
FASTMAT: A C++ LIBRARY FOR MULTI-INDEX ARRAY
COMPUTATIONS

Rodrigo R. Paza, Mario A. Stortia, Lisandro D. Dalcína, Hugo G. Castroa,b and Pablo A.
Klerc

aCentro Internacional de Métodos Computacionales en Ingeniería (CIMEC), INTEC(CONICET-UNL),
Santa Fe, Argentina {mario.storti,dalcinl,rodrigo.r.paz}@gmail.com, sergio@cimne.upc.edu,

http://www.cimec.org.ar/mstorti
bGrupo de Investigación en Mecánica de Fluidos, Universidad Tecnológica Nacional, Facultad

Regional Resistencia, Chaco, Argentina.
cCentral Division of Analytical Chemistry (ZCH). Forschungszentrum Jülich GmbH, Germany.

Keywords: Multi-index Array Library; Finite Element Method; Finite Volume Method; Par-
allel Computing.

Abstract. In this paper we introduce and describe an efficient thread-safe matrix library for computing
element/cell residuals and Jacobians in Finite Elements and Finite Volumes-like codes. The library
provides a wide range of multi-index tensor operations that are normally used in scientific numerical
computations. The library implements an algorithm for choosing the optimal computation order when
a product of several tensors is performed (i.e., the so-called ‘multi-product’ operation). Another key-
point of the FastMat approach is that some computations (for instance the optimal order in the multi-
product operation mentioned before) are computed in the first iteration of the loop body and stored in
a cache object, so that in the second and subsequent executions these computations are retrieved from
the cache, and then not recomputed. The library is open source and freely available within the multi-
physics parallel FEM code PETSc-FEM http://www.cimec.org.ar/petscfem and it can be
exploited on distributed and shared memory architectures as well as in hybrid approaches. We studied
the performance of the library in the context of typical FEM tensor contractions.

http://www.cimec.org.ar/mstorti
http://www.cimec.org.ar/petscfem


1 INTRODUCTION

A variety of engineering applications and scientific problems related to Computational Me-
chanics (CM) area, and particularly in the Computational Fluid Dynamics (CFD) field, demand
high computational resources (4; 8; 9; 17). A great effort has been made over the years to get
high quality solutions (15) to large-scale problems in realistic time (12; 5) using different com-
puting architectures (e.g., vector processors, distributed and shared memories, graphic process
units or GPGPU’s).

Most of the known physical phenomena are described mathematically in terms of tensor op-
erations. Mathematical equations can involve simple expressions such as vector (tensors of rank
one) summations to complex partial differential equations (PDE’s). Furthermore, when model-
ing PDE problems using FEM and FVM it is expected to perform several tensor contractions
repeatedly to compute element (or cell) contributions to global matrices (see section§3). As
these computations are made at the elements loop it is mandatory to compute the contribution
terms with high efficiency. This is a typical situation where FEM (or FVM) applications require
the efficiency of a compiled code for processing huge amounts of data in deeply-nested loops.
Fortran (especially Fortran 90 and above) and C++ are languages for efficiently implementing
lengthy computations involving multi-dimensional tensor operations.

To the best of our knowledge, there are four projects related to tensor computing. The Mul-
tidimensional Tensor Library (TL) (11) is a tensor API designed to be used in the context of
perturbation methods for solving Dynamic Stochastic General Equilibrium (DSGE) models.
The aim of this library is not to provide a general interface to multidimensional linear algebra
but providing the definition and creation of dense and sparse multidimensional tensor for spe-
cialized formulas in DSGE area. This tensor library is a part of Dynare code (11). Another
project is the FTensor (13) package, which is a high performance tensor library written in C++.
It provides a set of classes allowing abstraction in tensor algebra and delivering uncompromis-
ing efficiency. It uses template expressions to provide expressiveness and speed. The third
project is a C++ class library for general scientific computing called Blitz++ (23). Blitz++ pro-
vides performance by exploiting class templates, optimizations such as loop fusion, unrolling,
tiling, and algorithm specialization that can be performed automatically at compile time. The
current versions provide dense arrays and vectors, random number generators, and small vec-
tors and matrices. The fourth project is Eigen, a C++ template library for linear algebra (6)
wich provides containers for matrices and vectors, a set of numerical solvers, and a variety of
tensor operations. Fixed-size matrices are fully optimized in Eigen avoiding dynamic memory
allocation and in the case of large matrices cache-friendliness capability is exploited.

There are many differences among these libraries and the approach proposed here, i.e. the
FastMat library. In this sense the former are suited for sparse or dense tensors independently
of the dimension of each tensor index (or index range), while the latter is specialized for gener-
ally dense FEM-like tensors/arrays defined at the element/cell level. Furthermore, the FastMat
approach has been designed with the aim to perform matrix computations efficiently at the ele-
ment level. One of the main feature is its thread-safety compliance so that it can be used in an
Symmetric Multi-Processing (SMP) environment within OpenMP parallel blocks. Regarding
the efficiency there is an operation caching mechanism which will be described in next sections.
For FEM/FVM computations it is assumed that the code has an outer loop (usually the loop over
elements) that is executed many times (as big as the number of elements/cell in the mesh/grid),
and at each loop execution a set of operations or tensor products (depending on the PDE and
discretization at hand) are performed with a reduced number of local (or element) vectors and

2



matrices. So that, the goal of the FastMat approach is that in loop-repetitive computations the
subsequent operations of involved tensors are cached making it an efficient tool.

Contrary to the multi-dimensional arrays approach of Fortran 90 compilers, writing dimension-
independent (2D, 3D) and element-independent (triangles, quadrilaterals, tetrahedra, hexahe-
dra, prisms) routines directly in C++ is generally a hard task. In this regard, as shown in
sections §2.5 and §3, the FastMat approach for contraction of several tensors with different di-
mensions can be made in a single line of code, providing simplicity, clarity and elegance to the
element-level routines.

The remainder of this article is organized as follows. Section §2 introduces and describes
the FastMat general tensor algebra library for computing element residuals and Jacobians in the
context of multi-threaded finite element codes. Also, the performance of FastMat is compared
against other libraries such as those listed above. Section §3 presents a test based on comput-
ing typical element or edge-wise stabilization terms for general advection-diffusion systems of
equations by means of FE/FV methods. The performance of the library is studied and the order
in which multi-tensor products (or contractions) must be computed to reduce operation counts
is discussed using a heuristic and exhaustive (optimal) algorithms (2). Concluding remarks are
given in section §4.

2 THE FASTMAT MATRIX CLASS

2.1 Preliminaries

Finite element codes usually have two levels of programming. In the outer level a large
vector describes the “state” of the physical system. Usually the size of this vector is the
number of nodes times the number of fields minus the number of constraints (e.g. Dirichlet
boundary conditions). So that the state vector size is Nnod · ndof − nconstr. This vector can be
computed at once by assembling the right hand side (RHS) and the stiffness matrix in a linear
problem, iterated in a non-linear problem or updated at each time step through solution of a
linear or non-linear system. The point is that at this outer level all global assemble operations,
that build the residual vector and matrices, are performed. At the inner level, one performs a
loop over all the elements in the mesh, compute the RHS vector and matrix contributions of
each element and assemble them in the global vector/matrix. From one application to another,
the strategy at the outer level (linear/non-linear, steady/temporal dependent, etc) and the physics
of the problem that defines the FEM matrices and vectors may vary.

The FastMat matrix class has been designed in order to perform matrix computations ef-
ficiently at the element level. One of the key points in the design of the matrix library is the
characteristic of being thread-safe so that it can be used in an SMP environment within OpenMP
parallel blocks. In view of efficiency there is an operation caching mechanism which will be
described later. Caching is also thread-safe provided that independent cache contexts are used
in each thread.

It is assumed that the code has an outer loop (usually the loop over elements) that is executed
many times, and at each execution of the loop a series of operations are performed with a rather
reduced set of local (or element) vectors and matrices.

In many cases, FEM-like algorithms need to operate on sub-matrices i.e., columns, rows
or sets of them. In general, performance is degraded for such operations because there is a
certain amount of work needed to extract or set the sub-matrix. Otherwise, a copy of the row or
column in an intermediate object can be made, but some overhead is expected due to the copy
operations.

3



The particularity of FastMat is that at the first execution of the loop many quantities used
in the operation are stored in an internal cache object, so that in the second and subsequent
executions of the loop these quantities are retrieved from the cache. This C++ library is in
public domain and can be accessed from (18).

2.1.1 An introductory example.

Consider the following simple example: A given 2D finite element mesh composed by tri-
angles, i.e. an array xnod of 2×Nnod doubles with the node coordinates and an array icone
with 3× nelem elements with node connectivities. For each element 0 ≤ j < nelem its nodes are
stored at icone[3*j+k] for 0 ≤ k < 2. For instance, it is required to compute the maximum
and minimum value of the area of the triangles. This is a computation which is quite similar to
those found in FEM analysis. For each element in the mesh two basic operations are needed:
i) loading the node coordinates in local vectors x1, x2 and x3, ii) computing the vectors along
the sides of the elements a = x2 − x1 and b = x3 − x1. The area of the element is, then, the
determinant of the 2× 2 matrix J formed by putting a and b as rows.

The FastMat code for the proposed computations is shown in Listing (1)
1 FastMat::CacheCtx ctx;
2 FastMat::CacheCtx::Branch b1;
3 FastMat x(&ctx,2,3,2),a(&ctx,1,2),b(&ctx,1,2),J(&ctx,2,2,2);
4 double starttime = MPI_Wtime(); // timing
5 for (int ie=0; ie<nelem; ie++) { // loop over elements
6 ctx.jump(b1);
7 for (int k=1; k<=3; k++) {
8 int node = icone[3*ie+(k-1)];
9 x.ir(1,k).set(&xnod[2*(node-1)]).rs();

10 }
11 x.rs();
12 a.set(x.ir(1,2));
13 a.minus(x.ir(1,1));
14
15 b.set(x.ir(1,3));
16 b.minus(x.ir(1,1));
17
18 J.ir(1,1).set(a);
19 J.ir(1,2).set(b);
20
21 double area = J.rs().det()/2.;
22 total_area += area;
23 if (ie==0) {
24 minarea = area;
25 maxarea = area;
26 }
27 if (area>maxarea) maxarea=area;
28 if (area<minarea) minarea=area;
29 }
30 printf("total_area %g, min area %g,max area %g, ratio: %g\n",total_area,

minarea,maxarea,maxarea/minarea);
31 double elapsed = MPI_Wtime()-starttime; // elapsed time

Listing 1: Simple FEM-like code

Calls to the FastMat::CacheCtx ctx object are related to the caching manipulation
and will be discussed later. Matrices are dimensioned in line 3, the first argument is the matrix

4



(rank ), and then, follow the dimensions for each index rank or shape. For instance FastMat
x(2,3,2) defines a matrix of rank 2 and shape (3,2), i.e., with 2 indices ranging from 1 to 3, and
1 to 2 respectively. The rows of this matrix will store the coordinates of the local nodes to the
element. FastMat matrices may have any number of indices or rank. Also they can have zero
rank, which stands for scalars.

2.1.2 Current matrix views (the so-called ‘masks’).

In lines 7 to 10 of code Listing (1) the coordinates of the nodes are loaded in matrix x.
The underlying philosophy in FastMat is that “views” (or “masks” ) of the matrix can be made
without making any copies of the underlying values. For instance the operation x.ir(1,k)
(for “index restriction” ) sets a view of x so that index 1 is restricted to take the value k reducing
in one the rank of the matrix. As x has two indices, the operation x.ir(1,k) gives a matrix
of rank one consisting of the k-th row of x. A call without arguments like in x.ir() cancels
the restriction. Also, the function rs() (for “reset” ) cancels the actual view. Please, refer to
the appendix section §5.1 for a synopsis of methods/operations available in the FastMat class.

2.1.3 Set operations.

The operation a.set(x.ir(1,2)) copies the contents of the argument x.ir(1,2) in
a. Also, x.set(xp) can be used, being xp an array of doubles (double *xp).

2.1.4 Dimension matching.

The x.set(y) operation, where y is another FastMat object, requires that x and y have
the same “masked” dimensions. As the .ir(1,2) operation restricts index to the value of 2,
x.ir(1,2) is seen as a row vector of size 2 and then can be copied to a. If the “masked”
dimensions do not fit then an error is issued.

2.1.5 Automatic dimensioning.

In the example, a has been dimensioned at line 3, but most operations perform the dimen-
sioning if the matrix has not been already dimensioned. For instance, if at line 3 a FastMat a
is declared without specifying dimensions, then at line 12, the matrix is dimensioned taking
the dimensions from the argument. But this does not apply to set(double *) since in this
last case the argument (double *) does not give information about his dimensions. Other
operations that define dimensions are products and contraction operations.

2.1.6 Concatenation of operations.

Many operations return a reference to the matrix (return value FastMat &) so that opera-
tions may be concatenated as in A.ir(1,k).ir(2,j).

2.2 Underlying implementation with BLAS/LAPACK

Some functions are implemented at the low level using BLAS(7)/LAPACK(14). Notably
prod() uses BLAS3’s General Matrix Multiply dgemm for large n (n > nmax, with nmax

configurable, usually nmax = 10) and an FMGEMM function for n < nmax. FMGEMM is a
special completely unrolled version of dgemm, to be explained in detail later (see section §2.4).

5



So that the amortized cost of the prod() call is the same as for the underlying version of
dgemm() plus an overhead which is not significative, except for n < nmax.

As a matter of fact, a profiling study of FastMat efficiency in a typical FEM code has de-
termined that the largest CPU consumption in the residual/Jacobian computation stage corre-
sponds to prod() calls. Another notable case is eig() that uses LAPACK dgeev. The
eig() method is not commonly used, but if it does, its cost may be significant so that a fast
implementation as proposed here with dgeev is mandatory.

2.3 The FastMat operation cache concept

The idea with caches is that they are objects (class FastMatCache) that store informa-
tion that can be computed in advance for the current operation. In the first pass through the body
of the loop (i.e., ie=0 in the example of Listing (1)) a cache object is created for each of the
operations, and stored in a list. This list is basically a vector (vector< >) of cache objects.
When the body of the loop is executed the second time (i.e., ie>1 in the example) and the
following, these values are not needed to be recomputed but they are read from the cache object
instead. The use of the cache object is rather automatic and requires little intervention by the
user but in some cases the position in the cache-list can get out of synchronization with respect
to the execution of the operations and severe runtime errors may occur. This cache structure is
similar to the visualization pipeline used in graphics libraries like VTK (see (16)).

The basic use of caching is to create the cache structure FastMat::CacheCtx ctx and
keep the position in the cache structure synchronized with the position of the code. The process
is very simple, when the code consists in a linear sequence of FastMat operations that are
executed always in the same order. In this case the CacheCtx object stores a list of the cache
objects (one for each FastMat operation). As the operations are executed the internal FastMat
code is in charge of advancing the cache position in the cache list automatically. A linear
sequence of cache operations that are executed always in the same order is called a branch.

Looking at the previous code (Listing (1)), it has one branch starting at the
x.ir(1,k).set(...) line, through the J.rs().det() line. This sequence is repeated
many times (one for each element) so that it is interesting to reuse the cache list. For this,
a branch object b1 (class FastMat::CacheCtx::Branch) and a jump to this branch are
created each time a loop is executed. In the first loop iteration the cache list is created and stored
in the first position of the cache structure. In the next and subsequent executions of the loop,
the cache is reused avoiding recomputing many administrative work related with the matrices.

The problem is when the sequence of operations is not always the same. In that case several
jump() commands must be issued, each one to the start of a sequence of FastMat operations.
Consider for instance the following code,

1 FastMat::CacheCtx ctx;
2 FastMat::CacheCtx::Branch b1, b2;
3 FastMat x(&ctx,1,3);
4 ctx.use_cache = 1;
5 int N=10000, in=0, out=0;
6
7 for (int j=0; j<N; j++) {
8 ctx.jump(b1);
9 x.fun(rnd);

10 double len = x.norm_p_all();
11 if (len<1.0) {
12 in++;
13 ctx.jump(b2);

6



14 x.scale(1.0/len);
15 }
16 }
17 printf("total %d, in %d (%f%%)\n",N,in,double(in)/N);

A vector x of size 3 is randomly generated in a loop (the line x.fun(rnd);). Then its length
is computed, and if it is shorter than 1.0 it is scaled by 1.0/len, so that its final length is one.
In this case two branches are defined and two jumps are executed,

• branch b1: operations x.fun() and x.norm_p_all(),

• branch b2: operation x.scale().

2.3.1 Thread-Safety and reentrancy.

If caching is not enabled, FastMat is reentrant and then thread-safe. If caching is enabled,
then it is reentrant in the following sense, a context ctx must be created for each thread, and
the matrices used in each thread must be associated with the context of that thread.

If creating the cache structures each time is too bad for efficiency, then the context and the
matrices may be used in a parallel region, stored in variables, and reused in a subsequent parallel
region.

2.3.2 Caching loop repetitive computations

If caching is not used the performance of the library is poor while the cached version is
very fast, in the sense that almost all the CPU time is spent in performing multiplications and
additions, and negligible CPU time is spent in auxiliary operations.

2.3.3 Branching is not always needed.

However, branching is needed only if the instruction sequence changes during the same
execution of the code. For instance, if a code like follows is considered

1 FastMat::CacheCtx ctx;
2 ctx.use_cache=1;
3 for (int j=0; j<N; j++) {
4 ctx.jump(b1);
5 // Some FastMat code...
6 if (method==1) {
7 // Some FastMat code for method 1 ...
8 } else if (method==2) {
9 // Some FastMat code for method 2 ...

10 }
11 // More FastMat code...
12 }

the method flag is determined at the moment of reading the data and then is left unchanged
for the whole execution of the code, then it is not necessary to “jump()” since the instruction
sequence will be always the same.

7



2.3.4 Cache mismatch.

The caching process may fail if a cache mismatch is produced. For instance, consider the
following variation of the previous code

1 FastMat::CacheCtx ctx;
2 FastMat::CacheCtx::Branch b1, b2, b3;
3 //...
4 for (int j=0; j<N; j++) {
5 ctx.jump(b1);
6 x.fun(rnd);
7 double len = x.norm_p_all();
8 if (len<1.0) {
9 in++;

10 ctx.jump(b2);
11 x.scale(1.0/len);
12 } else if (len>1.1) {
13 ctx.jump(b3);
14 x.set(0.0);
15 }
16 }

There is an additional block in the conditional, if the length of the vector is greater than 1.1,
then the vector is set to the null vector.

Every time that a branch is opened in a program block a ctx.jump() must be called
using different arguments for the branches (i.e., b1, b2, etc). In the previous code there are
three branches. The code shown is correct, but assume that the user forgets the jump() calls
at lines 10 and 13 (sentences ctx.jump(b2) and ctx.jump(b3)), then when reaching
the x.set(0.0), the operation in line 14, the corresponding cache object would be that one
corresponding to the x.scale() operation (line 11), and an incorrect computation will occur.

Each time that the retrieved cache does not match with the operation that will be computed
or even when it does not exist a cache mismatch exception is produced.

2.3.5 Branch arrays.

In some computing cases, when branching implies a certain number of branches, a branch ob-
ject is needed for each branch (doing it by hand could be cumbersome). So that, it can either cre-
ated defining a plain STL (1) vector<> of branches or using the FastMat2::CacheCtx2::Branchv
class as shown in Listing (2),

1 FastMat2::CacheCtx2 ctx;
2 FastMat2::CacheCtx2::Branch b1;
3 FastMat2::CacheCtx2::Branchv b2v(5);
4 FastMat2 x(&ctx,2,5,3);
5 int N = 10000;
6 ctx.use_cache = 1;
7 double sum=0;
8 for (int j=0; j<N; j++) {
9 ctx.jump(b1);

10 x.fun(rnd);
11 int k = rand()%5;
12 ctx.jump(b2v(k));
13 x.ir(1,k+1);
14 sum += x.norm_p_all();
15 x.rs();

8



16 }
17 ctx.use_cache = 0;

Listing 2: Branch Arrays example.

At each iteration of the loop a matrix (x of 5x3) is randomly generated. Then, a row of it
randomly picked and its norm is computed and accumulated on variable sum. If the line
ctx.jump(b2v(k)) is omitted in the code, then there will be only the main b1 branch,
and when the norm_p_all() instruction is executed it can be reached with a different value
of k. It will not give an error but it will compute with the k stored in the cache object.

As mentioned above one can either define a plain STL vector<> of branches or use the
FastMat2::CacheCtx2::Branchv class, as shown in previous code (2). The branch
array can be created passing its dimension either, at the constructor as in code (2) or in the
init method,

1 FastMat2::CacheCtx2::Branchv b2v;
2 // ... later...
3 b2v.init(5);

Listing 3: Branch Arrays.

Multi dimensional arrays can be created giving extra integer arguments.

2.3.6 Causes for a cache mismatch error.

In the first iteration of the computing loop, the cache is built with information obtained
from the matrices and operations involved in the computation. At subsequent iterations the
information of the current objects must coincide with those stored in the cache, that is

• The FastMat matrices involved must be the same, (i.e. their pointers to the matrices must
be the same).

• The indices passed in the operation must coincide (for instance for the prod(), ctr,
sum() operations).

• The masks (see §2.1.2) applied to each of the matrix arguments must be the same.

2.4 Efficiency

This benchmark computes the matrix product Cij = AikBkj in a loop for a large number N
of distinct square matricesA,B,C of varying size n, starting at n = 2. As mentioned before the
amortized cost is the cost of the underlying dgemm() call plus an overhead due to the FastMat
layer. The processing rate in Gflops is computed on the base of an operation count per matrix
product, i.e. 2n3

rate [Gflops] = 10−9 N · 2n3

(elapsed time [secs])
(1)

The FastMat overhead is composed of a large overhead t0 that is done once while building
the cache structure for subsequent operations and a small overhead t1 for each matrix product.
Normally it is reduced to a few function calls, so the total computing time is

T = t0 +N(t1 + tdgemm), (2)

where tdgemm is the computing time of the underlying dgemm() call. The first overhead (t0)
is amortized when the loop is executed a large number of times N , as it is usual in large CFD

9



computations. As a reference the number of times for reaching a 50% amortization (N1/2) is in
the order of 15 to 30 (of course it could depend on many factors), that means that typicallly for
N = 300, the overhead is 10% or less.

Related to the underlying implementation of dgemm(), several options were tested on an
Intel Core i7–950 @ 3.07GHz, namely

• The BLAS implementation included in Intel’s Math Kernel Library (version 137-12.0-2).

• The ATLAS implementation of BLAS (see (3; 24), version 3.8.3, Fedora RPM binary
package). It was compared also with ATLAS self-configured and compiled from the
sources, but the computing times were almost identical to those from the RPM version,
so that we report only those for the RPM version.

• The FMGEMM library, which are fully unrolled versions of the product matrices. The
code is generated with a Perl script (see the Listing 4 below for the case of a 3 × 3 × 3
product. Note that if nmax = 10 for instance, we generate nmax×nmax×nmax×4 functions
whose names are p_N_M_P_XY() where the integers N, M, P, are the matrix sizes and
the two letters XY denote if the matrix is transposed or not, for instance p_3_4_5_nt
corresponds to the product C = ABt with A, and B of sizes 3×4 and 5×4 respectively.
For nmax = 10 the source code so generated is approximately 2MB in length. Note
also that in FMGEMM approach the matrices are constrained to have constant stride,
otherwise we should generate code for each stride bearing more code bloating .

1 void p_3_3_3_nn(double*__restrict__ a, double*__restrict__ b,
2 double*__restrict__ c) {
3 c[0] = a[0]*b[0]+a[1]*b[3]+a[2]*b[6];
4 c[1] = a[0]*b[1]+a[1]*b[4]+a[2]*b[7];
5 c[2] = a[0]*b[2]+a[1]*b[5]+a[2]*b[8];
6 c[3] = a[3]*b[0]+a[4]*b[3]+a[5]*b[6];
7 c[4] = a[3]*b[1]+a[4]*b[4]+a[5]*b[7];
8 c[5] = a[3]*b[2]+a[4]*b[5]+a[5]*b[8];
9 c[6] = a[6]*b[0]+a[7]*b[3]+a[8]*b[6];

10 c[7] = a[6]*b[1]+a[7]*b[4]+a[8]*b[7];
11 c[8] = a[6]*b[2]+a[7]*b[5]+a[8]*b[8];
12 }

Listing 4: FMGEMM unrolled code

Figure (1) shows the computing rates using equation (1) for n small (n ≤ 20). It can be seen
that for MKL, ATLAS, Eigen, and Blitz libraries a large degradation of performance for low
n is obtained, going all four under 0.25 Gflops for n = 2, being Blitz the most performant.
The FMGEMM implementation is notably more efficient, reaching 1.6 Gflops, when using
directly the functions like the p_3_3_3_nn() shown above. When used inside FastMat,
the overhead t1 degrades the performance significantly to 0.41 Gflops. That means that the
overhead from FastMat is almost 75%, however, even so the FastMat prod function member
is twice faster than the Blitz implementation. In fact, the overhead would be much larger if
we would produce the dispatch to the appropriate FMGEMM function p_N_M_P_XY() in
runtime for each execution of the loop. Of course the pointer to the appropriate function is
computed outside the loop and stored in the cache object. This is another example that shows
the benefits of the cache strategy used in FastMat.

10



1

2

3

4

5

6

2 4 6 8 10 12 14 16 18
matrix size n

co
m

p
u

ti
n

g
 r

at
e 

[G
fl

o
p

s]

Eigen (w/SSE)
FastMat(FMGEMM+MKL)

Atlas
MKL
Blitz

Eigen (wo/SSE)

Figure 1: Efficiency comparatives for the matrix product C = AB on an Intel Core i7–950 @ 3.07GHz, for square
matrices of small size n ≤ 20. Vertical axis is computing speed as given per equation (1).

2

4

6

8

10

12

14

16

10 100

matrix size n

co
m

p
u

ti
n

g
 r

at
e 

[G
fl

o
p

s]

2 3 4 5 6 87 9 20 30 40 60 80

Eigen (w/SSE)
FastMat(FMGEMM+MKL)

Atlas
MKL
Blitz

Eigen (wo/SSE)

Figure 2: Efficiency comparatives for the matrix product C = AB on an Intel Core–i7 950 @ 3.07GHz, for square
matrices size 1 ≤ n ≤ 177. Vertical axis is computing speed as given per equation (1).

11



The FMGEMM functions tend to saturate their performance near 3 Gflops for n ≤ 7, so
FastMat switches to the underlying BLAS implementation for matrices of size n > nmax with
nmax a parameter configurable at compile time (the default is set with nmax = 10).

In Figure (2) the performance of the combination FMGEMM+MKL is shown. As a refer-
ence, the curves for plain dgemm() from Atlas and MKL libraries, Blitz and Eigen are also
included. Atlas is more performant than MKL for small n ≤ 12, and the converse is true for
n > 12. As FMGEMM is already used (since it is more performant) for small n, the better
choice is FMGEMM and MKL. However, the choice for the underlying BLAS library can be
made by the user during installation.

Regarding the Eigen test results, we notice that by default this library employs SSE instruc-
tions for the computations. As seen in figures, the Eigen library (using SSE instructions, noted
as w/SSE in the figure) is almost 50% more efficient than MKL for large n, i.e. n > 30, how-
ever it is much less efficient than FastMat(FMGEMM) for small n, which is typically the case
for FEM computations. For large matrices, the SSE-enabled code is 3x faster than the code not
using SSE instructions (noted as wo/SSE in the figure).

It must be remarked that all these tests have been done on one core of the quad-core Intel i7–
950 processor, i.e. no shared memory parallelism of the processor has been exploited. In fact,
the user can configure to exploit parallelism at this level (i.e., inside dgemm()) by choosing
the MKL library and setting the number of threads within the BLAS library functions via the
MKL_NUM_THREADS environment variable, but then, the parallelism can not be exploited at
the FastMat level, as discussed in §2.3.1. We note that normally, the parallelism at FastMat
level is more efficient (since it is at a higher granularity). MKL can reach 40 Gflops for large
matrices (n > 100) but this is not the most representative case in a FEM production code.

2.5 FastMat “Multi-product” operation

A common operation in FEM codes (see equation 14 and reference (10)) and many other
applications is the product of several matrices or tensors. In addition, this kind of operation
usually consume the largest part of the CPU time in a typical FEM computation of residuals
and Jacobians. The number of operations (and consequently the CPU time) can be largely
reduced by choosing the order in which the products are performed.

For instance consider the following operation

Aij = BikCklDlj, (3)

(Einstein’s convention on repeated indices is assumed). The same operation using matricial
notation is

A = BCD, (4)

where A,B,C,D are rectangular (rank 2) matrices of shape (m1,m4), (m1,m2), (m2,m3),
(m3,m4), respectively. As the matrix product is associative the order in which the computations
are performed can be chosen at will, so that it can be performed in the following two ways

A = (BC)D, (computation tree CT1),
A = B(CD), (computation tree CT2).

(5)

The order in which the computations are performed can be represented by a Complete Binary
Tree. In this paper the order will be described using parentheses. The number of operations
(op. count) for the different trees, and in consequence the CPU time, can be very different. The

12



cost of performing the first product BC in the first row of (5) (and a product of two rectangular
matrices in general) is

op. count = 2m1m2m3, (6)

which can be put as,

op. count = 2 (m1m3)(m2),

= 2 (prod. of dims for B and C free indices)
× (prod of dims for contracted indices)

(7)

or alternatively,

op. count = 2
(m1m2)(m2m3)

m2

= 2
(prod of B dims)× (prod of C dims)
(prod of dims for contracted indices)

(8)

and for the second product is 2m1m3m4 so that the total cost for the first computation tree
CT1 is 2m1m3(m2 + m4). If the second computation tree CT2 is used, then the number of
operations is 2m2m4(m1 +m3). This numbers may be very different, for instance when B and
C are square matrices and D is a vector, i.e. m1 = m2 = m3 = m > 1, m4 = 1. In this case
the operation count is 2m2(m+ 1) = O(m3) for CT1 and 4m2 = O(m2) for CT2, so that CT2
is much more convenient.

2.5.1 Algorithms for the determination of the computation tree.

There is a simple algorithm that exploits this heuristic rule in a general case (2). If the
multi-product is

R = A1A2 · · ·An (9)

with Ak of shape (mkmk+1), then the operation count ck for each of the possible products
AkAk+1, is computed, namely ck = 2mkmk+1mk+2 for k = 1 to n−1. Let ck∗ be the minimum
operation count, then the corresponding product Ak∗Ak∗+1 is performed and the pair Aq,Aq+1

is replaced by this product. Then, the list of matrices in the multi-product is shortened by one.
The algorithm proceeds recursively until the number of matrices is reduced to only one. The
cost of this algorithm is O(n2) (please note that this refers to the number of operations needed
to determine the computation tree, not in actually computing the matrix product).

For a small number of matrices the optimal tree may be found by performing an exhaustive
search over all possible orders. The cost is in this caseO(n!). In Figure (3) the computing times
of the exhaustive optimal and the heuristic algorithms is shown for a number of matrices up to
8. Of course it is prohibitive for a large number of matrices, but it can be afforded for up to 6 or
7 matrices, which is by far the most common case. The situation is basically the same but more
complex in the full tensorial case, as it is implemented in the FastMat library. First consider a
product of two tensors like this

Aijk = BkljCil, (10)

where tensors A, B, C have shape (m1,m2,m3), (m3,m4,m2), (m1,m4) respectively. i, j, k
are free indices while l is a contracted index. The cost of this product is (equations (7) and (8))

op. count = 2m3m2m4m1 (11)

13



10^{-5}

10^{-4}

10^{-3}

10^{-2}

10^{-1}

10^{0}

10^{1}

2 3 4 5 6 7 8

el
ap

se
d

 t
im

e 
[s

ec
s]

nbr. of matrices

heuristic

optimal

Figure 3: Cost of determination of the optimal order for computing the product of matrices with the heuristic and
exhaustive (optimal) algorithms.

On one hand, the modification with respect to the case of rectangular (rank 2) matrices is that
every matrix can be contracted with any other in the list. So that, the heuristic algorithm must
check now all the pair of distinct matrices which is n′(n′ − 1)/2 where 1 ≤ n′ ≤ n is the
number of actual matrices. This must be added over n′ so that the algorithm is O(n3). On the
other hand, regarding the optimal order, it turns out to be that the complexity for its computation
is

n∏
n′=2

n′(n′ − 1)

2
= O

(
(n!)2

2n

)
. (12)

In the FastMat library the strategy is to use the exhaustive approach for n ≤ nct,max and the
heuristic one otherwise. The value of nct,max is 5 by default but dynamically configurable by
the user.

3 TEST EXAMPLES: COMPUTATION OF SUPG STABILIZATION TERM. ELE-
MENT RESIDUAL AND JACOBIAN

As an example, consider the computation of the stabilization term (see reference (10)) for
general advective-diffusive systems, i.e.:

∂H(U)

∂t
+
∂Fc,j(U)

∂xj
=
∂Fd,j(U,∇U)

∂xj
+ G. (13)

Here U ∈ IRn is the state vector, t is time, Fc,j,Fd,j are the advective and diffusive fluxes
respectively, G is a source term including, for instance, gravity acceleration or external heat
sources, and xj are the spatial coordinates.

The notation is standard, except perhaps for the ‘generic enthalpy function’ H(U). The
inclusion of the enthalpy function allows the inclusion of conservative equations in terms of
non-conservative variables.

The discrete variational formulation of (13) with added SUPG stabilizing term (19; 20; 21)

14



is written as follows: find find Uh ∈ Sh such that, for every Wh ∈ Vh,∫
Ω

Wh ·
(
∂H(Uh)

∂t
+
∂Fc,j
∂xj

−G

)
dΩ +

∫
Ω

∂Wh

∂xj
Fd,j dΩ−

∫
Γh

Wh ·Hh dΓ

+

nelem∑
e=1

∫
Ω

τeA
T
k

∂Wh

∂xk
·
(
∂H(U)

∂t
+
∂Fc,j(U)

∂xj
− ∂Fd,j(U,∇U)

∂xj
−G

)
dΩ︸ ︷︷ ︸

Residual of SUPG term

= 0,

(14)

where
Sh =

{
Uh|Uh ∈ [H1h(Ω)]m, Uh

∣∣
Ωe ∈ [P 1(Ωe)]m, Uh = g at Γg

}
Vh =

{
Wh|Wh ∈ [H1h(Ω)]m, Uh

∣∣
Ωe ∈ [P 1(Ωe)]m, Uh = 0 at Γg

} (15)

are the space of interpolation and weight function respectively, τe are stabilization parameters
(a.k.a. ‘intrinsic times’ ), Γg is the Dirichlet part of the boundary where U = g is imposed, and
Γh is the Neumann part of the boundary where Fd,jnj = H is imposed.

According to (20) the stabilization parameter τ supg is computed as

τ supg =
hsupg

2||a||
(16)

with

hsupg = 2

( nen∑
i=1

|s · ∇Wh
i |
)−1

, (17)

where s is a unit vector pointing in the streamline direction.
So that, the following product must be computed

RSUPG,e
pµ = Wp,kAkµντναR

SUPG,gp
α , (18)

where

• RSUPG,e (shape (nel, ndof), identifier res) is the SUPG residual contribution from the
element e,

• Wp,k (shape (ndim, nel), identifier gN) are the spatial gradients of the weight functions
Wp,

• Akµν = (∂Fc,jµ /∂Uν) (shape (nel, ndof , ndof), identifier A) are the Jacobians of the ad-
vective fluxes Fc,jµ with respect to the state variables Uν ,

• τνα (shape (ndof , ndof), identifier tau) is the matrix of intrinsic times, and

• RSUPG,gp
α (shape (ndof), identifier R) is the vector of residuals per field at the Gauss point.

This tensor products arise, for instance, in the context of the FEM-Galerkin SUPG stabilizing
methods (see References (10; 20)). This multi-product is just an example of typical compu-
tations that are performed in a FEM based CFD code. This operation can be computed in a
FastMat call like this

res.prod(gN,A,tau,R,1,-1,-1,2,-2,-2,-3,-3);

15



where if the j-th integer argument is positive it represents the position of the index in the result-
ing matrix, otherwise if the j-th argument is -1 then a contraction operation is performed over
all these indices (see appendix §5.1.3).

The FastMat::prod() method then implements several possibilities for the computing
tree

• natural, left to right (L2R): The products are performed in the order the user has entered
them, i.e. (((A1A2)A3)A4) · · ·

• heuristic: Uses the heuristic algorithm described in section §2.5.1.

• optimal: An exhaustive brute-force approach is applied in order to determine the compu-
tation tree with the lowest operation count.

In table 1 the operation counts for these three strategies are reported. The first three columns
show the relevant dimension parameters. ndim may be 1,2,3 and nel may be 2 (segments), 3
(triangles), 4 (quads in 2D, tetras in 3D) and 8 (hexahedra). The values explored for ndof are

• ndof = 1: scalar advection-diffusion,

• ndof = ndim + 2: compressible flow,

• ndof = 10: advection-diffusion for 10 species.

3.1 Operation counts for the computation of element residuals.

The costs of the tensor operation defined in equation (18) (where the involved tensors are as
described above) are evaluated in terms of the gains (%) (see Table 1). The gains are related to
the cost of products performed in the natural order, so that

• CT1=L2R is: ((gN*R)*tau)*A

• CT2 is: (gN*(tau*R))*A

• CT3 is: gN*((A*tau)*R)

• CT4=R2L is: gN*(A*(tau*R))

Note that CT1 corresponds to computing the products in natural order from left to right (L2R)
and CT4 from right to left (R2L).

3.2 Operation counts for the computation of element Jacobians.

This product is similar as the one described above, but now the Jacobian of the residual term
is computed so that the last tensor is not a vector, but rather a rank 3 tensor,

JSUPG,e
pµqν = Wp,kAkµβτβαJ

SUPG,gp
αqν , (19)

J.prod(gN,A,tau,JR,1,-1,-1,2,-2,-2,-3,-3,3,4);

where

16



Table 1: Operation count for the stabilization term in the SUPG formulation of advection-diffusion of ndof number
of fields. Other relevant dimensions are the space dimension ndim and the number of nodes per element nel.

ndim nel ndof #ops(nat) heur. #ops gain (%) opt. #ops gain (%)
1 2 1 12 CT3 8 33.33% CT3 8 33.33%
1 2 3 180 CT1 84 53.33% CT4 48 73.33%
1 2 10 4800 CT1 840 82.50% CT4 440 90.83%
2 3 1 24 CT4 18 25.00% CT4 18 25.00%
2 3 4 672 CT2 272 59.52% CT4 144 78.57%
2 3 10 7800 CT1 2520 67.69% CT4 720 90.77%
2 4 1 32 CT4 22 31.25% CT4 22 31.25%
2 4 4 896 CT2 352 60.71% CT4 160 82.14%
2 4 10 10400 CT1 3660 67.69% CT4 760 92.69%
3 4 1 40 CT4 32 20.00% CT4 32 20.00%
3 4 5 1800 CT2 770 57.22% CT4 320 82.22%
3 4 10 11200 CT2 2840 74.64% CT4 1040 90.71%
3 8 1 80 CT4 56 30.00% CT4 56 30.00%
3 8 5 3200 CT4 440 87.78% CT4 440 87.78%
3 8 10 22400 CT2 5480 75.54% CT4 1280 94.29%

Table 2: Operation count for the Jacobian of the SUPG term in the formulation of advection diffusion for ndof

number of fields. Other relevant dimensions are the space dimension ndim and the number of nodes per element
nel.

ndim nel ndof #ops(nat) heur. #ops gain (%) opt. #ops gain (%)
1 2 1 16 CT6 14 12.50% CT6 14 12.50%
1 2 3 360 CT5 360 0.00% CT7 234 35.00%
1 2 10 12400 CT5 12400 0.00% CT7 6800 45.16%
2 3 1 32 CT6 34 5.56% CT6 34 5.56%
2 3 4 1728 CT5 1728 0.00% CT6 1600 7.41%
2 3 10 25200 CT5 25200 0.00% CT7 19600 22.22%
2 4 1 56 CT6 52 7.14% CT6 26 7.14%
2 4 4 2816 CT5 2816 0.00% CT7 2304 18.18%
2 4 10 41600 CT5 41600 0.00% CT7 26400 36.54%
3 4 1 64 CT6 62 3.12% CT6 62 3.12%
3 4 5 5600 CT5 5600 0.00% CT6 5350 4.46%
3 4 10 42400 CT5 42400 0.00% CT7 39600 6.60%
3 8 1 192 CT6 182 5.21% CT6 182 5.21%
3 8 5 19200 CT6 17950 6.51% CT7 16350 14.84%
3 8 10 148800 CT5 148800 0.00% CT7 92400 37.90%

17



• JSUPG,gp
αqβ (shape (ndof , nel, ndof), identifier JR) is the Jacobian of residuals per field at the

Gauss point.

Possible orders (or computation trees):

• CT5=L2R: ((gN*A)*tau)*JR

• CT6: (gN*(A*tau))*JR

• CT7: gN*((A*tau)*JR)

Note that CT5 corresponds to computing the products from left to right.

Discussion of the influence of computation tree. From the previous examples it is noticed
that:

• In many cases the use of the CT determined with the heuristic or optimal orders yields
a significant gain in operation count. The gain may be 90% or even higher in a realistic
case like the computations for equations (18) and (19).

• In the presented cases, the heuristic algorithm yielded always a reduction in operation
count, though in general this is not guaranteed. In some cases the heuristic approach
yielded the optimal CT. In others it gave a gain, but far from the optimal one.

• It is very interesting that neither the heuristic nor optimal computation trees are the
same for all combinations of parameters (ndim,nel,ndof). For instance in the compu-
tation of the Jacobian the optimal order is (gN*(A*tau))*JR in some cases and
gN*((A*tau)*JR) in others (designated as CT6 and CT7 in the tables). This means
that it would be impossible for the user to choose an optimal order for all cases. This
must be computed automatically at run-time as proposed here in FastMat library.

• In some cases the optimal or heuristically determined orders involve contractions that are
not in the natural order, for instance the CT (gN*(tau*R))*A (designated as CT2)
is obtained with the heuristic algorithm for the computation of the element residual for
some set of parameters. Note that the second scheduled contraction involves the gN and
tau*R tensors, even if they do not share any contracted indices.

Note that, in order to perform the computation of an efficient CT for the multi-product (with
either the heuristic or optimal algorithms) it is needed that the library implements the operation
in functional form as in the FastMat library. Operator overloading is not friendly with the
implementation of an algorithm like this, because there is no way to capture the whole set of
matrices and the contraction indices. The computation of the optimal or heuristic order is done
only once and stored in the cache object. In fact this is a very good example of the utility of
using caches.

Using more elaborated estimations of computing time In the present work it is assumed
that the computing time is directly proportional to the number of operations. This may not be
true, but note that the computation tree could be determined with a more direct approach. For
instance, by benchmarking the products and then determining the CT that results in the lowest
computing time, not in operation count.

18



3.3 Comparison of FastMat2 with Blitz for a FEM multiprod

A comparison of efficiency is shown in Figure (4). The multiproduct described by equa-
tion (19) was computed using FastMat and Blitz libraries for the same combinations of tensor
sizes (ndim, nel, ndof) in the examples shown in sections §3.1 and §3.2). In the figure, the com-
puting rate (in multiproducts per second units, i.e. the number of times that the whole compu-
tation (19) can be performed per second) is reported for the Blitz and FastMat libraries. Blitz
doesn’t compute an optimal computation tree; it’s up to the user to determine the order in which
the contractions are performed so we compute Blitz times by performing the multiproduct en
L2R and R2L order. In particular for the operation (19) the L2R ordering coincides withe the
heuristic one for near one half of the possible size combinations (see Table 2) In the FastMat
case it must be remembered that the optimal computation tree is computed only once at the start
of the loop and stored in a FastMat cache. As it can be seen from the plots, FastMat is always
faster than Blitz even if using a non optimal computation tree. FastMat with the optimal com-
putation tree is at least 1.9x times faster than Blitz (using the best of L2R and R2L). Also, note
that FastMat with the optimal computation tree is always faster than Fastmat with both L2R and
R2L computation trees, being 2.3x faster in the most extreme case. This shows the advantage
of using the optimal computation tree.

104

105

106

107

(1
,2

,1
)

(2
,3

,1
)

(2
,4

,1
)

(3
,4

,1
)

(3
,8

,1
)

(1
,2

,3
)

(2
,3

,4
)

(2
,4

,4
)

(3
,4

,5
)

(1
,2

,1
0)

(3
,8

,5
)

(2
,3

,1
0)

(2
,4

,1
0)

(3
,4

,1
0)

(3
,8

,1
0)

(ndim,nel,ndof)

FastMat(optimal)
Blitz(R2L)
Blitz(L2R)

FastMat(L2R)
FastMat(R2L)

co
m

p
u

ti
n

g
 r

at
e 

[m
u

lt
ip

ro
d

s/
se

c]

Figure 4: Efficiency comparatives for the multiproduct of equation (19) on an Intel Core i7–950 @ 3.07GHz, for
different combinations of matrix dimensions.

3.4 Results for SUPG matrix using multiproduct in a shared memory architecture

In this section the Jacobian matrix of equation (19) was computed in a shared memory en-
vironment. The equipment used to perform this tests was a six-core Intel(R) Xeon(R) CPU
W3690 @ 3.47GHz. The speedup obtained for the Jacobian matrix computation (for tensor
sizes (ndim = 3, nel = 8, ndof = 5)) is illustrated in Figure (5). As shown in the figure,
the Jacobian computation stage using the FastMat multiprod operation scales linearly with the
number of cores/threads. The computing rates range from 1.55 Gflops using one core to 8.99

19



1

2

3

4

5

6

1 2 3 4 5 6
# of threads

s
p

e
e

d
u

p

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

co
m

p
u

tin
g

 rate [m
u

ltip
ro

d
s/sec]

Figure 5: Speedup for the Jacobian matrix computation.

Gflops in 6 cores (95,000 to 550,000 multiprods/sec respectively) .

4 CONCLUSIONS

In this paper, we introduced and evaluated an efficient, thread-safe library for tensor com-
putations. Having in mind that for large scale meshes all FEM computation inside the loop
over elements must be evaluated millions of times, the process of caching all FEM operations
at the element level (provides by FastMat library) is a key-point in the performance for the
computing/assembling stages. The most important features of the FastMat tensor library can be
summarized as follows:

• Repeated multi-index operations at the element level are stored in cache objects. Hence,
element routines are very fast, in the sense that almost all the CPU time is spent in per-
forming multiplications and additions, and negligible CPU time is spent in auxiliary op-
erations. This feature is the key-point when dealing with large/fine FEM meshes.

• For the very common multi-product tensor operation, the order in which the successive
tensor contractions are computed is always performed at the minimum operation count
cost depending on the number of tensor/matrices in the FEM terms (exhaustive or heuris-
tic approaches).

• The FastMat library implements index contractions in a general way. The number of
contracted tensors and the range of their indices can be variable. Also, a complete set of
common tensor operations are available in the library.

• The FastMat library is “thread-safe”, i.e., element residuals and Jacobians can be com-
puted in the context of multi-threaded FEM/FVM codes.

20



ACKNOWLEDGMENTS

This work has received financial support from European Research Council (ERC) (Spain,
Advanced Grant, Real Time Computational Mechanics Techniques for Multi-Fluid Problems,
Reference: ERC-2009-AdG, Dir: Dr. Sergio Idelsohn), Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET, Argentina, grant PIP 5271/05), Universidad Nacional del
Litoral (UNL, Argentina, grants CAI+D 2009 65/334), Agencia Nacional de Promoción Cien-
tífica y Tecnológica (ANPCyT, Argentina, grants PICT 01141/2007, PICT 2008-0270 “Jóvenes
Investigadores”, PICT-1506/2006), Secretaría de Ciencia y Tecnología de la Universidad Tec-
nológica Nacional, Facultad Regional Resistencia, Chaco (UTN FRRe, Argentina, grant PID
2012 25/L057) and Universidad Tecnológica Nacional, Facultad Regional San Nicolás (Buenos
Aires).

5 APPENDIX

5.1 Synopsis of FastMat operations

5.1.1 One-to-one operations.

The operations are from one element of A to the corresponding element in *this.
The one-to-one operations implemented so far are

• FastMat& set(const FastMat &A): Copy matrix.

• FastMat& add(const FastMat &A): Add matrix.

• FastMat& minus(const FastMat &A): Substract a matrix.

• FastMat& mult(const FastMat &A): Multiply (element by element) (like Mat-
lab .*).

• FastMat& div(const FastMat &A): Divide matrix (element by element, like
Matlab ./).

• FastMat& axpy(const FastMat &A, const double alpha): Axpy op-
eration (element by element): (*this) += alpha * A

5.1.2 In-place operations.

These operations perform an action on all the elements of a matrix.

• FastMat& set(const double val=0.): Sets all the element of a matrix to a
constant value.

• FastMat& scale(const double val): Scale by a constant value.

• FastMat& add(const double val): Adds constant val.

• FastMat& fun(double (*)(double) *f): Apply a function to all elements.

• FastMat2& fun(func *function, void *user_args): Apply a function
with optional arguments to all elements.

21



5.1.3 Generic “sum” operations (sum over indices).

These methods perform some associative reduction operation an all the indices of a given di-
mension resulting in a matrix which has a lower rank. It’s a generalization of the sum/max/min
operations in Matlab (22) that returns the specified operation per columns, resulting in a row
vector result (one element per column). Here you specify a number of integer arguments, in
such a way that

• if the j-th integer argument is positive it represents the position of the index in the result-
ing matrix, otherwise

• if the j-th argument is -1 then the specified operation (sum/max/min etc...) is performed
over all this index.

For instance, if a FastMat A(4,2,2,3,3) is declared then
B.sum(A,-1,2,1,-1) means

Bij =
∑

k=1..2,l=1..3

Akjil, for i = 1..3, j = 1..2 (20)

These operation can be extended to any binary associative operation. So far the following
operations are implemented

• FastMat& sum(const FastMat &A,
const int m=0,..): Sum over all selected indices.

• FastMat& sum_square(const FastMat &A,
const int m=0,..): Sum of squares over all selected indices.

• FastMat& sum_abs(const FastMat &A,+
const int m=0,..): Sum of absolute values all selected indices.

• FastMat& min(const FastMat &A,
const int m=0,..): Minimum over all selected indices.

• FastMat& max(const FastMat &A,
const int m=0,..): Maximum over all selected indices.

• FastMat& min_abs(const FastMat &A,
const int m=0,..): Min of absolute value over all selected indices.

• FastMat& max_abs(const FastMat &A,
const int m=0,..): Max of absolute value over all selected indices.

5.1.4 Sum operations over all indices.

When the sum is over all indices the resulting matrix has zero dimensions, so that it is a
scalar. You can get this scalar by creating an auxiliary matrix (with zero dimensions) casting
with operator double() as in

22



FastMat A(2,3,3),Z;

... // assign elements to A

double a = double(Z.sum(A,-1,-1));

or using the get() function

double a = Z.sum(A,-1,-1).get();

without arguments, which returns a double. In addition there is for each of the previous men-
tioned “generic sum” function a companion function that sums over all indices. The name of
this function is obtained by appending _all to the generic function

double a = A.sum_square_all();

The list of these functions is

• double sum_all() const: Sum over all indices.

• double sum_square_all() const: Sum of squares over all indices.

• double sum_abs_all() const: Sum of absolute values over all indices.

• double min_all() const: Minimum over all indices.

• double max_all() const: Maximum over all indices.

• double min_abs_all() const: Minimum absolute value over all indices.

• double max_abs_all() const: Maximum absolute value over all indices.

5.1.5 Export/Import operations.

These routines allow to convert matrices from or to arrays of doubles

• FastMat& set(const double *a): Copy from array of doubles.

• FastMat& export(double *a): Export to a double vector.

• const FastMat2& export(double *a): Constant export to a double vector.

REFERENCES

[1] The GNU C++ library: Standard Template Library Programmer’s guide (2011). URL
http://gcc.gnu.org

[2] Aho, A., Ullman, J., Hopcroft, J.: Data structures and algorithms. Addison Wesley (1983)
[3] ATLAS: Automatically tuned linear algebra software (2011). URL http://acts.

nersc.gov/atlas
[4] Balay, S., Gropp, W., McInnes, L.C., Smith, B.: Efficient management of parallelism in

object oriented numerical software libraries. Modern Software Tools in Scientific Com-
puting. pp. 163–202 (1997)

23

http://gcc.gnu.org
http://acts.nersc.gov/atlas
http://acts.nersc.gov/atlas


[5] Behara, S., Mittal, S.: Parallel finite element computation of incompressible flows. Parallel
Computing. 35, 195–212 (2009)

[6] Benoit, J., Guennebaud, G.: Eigen 3 (2011). URL http://eigen.tuxfamily.org
[7] BLAS: Basic Linear Algebra Subprograms (2010). URL http://www.netlib.org/

blas
[8] Dalcin, L.: PETSc for Python. (2010). URL http://petsc4py.googlecode.com
[9] Dalcin, L., Paz, R., Kler, P., Cosimo, A.: Parallel distributed computing using python.

Advances in Water Resources 34(9), 1124–1139 (2011)
[10] Donea, J., Huerta, A.: Finite element methods for flow problems. Wiley & Sons (2003)
[11] Kamenik, O.: TL – Multidimensional Tensor Library (2011). URL http://www.

dynare.org
[12] Komatitsch, D., Erlebacher, G., Göddeke, D., Michéa, D.: High-order finite-element seis-

mic wave propagation modeling with MPI on a large GPU cluster. Journal of Computa-
tional Physics 229, 7692–7714 (2010)

[13] Landry, W.: FTensor – a high performance tensor library (2004). URL http://www.
gps.caltech.edu/~walter/FTensor

[14] LAPACK: Linear Algebra PACKage (2010). URL http://www.netlib.org/
lapack

[15] Paz, R., Nigro, N., Storti, M.: On the efficiency and quality of numerical solutions in
CFD problems using the interface strip preconditioner for domain decomposition methods.
International Journal for Numerical Methods in Fluids. 51(1), 89–118 (2006)

[16] Shroeder, W., Martin, K., Lorensen, B.: The visualization toolkit. Prentice Hall, Engle-
wood Cliffs, NJ 810, 811 (1996). URL http://www.vtk.org

[17] Sonzogni, V., Yommi, A., Nigro, N., Storti, M.: A parallel finite element program on a
Beowulf cluster. Advances in Engineering Software 33(7-10), 427–443 (2002)

[18] Storti, M., Nigro, N., Paz, R., Dalcin, L.: PETSc-FEM – A General Purpose, Par-
allel, Multi-Physics FEM Program (2010). URL http://www.cimec.org.ar/
petscfem

[19] Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, V., Litke, M.: Flow simulation
and high performance computing. Computational Mechanics 18(6), 397–412 (1996)

[20] Tezduyar, T., Osawa, Y.: Finite element stabilization parameters computed from element
matrices and vectors. Computer Methods in Applied Mechanics and Engineering. 190,
411–430 (2000)

[21] Tezduyar, T., Senga, M., Vicker, D.: Computation of inviscid supersonic flows around
cylinders and spheres with the supg formulation and YZ β shock-capturing. Computa-
tional Mechanics 38(4–5), 469–481 (2006)

[22] The MathWorks Inc.: MATLAB (2011). URL http://www.mathworks.com/
matlab

[23] Veldhuizen, T.: Blitz++ – Object-Oriented Scientific Computing (2010). URL http:
//www.oonumerics.org/blitz

[24] Whaley, R., Petitet, A., Dongarra, J.: Practical experience in the numerical dangers of
heterogeneous computing. Parallel Computing. 27((1-2)), 3–35 (2001)

24

http://eigen.tuxfamily.org
http://www.netlib.org/blas
http://www.netlib.org/blas
http://petsc4py.googlecode.com
http://www.dynare.org
http://www.dynare.org
http://www.gps.caltech.edu/~walter/FTensor
http://www.gps.caltech.edu/~walter/FTensor
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.vtk.org
http://www.cimec.org.ar/petscfem
http://www.cimec.org.ar/petscfem
http://www.mathworks.com/matlab
http://www.mathworks.com/matlab
http://www.oonumerics.org/blitz
http://www.oonumerics.org/blitz

	Introduction
	The FastMat matrix class
	Preliminaries
	An introductory example.
	Current matrix views (the so-called `masks').
	Set operations.
	Dimension matching.
	Automatic dimensioning.
	Concatenation of operations.

	Underlying implementation with BLAS/LAPACK
	The FastMat operation cache concept
	Thread-Safety and reentrancy.
	Caching loop repetitive computations
	Branching is not always needed.
	Cache mismatch.
	Branch arrays.
	Causes for a cache mismatch error.

	Efficiency
	FastMat ``Multi-product'' operation
	Algorithms for the determination of the computation tree.


	Test examples: Computation of SUPG stabilization term. Element residual and Jacobian
	Operation counts for the computation of element residuals.
	Operation counts for the computation of element Jacobians.
	Comparison of FastMat2 with Blitz for a FEM multiprod
	Results for SUPG matrix using multiproduct in a shared memory architecture

	Conclusions
	Appendix
	Synopsis of FastMat operations
	One-to-one operations.
	In-place operations.
	Generic ``sum'' operations (sum over indices).
	Sum operations over all indices.
	Export/Import operations.



