

l0
, xj+1
s )

≤ 3a2δ
j+1+n < aδj+1.

Hence (iv) in Definition 2.5 holds with that n. Condition (iii) is trivial and therefore
D1 ≈ D2. �

Associated to a dyadic system D in D(δ) it is possible to define the dyadic
Hardy-Littlewood maximal operator

MDf(x) = sup
Q

1
µ(Q)

∫
Q

|f(y)|dµ(y),

where the supremum is taken over the family of dyadic cubes Q in D containing
x. Since E = ∪Q∈D∂(Q) has measure zero we may think that M|mathcalDf(x) is
defined by zero when x ∈ E.

The reason for the restriction in the generality of the relation R giving the
equivalence of D1 and D2, which is contained in (iv) of Definition 2.5 is reflected
in the next result which shall be crucial.

Theorem 2.7. Let Di, i = 1, 2 be two dyadic systems in D(δ) such that D1 ≈ D2.
Then there exists a positive constant C such that for every (Q,R) ∈ R we have

(a) χ
Q

(x) ≤ CMD1(χ
R

)(x) and
(b) χ

R
(x) ≤ CMD2(χ

Q
)(x),

for all x ∈ X.
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Proof. By symmetry we shall only prove (a). Since (Q,R) ∈ R, from (iv) there
exists Q

′ ∈ DJ1(Q)+n
1 such that Q

′ ⊆ Q ∩R. Thus, from the doubling property we
obtain that µ(Q

′
) ≤ µ(Q) ≤ Cµ(Q

′
). Hence, for all x ∈ Q

MD1(χR)(x) = sup
Q̃∈D1,x∈Q̃

1
µ(Q̃)

∫
Q̃

χRdµ

≥ µ(Q ∩R)
µ(Q)

≥ µ(Q
′
)

µ(Q)
≥ 1
C
.

�

3. Equivalence of Haar systems

In this section we shall study the equivalence of Haar systems associated to
equivalents dyadic families in the sense of Definition 2.5. Given D a dyadic system,
in the sequel we shall make use of the following notation. Let L be the function
defined on D̃ taking values in the family of subsets of D, given by L(Q) = {Q′ ∈
Dj+1 : Q

′ ⊆ Q} for Q ∈ D̃j and j ∈ Z. We shall say that the cube Q ∈ D̃ is the
first-ancestor of Q

′
if Q

′ ∈ L(Q). Notice that from (d.5), 1 < #(L(Q)) ≤ N .
Now we define what we mean by a Haar system associated to a dyadic family.

Definition 3.1. Haar system associated to D ∈ D(δ). Let D be a dyadic
family on (X, d, µ) such that D ∈ D(δ). A system H of Borel measurable simple
real functions h on X is a Haar system associated to D if it satisfies

(h.1) For each h ∈ H there exists a unique j ∈ Z and a cube Q = Q(h) ∈ D̃j
such that {x ∈ X : h(x) 6= 0} =

⋃
Q′∈L(Q)Q

′
, and this property does not

hold for any cube in Dj+1. Moreover, each function h is constant in each
cube Q

′ ∈ L(Q(h)).
(h.2) For every Q ∈ D̃ there exist exactly MQ = #(L(Q)) − 1 ≥ 1 functions

h ∈ H such that (h.1) holds. We shall write HQ to denote the set of all
these functions h.

(h.3) For each h ∈ H we have that
∫
X
hdµ = 0.

(h.4) For each Q ∈ D̃ let VQ denote the vector space of all functions on Q which
are constant on each Q

′ ∈ L(Q). Then the system { χ
Q

(µ(Q))1/2 }
⋃
HQ is an

orthonormal basis for VQ.
(h.5) There exists a positive constant C such that the inequality |h(x)| ≤ C|h(y)|

holds for almost every x and y in Q(h) and every h ∈ H.

Notice that our present definition of Haar type systems associated to D is more
restrictive than the one considered in [4]. In fact, there a Haar wavelet may vanish
in one or several of the offspring of its essential support. Now, property (h.5) leads
us to a situation which looks more similar to the classical Euclidean case, where
the absolute value of the basic functions is one. It is not difficult to see that most
of the orthonormal basis of VQ containing

χ
Q

(µ(Q))1/2 satisfy also (h.5), actually (h.5)
is a generic property of the Haar systems.

The following result will be crucial for the proof of our main result in Section 3
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Lemma 3.2. Let H be a Haar system associated to D. Then there exist two positive
constants c1 and c2 such that the inequalities

c1√
µ(Q(h))

≤ |h(x)| ≤ c2√
µ(Q(h))

,

hold for every h ∈ H and for almost x ∈ Q(h).

Proof. Let h be a function inH. From (h.4) and (h.1) we obtain that there exists
a finite family of scalars {aQ′ : Q

′ ∈ L(Q(h))} such that h(x) =
∑

Q′∈L(Q(h))

aQ′χQ
′

and

(3.1) ‖h‖2L2(X,µ) =
∑

Q′∈L(Q(h))

|aQ′ |
2µ(Q

′
) = 1.

Thus, since |aQ̃|2µ(Q̃) ≤
∑

Q′∈L(Q(h))

|aQ′ |2µ(Q
′
) for all Q̃ ∈ L(Q(h)) we obtain, from

the doubling property, the upper bound.
Let Q̃ ∈ L(Q(h)) be fixed. From (h.5), we have that |aQ′ | ≤ C|aQ̃| for all

Q
′ ∈ L(Q(h)). Then, from (3.1) we obtain

1 ≤ C2µ(Q(h))|aQ̃|
2,

where C is given by (h.5).
Therefore the lower bound holds with c1 = 1

C
√
µ(Q(h)))

. �

Let H1 = {h} and H2 = {ψ} be two Haar systems associated to D1 and D2

respectively, with D1 ≈ D2. Let Q(h) and R(ψ) be the dyadic cubes in (h.1) for
h ∈ H1 and ψ ∈ H2 respectively. We shall say that Ψ is a selection function
in H2 associated to R if Ψ : H1 −→ H2 and for every h ∈ H1 we have that
(Q(h), R(Ψ(h))) ∈ R. Notice that from the properties of R all these selection
functions are connecting wavelets in one system to wavelets in the other with similar
supports in scale and intersecting supports. We shall denote by S1,2 the set of all
such selection functions. Symmetrically we say that a function h : H2 −→ H1 is a
selection function in H1 associated to R−1 if (Q(h(ψ)), R(ψ)) ∈ R. With S2,1 we
denote the set of all such selection functions.

In order to state the main result of this section, we start by some basic notation
and definitions from dyadic harmonic analysis.

When a dyadic system D is given, we can define, as usual, the dyadic Mucken-
houpt weight functions associated to D. In fact, a non-negative, measurable and
locally integrable function w defined on the space of homogeneous type (X, d, µ), is
said to be a Muckenhoupt dyadic weight of class ADp , 1 < p <∞, if the inequality(

1
µ(Q)

∫
Q

w(x)dµ(x)
)(

1
µ(Q)

∫
Q

w(x)
−1

p−1 dµ(x)
)p−1

≤ C

holds for some constant C and every dyadic set Q ∈ D.
For p = 1 we say that w ∈ AD1 if there is a constant C such the inequality

w(Q)
µ(Q)

≤ Cw(x)

holds for almost all point x ∈ Q and for every dyadic cube Q ∈ D.
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We shall use the notation ‖f‖p,w for the norm
(∫
X
|f |pwdµ

)1/p in Lpw(X,µ),
1 ≤ p <∞ and w a non-negative function on X.

Theorem 3.3. Let D1 and D2 be two dyadic families on (X, d, µ) such that D1 ≈
D2. Let H1 and H2 two Haar systems associated to D1 and D2 respectively. Then,
for each R ⊆ D̃1 × D̃2 as in Definition 2.5, for every choice of wi ∈ ADi

p , i = 1, 2,
there exist two positive constants Ci, i = 1, 2, depending of the ADi

p constant of wi
such that for every finite subsets F of H1 and G of H2, every choice of sequences
(λh : h ∈ H1) and (νψ : ψ ∈ H2) of real numbers and every couple of selection
functions Ψ ∈ S1,2 and h ∈ S2,1 associated to R we have the inequalities

(3.2)

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p,w1

≤ C1

∥∥∥∥∥∑
h∈F

λhΨ(h)

∥∥∥∥∥
p,w1

and

(3.3)

∥∥∥∥∥∥
∑
ψ∈G

νψψ

∥∥∥∥∥∥
p,w2

≤ C2

∥∥∥∥∥∥
∑
ψ∈G

νψh(ψ)

∥∥∥∥∥∥
p,w2

.

Notice that if there exists Ψ ∈ S1,2 such that Ψ is one to one and onto, using
(3.3) with h = Ψ−1 we obtain the result contained in the next statement.

Corollary 3.4. Let D1, D2, H1 and H2 be as in Theorem 3.3. Assume that
in S1,2 there exists a one to one and onto selection function Ψ. Then, for each
w ∈ AD1

p ∩AD2
p , 1 < p <∞, there exist two positive constants C1 and C2 such that

(3.4) C1

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p,w

≤

∥∥∥∥∥∑
h∈F

λhΨ(h)

∥∥∥∥∥
p,w

≤ C2

∥∥∥∥∥∑
h∈F

λhh

∥∥∥∥∥
p,w

hold for every finite subset F of H1 and every sequence (λh : h ∈ H1) of real
numbers.

A few remarks are in order. First notice that, since the standard Ap Muck-
enhoupt condition over the family of d-balls in X is stronger than any ADp , then
AD1
p ∩ AD2

p ⊇ Ap. Hence AD1
p ∩ AD2

p is non-trivial and inequalities (3.4) hold for
standard Ap weights.

Second, since several different Haar systems satisfying (h.1) to (h.5) can be built
on the same underlying dyadic structure D, inequalities (3.4) hold for such Haar
systems with w ∈ ADp , which is usually larger than Ap.

Third, it could also happen that two different dyadic systems share the same
dyadic weights. In other words, it is possible, and actualy not hard, to produce two
dyadic systems D1 and D2 in R with D1 6= D2 but AD1

p = AD2
p 6= Ap. In fact, even

in the general setting, we only need the following property: there exists a positive
constant C such that

(a) for every Q ∈ D1 there exists R ∈ D2 such that Q ⊆ R and µ(Q) ≤ Cµ(R);
(b) for every R ∈ D2 there exists Q ∈ D1 such that R ⊆ Q and µ(R) ≤ Cµ(Q).

The proof of Theorem 3.3 is relies on the two following basic tools. The first one
is a characterization of dyadic weighted Lebesgue spaces via Haar coefficients. The
second is a dyadic version of Fefferman-Stein inequality.
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Theorem 3.5. Let H be any Haar system associated to D ∈ D(δ). Let w be a
dyadic Muckenhoupt weight of class ADp , 1 < p < ∞. Then the system H is an
unconditional basis of each Lpw(X,µ) , 1 < p <∞. Moreover there exist two positive
constants C1 and C2 depending of the ADp constant of w, such that the inequalities

C1‖f‖p,w ≤

∥∥∥∥∥∥
(∑
h∈H

| < f, h > |2|h|2
)1/2

∥∥∥∥∥∥
p,w

≤ C2‖f‖p,w,

hold for all f ∈ Lpw(X,µ) with bounded support and vanishing integral.

Theorem 3.6. Let D be a dyadic system in D(δ). Let w ∈ ADp with 1 < p <∞.
Then there exists a constant C depending of the ADp constant of w and the geometric
constants such that∥∥∥∥∥∥

(∑
n∈N
|MDfn(.)|2

)1/2
∥∥∥∥∥∥
p,w

≤ C

∥∥∥∥∥∥
(∑
n∈N
|fn(.)|2

)1/2
∥∥∥∥∥∥
p,w

for every sequence of measurable functions fn.

Theorem 3.5 can be proved as Theorem 9.1 in [3]. See [16] for previous related
results. In section 4 we shall prove a more general version of Theorem 3.6.

Now, we prove the main result of this section.

Proof of Theorem 3.3. The chain of inequalities leading as to (3.2) and (3.3)
are essentially the same as that in the proof of Theorem 3.5 in [4]. The main
difference relies in the use of Lemma 3.2 and the fact that the maximal operator
involved are MD1 for (3.2) and MD2 for (3.3). Let us briefly sketch the proof of
(3.2).

First notice that, from Definition 2.5, there exists two positive constants c and
C such that

(3.5) cµ(R(ψ)) ≤ µ(Q(h)) ≤ Cµ(R(ψ)),

for every h ∈ H1 and every ψ ∈ H2 with (Q(h), R(ψ)) ∈ R.
Let F be a finite subset of H1, Ψ ∈ S1,2 and let (λh : h ∈ H1) be a sequence of

scalars. From (3.5) and Lemma 3.2 we have that the inequalities

∑
h∈F

λ2
h|h(x)|2 ≤

∑
h∈F

λ2
h

c22
µ(Q(h))

χ
Q(h)(x)(3.6)

≤ c22
c

∑
h∈F

λ2
h

1
µ(R(Ψ(h)))

χ
Q(h)(x)

and ∑
h∈F

λ2
h

c21
µ(R(Ψ(h)))

χ
R(Ψ(h))(x) ≤

∑
h∈F

λ2
h|Ψ(h)(x)|2,(3.7)

hold for almost every x ∈ X. Applying Theorem 3.5 for the system H1, inequalities
(3.6), Theorem 2.7, Theorem 3.6, inequality (3.7) and Theorem 3.5 for the system
H2, we get
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∥∥∥∥∥∑
h∈F

λh h

∥∥∥∥∥
p,w1

≤ C

∥∥∥∥∥∥
(∑
h∈F

λ2
h |h|2

)1/2
∥∥∥∥∥∥
p,w1

≤ C

∥∥∥∥∥∥∥
∑
h∈F

[
MD1

(
λh

1√
µ(R(Ψ(h)))

χ
R(Ψ(h))

)]2
1/2

∥∥∥∥∥∥∥
p,w1

≤ C

∥∥∥∥∥∑
h∈F

λh Ψ(h)

∥∥∥∥∥
p,w1

,

where the constant c vary from one line to another but independently on the func-
tion h in F . �

If �1 and �2 are two partial orders in C as in Proposition 2.6 and H1 = {h}
and H2 = {ψ} are two Haar systems associated with D1 and D2 respectively we
obtain the conclusion of Theorem 3.3. Moreover, there exists a one to one and onto
function Ψ of H1 on H2 in S1,2 (see [4]) and therefore we obtain the conclusion of
Corollary 3.4 for the systems H1 and H2.

4. Fefferman-Stein dyadic weighted inequality for the dyadic
Hardy-Littlewood maximal operator

Fefferman-Stein inequality for vector-valued maximal functions has became an
important tool in several problems in harmonic analysis. As in the original paper
by Fefferman and Stein ([10]), both, weak and strong type inequalities are proved
by Andersen and John for weighted Lebesgue spaces in Rn ([5]). These results were
proved in [11] in the setting of space of homogeneous type. A non weighted dyadic
version in the Euclidean context is given in [17]. In this section we shall prove a
weighted dyadic version on spaces of homogeneous type following the line of the
proof in [5].

For a given sequence f = (fn : n ∈ N) of functions defined on X we shall use the
notation ||f(x)||`r = (

∑
n |fn(x)|r)1/r, for 1 < r <∞. If T is an operator on scalar

functions we can extend T to a vector valued operator by defining T f = (Tfn : n ∈
N).

Theorem 4.1. Let (X, d, µ) be a space of homogeneous type. Let D be a dyadic
system in D(δ) and 1 < r <∞. Then

(a) if 1 ≤ p <∞, there exists a constant C such that

w({x ∈ X : ||MDf(x)||`r > λ}) ≤ C
1
λp

∫
X

||f(x)||p`r w(x)dµ(x)

for every sequence of measurable functions f and every λ > 0, if and only
if w ∈ ADp ;

(b) if 1 < p <∞, there exists a constant C such that∫
X

||MDf(x)||p`r w(x)dµ(x) ≤ C

∫
X

||f(x)||p`r w(x)dµ(x)
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for every sequence of measurable functions f , if and only if w ∈ ADp .

The following theorem collects the properties of the dyadic Muckenhoupt weights
on spaces of homogeneous type that we shall use in the sequel. Given a Borel
positive measure ν on X we shall say that ν is D-doubling if there is a positive
constant C such that ν(Q̃) ≤ Cν(Q) for all Q ∈ D, where Q̃ is the first-ancestor of
Q.

Theorem 4.2. Let 1 < p < ∞ and p′ such that 1/p + 1/p′ = 1. The following
statements hold:

(a) w ∈ ADp then w(x) > 0 a.e.,
(b) if w ∈ ADp then wdµ is D−doubling,
(c) w ∈ ADp then w ∈ ADq for every q > p,
(d) w ∈ ADp if and only if w1−p′ ∈ ADp′ ,
(e) w ∈ ADp then w ∈ ADq for some q < p.
(f) w ∈ ADp is both necessary and sufficient for the weak and strong type (p, p)

inequality for the operator MD with respect to the measure wdµ,
(g) w ∈ AD1 is both necessary and sufficient for the weak type (1, 1) inequality

for the operator MD with respect to the measure wdµ.

The proof of Theorem 4.2 can be obtained as in the case of classical Mucken-
houpt weights following the lines in [2] and [3] for the dyadic Muckenhoupt weights
associated to Christ’s dyadic cubes.

To prove Theorem 4.1 we shall use two classical tools. The first one is a Calderón-
Zygmund decomposition of integrable functions associated to the system D. We
can obtain it in our general context of the dyadic system D in D(δ) following the
lines in [3]. The second tool is interpolation.

The precise dyadic Calderón-Zygmund decomposition of integrable functions is
contained in the following result.

Theorem 4.3. Let (X, d, µ) be a space of homogeneous and D be a dyadic system
in D(δ). Let f be a nonnegative integrable function defined on X. Let λ > 0 be
such that λ ≥ mX(f) = 1

µ(X)

∫
X
fdµ (mX(f) = 0 if µ(X) =∞). Then there exists

a sequence F = {Qi}i∈I of dyadic cubes in D such that
(a) Qi

⋂
Qj = ∅ for i 6= j;

(b) mQi
(f) = 1

µ(Qi)

∫
Qi
fdµ > λ for every i ∈ I;

(c) mQ̃(f) ≤ λ for every dyadic cube Q̃ ∈ D such that Q ⊂ Q̃, Q̃ 6= Q, for
some Q ∈ F ;

(d) mQ′ (f) ≤ λ for every dyadic cube Q
′ ∈ D such that Q

′ ⋂(⋃
Q∈FQ

)
= ∅;

(e) Ωλ :=
⋃
i∈I Qi = {x ∈ X : MDf(x) > λ};

(f) |f(x)| ≤ Cλ for almost every x 6∈ Ωλ.

Now we state the two interpolation results that we shall use. We would like to
point out that the geometric nature of the domain of the functions is irrelevant. For
details concerning the results stated in this paragraph, see [6], [7] and [8], where
the authors introduce the basic setting of vector valued operators and Lebesgue
spaces with mixed norms. The mixed space L

p

(`r) is the space of all sequences
f = (fn : n ∈ N) for which

∫
X
||f(x)||p`rdµ(x) < ∞, and we say that f belongs
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to L
p

w(`r) when
∫
X
||f(x)||p`rw(x)dµ(x) < ∞ for some non-negative measurable w

defined on X.
We shall say that a scalar valued function is simple if it belongs to the linear

span of the indicator functions of bounded measurable sets. Let S be the class of all
sequences f such that each fn is a simple function and fn ≡ 0 for n large enough.
It is easy to show that S is dense in each L

p

w(`r) (1 ≤ p, r <∞) when w is a locally
integrable non-negative function (see [7]).

Lemma 4.4. Let w(x) ≥ 0 be locally integrable on X, 1 < r <∞, 1 ≤ pi <∞ and
suppose that T is a sublinear operator defined on S satisfying

w ({x ∈ X : ||T f(x)‖`r > α}) ≤ Npi

i

αpi

∫
X

||f(x)||pi

`rw(x)dµ(x)

for some Ni, for i = 0, 1 and f ∈ S. Then T extends uniquely to a sublinear
operator on Lpw(lr) and there is a constant Nθ such that(∫

X

||T f(x)‖p`rw(x)dµ(x)
)1/p

≤ Nθ

(∫
X

||f(x)||p`rw(x)dµ(x)
)1/p

where 1
p = (1− θ) 1

p0
+ θ 1

p1
, 0 ≤ θ ≤ 1.

Lemma 4.5. Let w(x) ≥ 0 be locally integrable on X, 1 < p <∞, 1 ≤ ri <∞ and
suppose that T is a sublinear operator defined on S satisfying(∫

X

||T f(x)‖p`riw(x)dµ(x)
)1/p

≤ Ni

(∫
X

||f(x)‖p`riw(x)dµ(x)
)1/p

for some Ni, for i = 0, 1 and f ∈ S. Then T extends uniquely to a sublinear
operator on Lpw(`r) such that(∫

X

||T f(x)‖p`rw(x)dµ(x)
)1/p

≤ N1−θ
0 Nθ

1

(∫
X

||f(x)‖p`rw(x)dµ(x)
)1/p

where 1
r = (1− θ) 1

r0
+ θ 1

r1
, 0 ≤ θ ≤ 1.

Before proving Theorem 4.1 we shall first prove the following result that is an
extension to spaces of homogeneous type of another central result due to Fefferman
and Stein.

Proposition 4.6. Let w be a nonnegative locally integrable function such that wdµ
is D-doubling. Then

(a) there exists C > 0 such that the inequality

w({x ∈ X : MDf(x) > λ}) ≤ C

λ

∫
X

|f(x)|MDw(x)dµ(x)

holds for every measurable function f and every λ > 0;
(b) given 1 < p <∞, there exists a positive constant Cp such that the inequality∫

X

(MDf(x))pw(x)dµ(x) ≤ Cp
∫
X

|f(x)|pMDw(x)dµ(x)

holds for every measurable function f .



14 H. AIMAR, A. BERNARDIS, AND L. NOWAK

Proof. Notice that, except for the trivial case when w ≡ 0, since MDw is
positive at each point of X, we have that ‖MDf‖∞,w ≤ ‖f‖∞,MDw. Hence, from
the Marcinkiewicz interpolation theorem we only have to prove (a).

Let λ > 0 be given. Assume first that λ ≥ mX(f). Then we can apply Theorem
4.3 to f at the level λ and we obtain a sequence F = {Qi}i∈I of disjoint dyadic
cubes in D such that mQi(f) > λ for every i ∈ I and Ωλ =

⋃
i∈I Qi = {x ∈ X :

MDf(x) > λ}. Then, there exists a positive constant C such that for each Qi ∈ F

(4.1)
∫
Q̃i

w(x)dµ(x) ≤ C

λ

∫
Qi

|f(y)|MDw(y)dµ(y),

where Q̃i is the first-ancestor of Qi. In fact, since w is D-doubling, for each Qi ∈ F
we obtain∫

Q̃i

wdµ ≤ C

λ

∫
Qi

|f |
(

1
µ(Q̃i)

∫
Q̃i

wdµ

)
dµ ≤ C

λ

∫
Qi

|f |MDwdµ.

Hence

w(Ωλ) ≤
∑
i∈I

w(Q̃i) ≤
∑
i∈I

C

λ

∫
Qi

|f |MDwdµ ≤
C

λ

∫
X

|f |MDwdµ.

Assume now that 0 < λ < mX(f). Hence µ(X) < ∞ and therefore X itself
is a dyadic cube in D. So, as in the proof of (4.1) we obtain that

∫
X
wdµ ≤

1
λ

∫
X
|f |MDwdµ. Therefore

w({x ∈ X : MDf(x) > λ}) ≤
∫
X

w(x)dµ ≤ 1
λ

∫
X

|f |MDwdµ.

�
Proof of Theorem 4.1 Concerning the necessity of ADp , there is nothing to show
since w ∈ ADp is already necessary in the scalar-valued case achieved when fn(x) =
0, n = 2, 3, ....

To proof the converse let us notice that (b) and hence (a) for the case p = r
follows from Beppo-Levi Theorem and the boundedness in Lpw(X, dµ) for MDf .
Then we shall proof (a) and (b) for the case p < r. Finally a duality argument is
used to show (b) and hence (a) for r < p.

We start proving (a) for 1 ≤ p < r. Let w ∈ ADp and suppose first that f ∈ S.
The general case is obtained by density following standard arguments.

Take λ > 0 and set ψ(x) = ||f(x)||`r . Since fn ≡ 0 for n large and each
fn is a simple function with bounded support, it is clear that ψ belongs to each
L

p

w(X, dµ). Being λ > 0 if the whole space X is unbounded, or equivalently of
infinite µ-measure, we have that, λ > mX(ψ).

Since µ(X) =∞ is not the general situation for spaces of homogeneous type, in
this point of the proof we have to take special care of the case when X is bounded.
Assume then that 0 < λ < mX(ψ). Suppose first that p > 1. Since w ∈ ADp and X
itself is a dyadic cube we have, from Hölder inequality, that∫

X

ψdµ ≤
(∫

X

ψpwdµ

)1/p(∫
X

w−
p′
p dµ

) p−1
p

≤ C
(∫

X

ψpwdµ

)1/p
µ(X)

w(X)1/p
.

Hence

w(X) ≤ Cp

λp

∫
X

ψpwdµ.
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If p = 1,

w(X) <
1
λ

∫
X

ψ(y)
w(X)
µ(X)

dµ(y) ≤ 1
λ

∫
X

ψ(y)w(y)dµ(y),

where in the last inequality we have used that w ∈ AD1 and that X is a dyadic
cube. Therefore the inequality in (a) is proved if 0 < λ < mX(ψ), since {x ∈ X :
||MDf(x)||`r > λ} ⊆ X.

Hence we only have to deal with the case λ ≥ mX(ψ). Let F = {Qi : i ∈ I}
be the family given by Theorem 4.3 applied to the function ψ and to λ. Let
Ω = Ωλ =

⋃
i∈IQi. We write each fn as fn = fn,1 + fn,2, where fn,1 = fnχX\Ω and

fn,2 = fnχΩ . Thus, f = f1 + f2, where f1 = (fn,1 : n ∈ N). From the sublinearity of
the Hardy-Littlewood dyadic maximal function and Minkowski inequality we get
that

||MDf(x)||`r ≤ ||MDf1(x)||`r + ||MDf2(x)||`r = I1(x) + I2(x).
Let us start proving the weak type inequality for I1(x). Since, from Theorem 4.3
ψ(x) = ||f(x)||`r ≤ Cλ for almost every x 6∈ Ω, we obtain for such x

||f1(x)||r`r = ||f1(x)||r−p`r ||f1(x)||p`r ≤ Cλ
r−p||f1(x)||p`r .

Therefore, from Theorem 4.2 (f), we have

w({x ∈ X : ||MDf1(x)||`r > λ/2}) ≤ 2r

λr

∫
X

||MDf1(x)||r`rw(x)dµ(x)

≤ C2r

λr

∫
X

||f1(x)||r`rw(x)dµ(x)

≤ C2r

λp

∫
X

||f(x)||p`rw(x)dµ(x).

In order to obtain the result for I2(x), we define for each n ∈ N the function

f̃n(x) =
{ 1

µ(Qi)

∫
Qi
|fn(y)|dµ(y) if x ∈ Qi,
0 if x 6∈ Ω

and we shall prove that

(4.2) MDfn,2(x) ≤ CMDf̃n(x),

for every n ∈ N and every x 6∈ Ω. In fact, let x 6∈ Ω and let Q ∈ D be a dyadic cube
containing x. Set J = {j : Qj ∈ F and Qj

⋂
Q 6= ∅}. Notice that, if j ∈ J , since

Qj and Q are dyadic cubes, then Qj ⊆ Q and from the definition of fn,2 we get

1
µ(Q)

∫
Q

|fn,2|dµ =
1

µ(Q)

∑
j∈J

∫
Qj∩Q

|fn,2|dµ =
1

µ(Q)

∑
j∈J

∫
Qj

|fn,2|dµ.

Thus,
1

µ(Q)

∫
Q

|fn,2(y)|dµ(y) =
1

µ(Q)

∑
j∈J

∫
Qj

|fn(y)|dµ(y)

=
1

µ(Q)

∑
j∈J

∫
Qj

[
1

µ(Qj)

∫
Qj

|fn(y)|dµ(y)

]
dµ(z)

=
1

µ(Q)

∑
j∈J

∫
Qj

|f̃n(z)|dµ(z)
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≤ C
1

µ(Q)

∫
Q

|f̃n(y)|dµ(y) ≤ CMDf̃n(x),

which proves (4.2).
Now, we write

w({x ∈ X : I2(x) > λ/2}) ≤ w(Ω) + w({x ∈ X \ Ω : I2(x) > λ/2}) = I + II.

To estimate I we start estimating w(Qj). Let us first assume that p > 1. From
Hölder’s inequality and since w ∈ ADp we have that

λ <
1

µ(Qj)

∫
Qj

||f(x)||`r dµ(x)

≤ 1
µ(Qj)

(∫
Qj

||f(x)||p`rw(x) dµ(x)

)1/p(∫
Qj

w(x)−p
′/p dµ(x)

)1/p′

≤ C

(∫
Qj

||f(x)||p`rw(x) dµ(x)

)1/p(∫
Qj

w(x) dµ(x)

)−1/p

.

Then

w(Qj) ≤ C
1
λp

∫
Qj

||f(x)||p`rw(x) dµ(x).

In the case p = 1 using the AD1 condition we get that

w(Qj) <
1
λ

∫
Qj

||f(x)||`r
w(Qj)
µ(Qj)

dµ(x) ≤ C

λ

∫
Qj

||f(x)||`rw(x) dµ(x).

Therefore

I =
∑
j∈I

w(Qj) ≤
∑
j∈I

C

λp

∫
Qj

||f(x)||p`rw(x) dµ(x) ≤ C

λp

∫
X

||f(x)||p`rw(x) dµ(x).

The inequality (a) for p ≤ r will be a consequence of the inequality II ≤ cw(Ω). In
the sequel we shall write f̃ for denote the sequence f̃ = (f̃n : n ∈ N). Notice that
from Theorem 4.2 (f) we have

II ≤ w({x ∈ X : ||MD f̃(x)||`r > λ/2C}).

≤ 2C
λr

∫
X

||MD f̃(x)||r`rw(x)dµ(x).

≤ C

λr

∫
X

||̃f(x)||r`rw(x)dµ(x)

=
C

λr

∫
Ω

||̃f(x)||r`rw(x)dµ(x).

If we denote with Q̃j the first-ancestor of the cube Qj ∈ F then, from Minkowski’s
inequality, for each x ∈ Ω we obtain that

||̃f(x)||`r =

(∑
n∈N

[
1

µ(Qj)

∫
Qj

|fn(y)|dµ(y)

]r)1/r

≤ 1
µ(Qj)

∫
Qj

||f(y)||`rdµ(y)
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≤ C

µ(Q̃j)

∫
Q̃j

||f(y)||`rdµ(y) ≤ Cλ.

Hence

II ≤ C

λr

∫
Ω

λrw(x)dµ(x) = Cw(Ω),

as desired.
Once some weak type inequalities are established, the arguments for the remain-

ing inequalities no longer depend on the geometric nature of the domain of the
function spaces. Hence the classical techniques ([5]) applies mutatis mutandi. We
sketch them only for the sake of completeness.

Let us start proving (b) for 1 < p < r. If w ∈ ADp then, from Theorem 4.2 (c)
and (e), there exist p1 and p2 with 1 ≤ p1 < p < p2 < r such that w ∈ ADp1

and
w ∈ ADp2

. Therefore (a) holds for p1 and p2. Then from Lemma 4.4 we obtain (b)
for every p such that p1 < p < p2, and therefore (b) holds for 1 < p < r.

The proof of (b) in the case p > r is obtained from a duality argument if r is
small enough and by Lemma 4.5 otherwise. First notice that since w ∈ ADp with
p > r, by Theorem 4.2 (e), w ∈ ADp

r0
for some 1 < r0 < p. If r0 < r < p, since (b)

holds for r = p, we only have to obtain (b) for r0 and apply Lemma 4.5. So that
we only need to prove (b) for 1 < r ≤ r0.

Since w ∈ ADp
r0

, from Theorem 4.2 (c), w ∈ ADq for every q ≥ p
r0

and from The-

orem 4.2 (d) and (a), we obtain that w1−q′ ∈ ADq′ and w(x) > 0 almost everywhere.
Let ϕ ≥ 0 be such that ϕ ∈ Lq′w (X,µ) with ||ϕ||q′,w ≤ 1. From the dyadic weighted
inequality for MD we obtain∫

X

|MD(ϕw)|q
′
w(x)1−q′dµ(x) ≤ C

∫
X

|ϕw|q
′
w(x)1−q′dµ(x) ≤ C.

Now, from Proposition 4.6 and Hölder’s inequality with q and q′∫
X

||MDf(x)||r`rϕ(x)w(x)dµ(x) ≤ C

∫
X

||f(x)||r`rMD(ϕw)(x)dµ(x)

≤ CD

(∫
X

||f(x)||rq`rw(x)dµ(x)
)1/q

,

with

D =

(∫
X

(
MD(ϕw)(x)

w(x)

)q′
w(x)dµ(x)

)1/q′

=
(∫

X

(MD(ϕw)(x))q
′
w(x)1−q′dµ(x)

)1/q′

≤ C,

for every q ≥ p
r0

and every ϕ ≥ 0 such that ||ϕ||q′,w ≤ 1. Then, taking supremum
over such ϕ we obtain(∫

X

||MDf(x)||rq`rw(x)dµ(x)
)1/q

≤ C
(∫

X

||f(x)||rq`rw(x)dµ(x)
)1/q

,

for every q ≥ p
r0

. On the other hand since 1 < r ≤ r0, then the above inequality
holds with q = p/r ≥ p/r0, which is the desired inequality in (b). �
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