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Abstract. The purpose of this paper is twofold. We introduce a general maxi-

mal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck

maximal operator and prove its weak type (1, 1) by using a covering lemma

which is halfway between Besicovitch and Wiener. On the other hand, by tak-

ing as starting point the generalized Cauchy-Riemann equations, we introduce

a new class of Gaussian Riesz Transforms. We prove, using the maximal func-

tion defined in the first part of the paper, that unlike the ones already studied,

these new Riesz Transforms are weak type (1, 1) independently of their orders.

1. Introduction and main results.

Hermite polynomials play a central role in the context of Gaussian Harmonic Anal-

ysis. They are also the building blocks for the eigenfuctions of the harmonic os-

cillator in Quantum Mechanics. In this context (see [17]), let us denote by P the

one-dimensional momentum operator defined on a test function u as Pu = −i∂u
∂x

and by Q the position operator defined by Qu = xu. When solving the harmonic

oscillator the underlying Hamiltonian is essentially given by

1
2
(P2 +Q2),

the quantum mechanical problem is then to find all the eigenvalues and eigenfunc-

tions of the differential operator

1
2

[
− d2

dx2
+ x2

]
.
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Its eigenfunctions are e−x2/2Hk, where Hk denotes the Hermite polynomial of de-

gree k. They can be defined through the Rodrigues formula as follows

Hk(x) = (−1)kex2 dk

dxk
e−x2

for x ∈ R and k = 0, 1, . . .. They are also the eigenfunctions of the differential

operator
1
2

d2

dx2
− x

d

dx
=

1
2
ex2 d

dx
(e−x2 d

dx
).

The n-dimensional Hermite polynomial of order α = (α1, . . . , αn) ∈ Nn
0 and de-

gree |α| =
∑n

j=1 αj , denoted by Hα is defined as the tensor product of the one-

dimensional ones,

Hα(x) =
n⊗

j=1

Hαj (xj)

with x ∈ Rn. They are orthogonal with respect to the Gaussian measure

dγ(x) = e−|x|
2
dx.

Let us consider the normalization hα of Hα given by hα(x) = Hα(x)
(
√

πα!2|α|)1/2 , then

the set F = {hα}α∈Nn
0

turns out to be an orthonormal basis in L2(dγ).

Let f ∈ L2(dγ), then f =
∑
α

aαhα with aα =
∫

fhαdγ . It can be proved that the

Abel’s expansion
∑
α

e−|α|taαhα converges absolutely to the Ornstein-Uhlenbeck

semigroup

T tf(x) =
∫

Rn

M(t, x, y)f(y) dy

for almost every x ∈ Rn, where

M(t, x, y) =
∑
α

e−|α|thα(x)hα(y)

= π−n/2(1− e−2t)−n/2e
− |e−tx−y|2

1−e−2t ; t > 0,

M(t, x, y) is called Mehler kernel (see [15]).

By writing u(x, t) = T tf(x), u turns out to be the solution of the parabolic partial

differential equation
∂u

∂t
=

1
2
∆u− x · ∇u

with initial data f ∈ L2(dγ).

The Ornstein-Uhlenbeck differential operator is defined by L = 1
2∆− x · ∇, with

∆ the Laplace operator and ∇ = ( ∂
∂x1

, . . . , ∂
∂x1

) the gradient. Thus T t = eLt. The
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n-dimensional Hermite polynomials are the eigenfunctions of L, ie Lhα = −|α|hα.

The Ornstein-Uhlenbeck semigroup T t as well as L are selfadjoint operators with

respect to the Gaussian measure.

If we re-parametrize T t with r = e−t and use the same notation for the re-

parametrized operator, then we have

T rf(x) =
e|x|

2

π1/2(1− r2)n/2

∫

Rn

e
− |x−r y|2

1−r2 f(y) dγ(y).

In 1969, C. Calderón [2] proved that the multiparametric maximal operator

T ∗f(x) = sup
0<r1<1

.

.

.
0<rn<1

∣∣∣∣∣
e|x|

2

πn/2

n∏

i=1

1
(1− r2

i )1/2

∫

Rn

e
−∑n

i=1
(xi − ri yi)

2

1−r2
i f(y) dγ(y)

∣∣∣∣∣

is bounded in Lp(Rn, dγ), p > 1. From this result, the Lp(Rn, dγ) strong type

property p > 1 for the one-parameter maximal operator

T ∗f(y) = sup
0<r<1

|T rf(y)|

follows. It is worth mentioning that this result also follows from the general theory

of symmetric diffusion semigroups and in this case the Lp constant obtained is

independent of dimension. It is known that, for n > 1, T ∗ is not weak type

(1,1) with respect to the Gaussian measure. The same question for T ∗, with n >

1, was an open problem until 1984, when P. Sjögren, [23], proved that T ∗ is γ-

weak type (1,1). Sjögren’s proof does not give pointwise estimates by means of

average maximal operators on the global part; covering results, such as Besicovitch

or Wiener Lemmas, are not used either. These are the basic classical tools used on

the approximations of the identity with the Lebesgue measure and with doubling

measures.

The ad hoc method developed by Sjögren is very useful and was used by other

people in order to prove weak type inequalities of certain singular integral operators

associated with this semigroup. But there are operators which cannot be handled

likewise since their kernels exceed the bounds necessary to apply his ”forbidden

region” technique.

S. Pérez in [20], whose goal was to study the operators which could not be handled

by Sjögren’s technique, came back to the Ornstein-Uhlenbeck semigroup and gave
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an explicit formula for the maximal kernel of this semigroup and with that she

associated the right geometry to get the weak type inequality.

Later on, P. Sjögren with this explicit formula of the maximal kernel gave a very

simple and elegant proof of the weak-type (1, 1) of T ∗ which can be found in [25].

In 1988 C. Gutiérrez and W. Urbina [14] came back to the problem of pointwise

estimates for T ∗ and proved that

T ∗f(y) ≤ Mγf(x) + max(2 , |x|n)e|x|
2 ||f ||1,γ ,

where

Mγf(x) = sup
r>0

1
γ(B(x, r))

∫

B(x,r)

|f | dγ

is the centered Gaussian Hardy-Littlewood maximal function. By using Besicovitch

covering Lemma, the γ-weak type (1,1) of Mγ follows. Nevertheless this estimate

does not give the weak type (1,1) inequality with respect to the Gaussian measure

for T ∗ except for n = 1.

Since for r and x fixed, the maximum of the kernel of the operator T r is attained

at y = x/r, the centered maximal operator does not seem to be the best average

maximal function to be used in order to get the γ-weak type (1,1) inequality.

We can estimate T ∗ by the non-centered Gaussian Hardy-Littlewood maximal func-

tion, but P. Sjögren proved in [24] that this maximal function is not weak type (1,1).

The main difficulty with this maximal operator is that we can not use Wiener cov-

ering Lemma since γ is far from being a doubling measure.

The first of the two basic goals of this article is to prove the weak type (1,1)

inequality for T ∗ with respect to the Gaussian measure by using a covering lemma

which is halfway between Besicovitch and Wiener and whose origin goes back to

the Doctoral Dissertation of L. Forzani in [4]. We will prove something stronger

than the weak type (1, 1) inequality for T ∗. First let us define

MΦf(x) = sup
0<r<1

1

γ((1 + δ)B(x
r , |x|r (1− r)))

∫

Rn

Φ
( |x− r y|√

1− r2

)
|f(y)| dγ(y)

where Φ : R+
o → R+

o is a non-increasing function such that S =
∑

ν≥1 Φ( 1
2 (ν −

1)) ν2n < ∞ and δ = δr,x = r
|x|(1−r) min{ 1

|x| ,
√

1− r}.
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By taking now Φ(t) = 1
πn/2 exp (−t2), it will be proved that

T ∗f(x) ≤ CMΦf(x)

(see proof of Corollary 1.1 in § 4).

In § 2 we will prove the following theorem and its corollary in § 4:

Theorem 1.1. There exists a constant C depending only on S and n, such that

for all f ∈ L1(dγ), λ > 0, we have

γ{x ∈ Rn : MΦf(x) > λ} ≤ C

λ

∫

Rn

|f(y)| dγ(y),

i.e. MΦf is γ-weak type (1,1).

Corollary 1.1. T ∗ is γ-weak type (1,1).

This result relies strongly on the following subtle covering lemma which will be

proved in section § 4, where a polynomial growth for the overlapping of an special

family of dilations for the covering balls is obtained.

Lemma 1.1. Let A = {xα : α ∈ I} be a subset of Rn \ B̄(0, 2ζ), with ζ > 2 fixed

and I a finite set of indices. For each x ∈ A a number r = r(x) ∈ ( 3
4 , 1 − ζ2

|x|2 ) is

given. Let Bj and Bν
j be the balls B(xj

rj
,
|xj |
rj

(1 − rj)) and B(xj

rj
, νρj) respectively,

with ν ≥ 1 and ρj =
√

1− rj, and δj = rj

|xj |(1−rj)
min{ 1

|xj | ,
√

1− rj} = rj

|xj |2ρ2
j
.

Then there exist a positive constant C, depending only on n, and a subset J of I

such that

i) A ⊂
⋃

j∈J

(1 + δj)Bj ;

ii)
∑

j∈J

χBν
j
(z) ≤ C ν2 n.

On the other hand the proof of Corollary 1.1 is based on the following lemma where

we compute explicitly the Gaussian measure of a ball:

Lemma 1.2. There exists a constant C depending on n such that for all x ∈
Rn \ {0}, r ∈ (1/2, 1) and s ∈ (0, 1/2) the following inequality holds

γ

(
B

(
x

r
,
|x|
r

s

))
≤ C s

n−1
2 exp

(
−|x|

2

r2
(1− s)2

)
min

{
1
|x|2 , s

1
2

}
.



6 H. AIMAR, L. FORZANI, AND R. SCOTTO

Let us now introduce the second problem of this paper.

At the end of the last century great efforts have been made in order to get a

general singular integral theory in the context of the Ornstein-Uhlenbeck differential

operator L. By analogy with the classical harmonic analysis the Gaussian Riesz

Potentials were defined as Iη = (−L)−η with η > 0 over the orthogonal complement

of the eigenspace associated with the eigenvalue 0. Formally,

Iη =
1

Γ(η)

∫ ∞

0

tη−1T t dt.

These operators turned out to be not weak type (1, 1) (see [9]). They are indeed

bounded on Lp(dγ) for 1 < p < ∞ but unlike the classical Riesz Potentials these

do not improve integrability on the Lp scale. They do though on the LpLogL scale

(see [7]).

By following [26] it is possible to define the higher order Riesz Transforms as

Rαf(x) = (−1)|α|dαI|α|/2f(x)

with α = (α1, · · · , αn) ∈ Nn
0 , |α| =

n∑

j=1

αj , and dα = ∂|α|

∂
α1
x1 ···∂

αn
xn

. These operators

were proved to be bounded on Lp(dγ) by several people from different points of

view, see [18], [11], [22], [27], [12], [13], [20] & [8]. But surprisingly the weak type

(1, 1) case of these operators need not be true for all α. These operators are weak

type (1, 1) if and only if |α| ≤ 2, see [19], [6], [3], [20], [10], [5] & [1].

Let us go back and review the relationship between L the infinitesimal generator of

T t and the derivative operator d which defines the higher order Riesz Transforms

Rα through the potentials I |α|
2

.

B. Muckenhoupt in [19] defined in this context the Poisson integral u and its con-

jugate function v in L2 through Hermite expansions, and as integral operators oth-

erwise, so that they satisfy the following generalized Cauchy-Riemann equations




∂u
∂x = −∂v

∂t

∂u
∂t = 1

2ex2 ∂
∂x (e−x2

v)

with u verifying the following second order elliptic differential equation

∂2u

∂t2
+ Lu = 0.

In [16], K. Itô factors L out in terms of two derivative operators which are in duality

with respect to the Gaussian measure: L = δ d, which in the finite dimensional
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case d is just the usual gradient and δ = 1
2e|x|

2
d e−|x|

2
is the Gaussian gradient.

If we use δ instead of d in Muckenhoupt’s approach, we get the new generalized

Cauchy-Riemann system 



δū = −∂v̄
∂t

∂ū
∂t = dv̄,

with the function ū satisfying the second order partial differential equation

∂2ū

∂t2
+ L̄ū = 0,

where L̄ = L− I = d δ.

From the Quantum Mechanics point of view, what we are doing is to substitute the

pair of operators (P,Q) by the real one (iP−2Q, iP) = (δ, d). Since the commutator

[δ, d] is the identity operator, we again have that L̄ = d δ.

If in the construction of the Gaussian Riesz transforms we use δ instead of d and

L̄ instead of L we obtain an awesome result: the Riesz transforms associated with

these new operators are all weak type (1, 1) independently of their orders.

For 1 < p < ∞, the Lp(dγ) boundedness of these new operators follows from P. A.

Meyer Multiplier Theorem in [18] which cannot be applied to prove the weak type

(1, 1) inequality.

If in Rn we use the following gradient

δα =
1

2|α|
e|x|

2
dαe−|x|

2

and the Riesz potentials associated with L̄, then these new singular integral oper-

ators are defined by

R̄αf(x) = (−1)|α|δα(−L̄)−|α|/2f(x).

The action of one of these operators over a Hermite polynomial is as follows

R̄αHβ =
(−1)|α|

2|α|(|β|+ 1)|α|/2
e|x|

2
dα(e−|x|

2
Hβ(x))

=
(−1)|α+β|

2|α|(|β|+ 1)|α|/2
e|x|

2
dα+β(e−|x|

2
)(1.1)

=
1

2|α|(|β|+ 1)|α|/2
Hα+β(x)

On the first line we use that

L̄Hβ = −(|β|+ 1)Hβ and (−L̄)−|α|/2Hβ =
1

(|β|+ 1)|α|/2
Hβ .
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The singular integral operators R̄α are weak-type (1, 1) for all α. More precisely in

§ 3 we will prove the following theorem:

Theorem 1.2. There exists a constant C depending only on n and α such that for

all f ∈ L1(dγ), λ > 0, we have

γ{x ∈ Rn : R̄αf(x) > λ} ≤ C

λ

∫

Rn

|f(y)| dγ(y).

i.e. R̄αf is γ− weak type (1,1).

The main feature in order to prove this theorem will be to apply Theorem 1.1 with

an special Φ.

2. A new maximal function MΦ

In this section we will prove the γ−weak type of the operator

MΦf(x) = sup
0<r<1

1

γ((1 + δ)B(x
r , |x|r (1− r)))

∫

Rn

Φ
( |x− r y|√

1− r2

)
|f(y)| dγ(y)

where Φ : R+
o → R+

o is a non-increasing function such that S =
∑

ν≥1 Φ( 1
2 (ν −

1)) ν2n < ∞ and δ = δr,x = r
|x|(1−r) min{ 1

|x| ,
√

1− r}.

Proof of Theorem 1.1 We consider only r > 3
4 , since the maximal operator is

trivially γ-weak type (1,1) for 0 < r ≤ 3
4 (see [4]). Let us denote with the same

letter MΦ the maximal operator restricted to the interval 3
4 < r < 1, with M1

Φ

the maximal operator for 3
4 < r < 1 − ζ2

|x|2 and M2
Φ the corresponding one for

1− ζ2

|x|2 < r < 1. ( ζ is the constant chosen in Lemma 1.1).

First we will prove that for |x| ≤ 2ζ, MΦf(x) ≤ CMγf(x), where Mγ is the

centered Gaussian Hardy-Littlewood maximal function and which is known to be

γ-weak type (1, 1). Indeed, let us call Rx,r = |x|
r (1 − r) + min{ 1

|x| ,
√

1− r}, then
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for |x| ≤ 2ζ,

MΦf(x) = sup
3/4<r<1

1
γ(B(x

r , Rx,r))

∫

Rn

Φ
( |x− r y|√

1− r2

)
|f(y)| dγ(y)

≤ C sup
3/4<r<1

e|x|
2

|B(x,Rx,r)|
∞∑

ν=0

∫

νRx,r≤|y− x
r |≤(ν+1)Rx,r

Φ
(

r|y − x
r |√

1− r2

)

|f(y)|dγ(y)

≤ C

∞∑
ν=0

Φ(ν/8ζ)(ν + 2)n

sup
3/4<r<1

1
γ(B(x, (ν + 2)Rx,r))

∫

B(x,(ν+2)Rx,r)

|f(y)| dγ(y)

≤ CMγf(x).

For |x| ≥ 2ζ, MΦf(x) ≤ M1
Φf(x) + M2

Φf(x) and the γ-weak type (1, 1) of MΦ will

follow once we prove that both M1
Φ and M2

Φ are γ-weak type (1, 1).

In order to prove the weak type (1,1) of M1
Φ it is enough to prove that

γ(E1,λ
N ) ≤ C

λ

∫

Rn

|f(y)| dγ(y),

with that constant C independent of N and f , where

E1,λ
N = {x ∈ Rn : |x| ≥ 2ζ and M1

Φf(x) > λ} ∩B(0, N).

For each x ∈ E1,λ
N there exists a r = r(x) ∈ ( 3

4 , 1− ζ2

|x|2 ) such that

(2.1)
1

γ((1 + δ)B(x
r , |x|r (1− r)))

∫

Rn

Φ
( |r y − x|√

1− r2

)|f(y)|dγ(y) ≥ λ.

For every x ∈ E1,λ
N , we have that |x| 1−r

r is bounded above and below by positive

numbers, and the centers x
r are a bounded subset of Rn. Hence, there exists ε > 0

such that for all 0 < α < 1

γ

(
B(

x

r
, (1 + α)|x|1− r

r
+ ε)

)
≤ 2γ

(
B(

x

r
, (1 + α)|x|1− r

r
)
)

for all x ∈ E1,λ
N . Let A be a subset of E1,λ

N which is a maximal set with the

property |x − x̄| > ε
2 for x 6= x̄, x ∈ A, x̄ ∈ A. Since E1,λ

N is bounded, A is a

finite set A = {y1, . . . , yL}. If we apply Lemma 1.1 to the set A we get a family of

balls
{

Bj = B(xj

rj
, |xj | 1−rj

rj
)
}

j∈J⊂{1,...,L}
such that A ⊂ ∪j∈J(1 + δj)Bj and ii) of

Lemma 1.1 also holds. Thus

E1,λ
N ⊂

⋃

j∈J

B

(
xj

rj
, (1 + δj)

|xj |
rj

(1− rj) + ε

)
.
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Then

γ(E1,λ
N ) ≤ 2

∑

j∈J

γ

(
B(

xj

rj
, (1 + δj)|xj |1− rj

rj
)
)

.

From (2.1), since Φ is a non-increasing function such that

∑

v≥1

Φ(
1
2
(v − 1))v2n < ∞,

we have, using (ii) of Lemma 1.1, that

γ(E1,λ
N ) ≤ 2

∑

j≥1

γ((1 + δj)Bj)

≤ C

λ

∑

j≥1

∫

Rn

Φ

(
|rjy − xj |
(1− r2

j )1/2

)
|f(y)| dγ(y)

≤ C

λ

∑

j≥1

∑

ν≥1

∫

B(
xj
rj

,νρj)−B(
xj
rj

,(ν−1)ρj)

Φ

(
|rjy − xj |
(1− r2

j )1/2

)
|f(y)| dγ(y)

=
C

λ

∑

j≥1

∑

ν≥1

Φ(
1
2
(ν − 1))

∫

Bν
j

|f(y)| dγ(y)

≤ C

λ

∫

Rn

∑

ν≥1

Φ(
1
2
(ν − 1))

∑

j

χBν
j
(y)|f(y)| dγ(y)

≤ C

λ

∫

Rn

∑

ν≥1

Φ(
1
2
(ν − 1))ν2n|f(y)| dγ(y)

≤ C

λ

∫

Rn

|f(y)| dγ(y).

Now, we will prove that M2
Φ is weak type (1,1). First, let us observe that, if

r > 1 − ζ2

|x|2 then, for all y ∈ (1 + δ)B(x
r , |x|r (1 − r)) = B(x

r , |x|r (1 − r) +
√

1− r),

the values of e−|y|
2

are equivalent.

Now, let us define

E2,λ
N = {x ∈ Rn : |x| ≥ 2ζ and M2

Φf(x) > λ} ∩B(0, N).

The weak type (1,1) for M2
Φ follows once we prove the following inequality

(2.2) γ(E2,λ
N ) ≤ C

λ
||f ||1,γ

with C being a constant indepedent of N and f.
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For each x ∈ E2,λ
N , we have γ((1 + δ)B(x

r , |x|r (1 − r))) ' e−|x|
2
(1 − r)

n
2 . To prove

(2.2), we will divide the integral in M2
Φf in two parts: one given by |y − x| < 2 C

|x|r
and the other one by |y − x| > 2 C

|x|r .

For the first region we have

e|x|
2

(1− r)
n
2

∫

|y−x|<2 C
|x|r

Φ
( |ry − x|√

1− r2

)
|f(y)| dγ(y)

≤ C
e|x|

2

(1− r)
n
2

∫

|y−x|<C
√

1−r
r

|f(y)| dγ(y) +(2.3)

C
e|x|

2

(1− r)
n
2

∫

C
√

1−r
r <|y−x|<2 c

r|x|

Φ
(

c
|y − x|√
1− r2

)
|f(y)| dγ(y)

≤ CMT f(x),

with MT the truncated non-centered Gaussian maximal function defined by

MT f(x) = sup
x∈B(y,t)

0<t<min{1, 1
|x|}

e|x|
2

ωntn

∫

B(y,t)

|f(z)| dγ(z),

where ωn is the volume of the unit ball in Rn. The first inequality follows from the

fact that Φ is bounded and |ry − x| ≥ r|y − x| − (1− r)|x| ≥ r
2 |y − x|. The second

inequality follows from the fact that Φ is a Lebesgue integrable, non-increasing

function and hence, it is a good approximation of the identity.

The truncated non-centered Gaussian maximal function is bounded by the centered

Gaussian Hardy-Littlewood maximal function and therefore is γ-weak type (1,1).

For the second region, we have that |ry − x| > C|y − x|. Therefore

1
(1− r2)

n
2

Φ
( |ry − x|√

1− r2

)
≤ 1

|y − x|n
( |y − x|√

1− r2

)n

Φ
(

c|y − x|√
1− r2

)

≤ C
(
√

1− r2)n

|y − x|2n

≤ C

|x|n|y − x|2n
,

since Φ( 1
2 (ν − 1)) ≤ S.

Then,

e|x|
2

(1− r)
n
2

∫

|y−x|>2 c
|x|r

Φ
( |ry − x|√

1− r2

)
|f(y)| dγ(y)

≤ C
e|x|

2

|x|n
∫

|y−x|>2 c
|x|

|f(y)|
|y − x|2n

dγ(y),
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but

e|x|
2

|x|n
∫

|y−x|>2 c
|x|

|f(y)|
|y − x|2n

dγ(y) ∈ L1(dγ).

So, inequality (2.2) follows.

3. New higher order Gaussian Riesz Transforms

The new higher order Gaussian Riesz Transforms are defined as

R̄αf(x) = p.v. e|x|
2
∫

Rn

K̄α(x, y)f(y) dγ(y)

where

K̄α(x, y) = Cα

∫ 1

0

(− log r

1− r2

) |α|−2
2

Hα

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
n
2 +1

dr.

Formally K̄α is obtained by differentiating with the dual derivative the kernel cor-

responding to the Riesz potentials associated with L̄

(−L̄)−|α|/2f(x) =
1

Γ(|α|/2)

∫ 1

0

(− log r)
|α|
2 −1T rf(x)dr

= C̃αe|x|
2
∫

Rn




∫ 1

0

(− log r)
|α|−2

2
e
− |x−ry|2

1−r2

(1− r2)
n
2

dr


 f(y) dγ(y).

Proof of Theorem 1.2 For each x ∈ Rn we view this operator as the sum of

two ones which are obtained, as it is usual in this context, by splitting Rn into

a local part, Bx, the Euclidean ball centered at x and radius min (1, 1
|x| ), and its

complement called the global part. Thus

R̄αf(x) = R̄α,lf(x) + R̄α,gf(x)

where R̄α,lf(x) = R̄α(fXBx) and

R̄α,gf(x) = R̄α(f(1−XBx))

We will prove that these two operators are γ-weak type (1,1) and so will be R̄α.

In order to prove that R̄α,l is γ-weak type (1,1) we state the following theorem

whose proof can be found in either [7] or [21].
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Theorem 3.1. Let K(x, y) be a C1 function off the diagonal of Rn × Rn which

satisfies

|K(x, y)| ≤ C

|x− y|n and |DyK(x, y)| ≤ C

|x− y|n+1

for |x − y| ≤ min (1, 1
|x| ), and the principal value of the integral operator T with

kernel K is bounded on Lp(dγ) for some 1 < p < ∞, then Tl, defined as Tl(f)(x) =

T (fBx)(x), is γ-weak type (1,1)

In our case

Tf(x) = p.v.

∫
K(x, y)f(y)dy

with

K(x, y) = e|x|
2K̄α(x, y)e−|y|

2

= Cα

∫ 1

0

(− log r

1− r2

) |α|−2
2

Hα

(
x− ry√
1− r2

)
e
− |rx−y|2

1−r2

(1− r2)
n
2 +1

dr

and therefore

∂K
∂yj

(x, y) = 2Cα

∫ 1

0

(− log r

1− r2

) |α|−2
2

[ −rαj√
1− r2

Hα−ej

(
x− ry√
1− r2

)
(x− ry)√

1− r2
+

Hα

(
x− ry√
1− r2

)
(rxj − yj)

1− r2

]
e
− |rx−y|2

1−r2

(1− r2)
n
2 +1

dr.

In the following two claims we will show that the hypotheses of Theorem 3.1 are

fulfilled for this operator.

Claim 1: on Bx, |K(x, y)| ≤ C
|x−y|n and | ∂K

∂yj
(x, y)| ≤ C

|x−y|n+1 .

Proof: For every y ∈ Bx there exists a constant C > 0 such that C−1 ≤
e|y|

2−|x|2 ≤ C, then

|K(x, y)| ≤ C|e−|x|2+|y|2K(x, y)| = C|Kα(x, y)|

and ∣∣∣∣
∂K
∂yj

(x, y)
∣∣∣∣ ≤ C

∣∣∣∣e−|x|
2+|y|2 ∂K

∂yj
(x, y)

∣∣∣∣ .

On the other hand on Bx,

e
−c

|x−ry|2
1−r2 = e

−c
|x−y|2
1−r2 e−c 1−r

1+r |y|2e−c
(x−y)·y

1−r ≤ Ce−c
|x−y|2
1−r ,
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and thus with this inequality and taking into account that tme−ct2 ≤ C, ∀t ≥ 0,

we get
∣∣∣∣Hα

(
x− ry√
1− r2

)∣∣∣∣ e
− |x−ry|2

1−r2 ≤ C

|α|∑
m=0

∣∣∣∣
x− ry√
1− r2

∣∣∣∣
m

e
− |x−ry|2

2(1−r2) e
− |x−ry|2

2(1−r2) ≤ Ce−c
|x−y|2
1−r .

Therefore, by combining all the above remarks, on Bx we have

|K(x, y)| ≤ C

∫ 1

0

(− log r

1− r2

) |α|−2
2 e−c

|x−y|2
1−r

(1− r)
n
2 +1

dr

≤ C




∫ 1
2

0

(− log r)
|α|−2

2 dr +
∫ 1

1
2

e−c
|x−y|2
1−r

(1− r)
n
2 +1

dr




≤ C

(
1 +

1
|x− y|n

)
≤ C

|x− y|n
and

∣∣∣∣
∂K
∂yj

(x, y)
∣∣∣∣ ≤ C

∫ 1

0

(− log r

1− r2

) |α|−2
2 e−c

|x−y|2
1−r

(1− r)
n+3

2

dr

≤ C




∫ 1
2

0

(− log r)
|α|−2

2 dr +
∫ 1

1
2

e−c
|x−y|2
1−r

(1− r)
n+3

2

dr




≤ C

(
1 +

1
|x− y|n+1

)
≤ C

|x− y|n+1
.

Claim 2: The operator T = R̄α is bounded on L2(dγ).

Proof: Let f ∈ L2(dγ), f =
∑

β aβhβ with aβ =
∫

fhβ dγ. From the action of

R̄α over Hermite polynomials (1.1)

R̄αhβ(x) =

[∏n
j=1

∏αj−1
k=0 (βj + αj − k)

(2(|β|+ 1))|α|

] 1
2

hβ+α(x)

and therefore

‖R̄αf‖2L2(dγ) =
∑

β

∏n
j=1

∏αj−1
k=0 (βj + αj − k)

(2(|β|+ 1))|α|
|aβ |2

≤
∑

β

n∏

j=1

(1 + αj)αj |aβ |2

≤ (1 + |α|)|α|
∑

β

|aβ |2 = C‖f‖2L2(dγ).

Now if we apply these two claims to Theorem 3.1, the γ-weak type (1,1) of R̄α,l

follows.
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In order to prove that R̄α,g is also γ-weak type (1,1) we will prove

Claim 3: on Rn \Bx, |R̄α,gf(x)| ≤ CMΦf(x) with Φ(t) = e−ct2 .

This together with Theorem 1.1 give the weak type (1,1) inequality for R̄α,g.

Proof of Claim 3

|K̄α(x, y)| =

∣∣∣∣∣∣

∫ 1

0

(− log r

1− r2

) |α|−2
2

Hα

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)
n
2 +1

dr

∣∣∣∣∣∣

≤ C

∫ 3
4

0

(− log r)
|α|−2

2
e
− |x−ry|2

2(1−r2)

(1− r2)
n
2

dr +

C

∫ 1−ζ/|x|2

3
4

e
− |x−ry|2

2(1−r2)

(1− r2)
n−1

2

(|x| ∨ (1− r2)−
1
2 )

dr

|x|(1− r2)3/2
+

C

∫ 1

1−ζ/|x|2
e
−c

|x−ry|2
1−r2

(1− r2)
n−1

2

(|x| ∨ (1− r2)−
1
2 )

e−c̄
|x−y|2
1−r

1− r
dr

= C
(K̄1

α(x, y) + K̄2
α(x, y) + K̄3

α(x, y)
)

where the inequality is obtained by annihilating the Hermite polynomial with part of

the exponential, then splitting the unit interval of the integral into three subintervals

[0, 3/4], [3/4, 1 − ζ/|x|2], and [1 − ζ/|x|2, 1] and taking into account that on the

second one |x|∨ (1−r2)−1/2 ≥ |x|, on the third one |x|∨ (1−r2)−1/2 ≥ (1−r2)−1/2

and |x− ry| ≥ c̄|x− y| and on the last two intervals − log r/(1− r2) is bounded by

a constant.

Thus, by using the definition of kernels K̄j
α with j = 1, 2, 3, interchanging the order

of integration on each operator R̄j
α,g with j = 1, 2, 3, using Lemma 1.2 and setting

in this context Φ(t) = e−ct2 , we get

R̄1
α,gf(x) = e|x|

2
∫

Rn

K̄1
α(x, y) |f(y)| dγ(y)

= e|x|
2
∫

Rn

∫ 3
4

0

(− log r)
|α|−2

2
e
− |x−ry|2

2(1−r2)

(1− r2)
n
2

dr |f(y)| dγ(y)

=
∫ 3

4

0

(− log r)
|α|−2

2 e|x|
2
∫

Rn

e
− |x−ry|2

2(1−r2)

(1− r2)
n
2
|f(y)| dγ(y) dr

≤ C

∫ 3
4

0

(− log r)
|α|−2

2 dr MΦf(x)

≤ C MΦf(x),
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R̄2
α,gf(x) = e|x|

2
∫

Rn

K̄2
α(x, y) |f(y)| dγ(y)

= e|x|
2
∫

Rn

∫ 1−ζ/|x|2

3
4

e
− |x−ry|2

2(1−r2)

(1− r2)
n−1

2

(|x| ∨ (1− r2)−
1
2 )

dr

|x|(1− r2)3/2

|f(y)| dγ(y)

=
∫ 1−ζ/|x|2

3/4

e|x|
2
∫

Rn

e
−c

|x−ry|2
(1−r2)

(1− r2)(n−1)/2
(|x| ∨ (1− r2)−1/2)|f(y)|dγ(y)

dr

|x|(1− r2)3/2

≤ C
1
|x|

∫ 1−ζ/|x|2

3/4

dr

(1− r)3/2
MΦf(x)

≤ C MΦf(x),

and finally

R̄3
α,gf(x) = e|x|

2
∫

Rn

K̄3
α(x, y) |f(y)| dγ(y)

= e|x|
2
∫

Rn

∫ 1

1−ζ/|x|2
e
−c

|x−ry|2
1−r2

(1− r2)
n−1

2

(|x| ∨ (1− r2)−
1
2 )

e−c̄
|x−y|2
1−r

1− r
dr |f(y)| dγ(y)

=
∫ 1

1−ζ/|x|2
e|x|

2
∫

Rn

e
−c

|x−ry|2
(1−r2)

(1− r2)(n−1)/2
(|x| ∨ (1− r2)−1/2)

e−c̄
|x−y|2
1−r

1− r
|f(y)| dγ(y) dr

≤
∫ 1

1−ζ/|x|2
e|x|

2
∫

Rn

e
−c

|x−ry|2
(1−r2)

(1− r2)(n−1)/2
(|x| ∨ (1− r2)−1/2)

1
|x− y|2 |f(y)| dγ(y) dr

≤ C|x|2
∫ 1

1−ζ/|x|2
dr MΦf(x)

≤ C MΦf(x).

And since |R̄α,gf(x)| ≤ Cα

∑3
j=1 R̄j

α,gf(x), Claim 3 holds.
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4. Proof of Lemmas & Corollary 1.1

Proof of Lemma 1.1. Let I1 = I, α1 ∈ I1 such that |xα1 | = min{|xα| : α ∈ I1}.
Let x1 = xα1 and B1 = Bα1 . Let I1, . . . Ik−1; x1, . . . , xk−1; B1, . . . , Bk−1 be chosen;

we define Ik = {α ∈ I : xα /∈ ∪k−1
j=1 (1 + δj)Bj}, and we choose αk ∈ Ik such that

|xαk
| = min {|xα| : α ∈ Ik}. Let xk = xαk

and Bk = Bαk
. Let J = {α1, . . . , αN}

where N is the first integer for which IN+1 = ∅. Then (i) is immediate. Before

proving (ii) let us make some remarks.

(1) xj was chosen so that xj /∈ (1 + δs)Bs for all s < j. Hence
∣∣∣∣
xs

rs
− xj

∣∣∣∣
2

=
|xs|2
r2
s

+ |xj |2 − 2|xj | |xs|
rs

cos〈xs

rs
, xj〉

≥ R2
s(1 + δs)2;

(2) |xj | ≥ |xs| for s < j; i.e. |xj | is increasing with j.

(3) |xs

rs
− xj

rj
|2 ≥ 1

rj
[ |xs|2

r2
srj

(rj − rs)2 + 2 (1−rs)
rs

] ≥ θ2 max2(ρj , ρs) for s < j. In

fact, using (1) and (2), and that 2R2
sδs = 2 (1−rs)

rs

∣∣∣∣
xs

rs
− xj

rj

∣∣∣∣
2

=
|xs|2
r2
s

+
|xj |2
r2
j

− 2
|xj |
rj

|xs|
rs

cos〈xs

rs
,
xj

rj
〉

≥ |xs|2
r2
s

+
|xj |2
r2
j

+
1
rj

[R2
s(1 + δs)2 − |xj |2 − |xs|2

r2
s

]

=
1
rj

R2
s(1 + δs)2 − 1

rj
[−|xj |2(1− rj

rj
) +

|xs|2
r2
s

(1− rj)]

≥ 1
rj

[R2
s(1 + δs)2 + |xs|2(1− rj)[

1
rj
− 1

r2
s

]]

≥ 1
rj

[
|xs|2
r2
s

(1− rs)2 + 2
(1− rs)

rs
+ |xs|2(1− rj)[

1
rj
− 1

r2
s

]]

=
1
rj

[
|xs|2
r2
srj

(rj − rs)2 + 2
(1− rs)

rs
]

≥ θ2max2(ρj , ρs).

To obtain the last inequality we consider two cases:

i) ρ2
s ≥ 1

2ρ2
j . Because of ρ2

s = (1− rs) and the nonnegativity of the first term, the

inequality follows.

ii) ρ2
j ≥ 2ρ2

s. We have that (rj − rs)2 = (ρ2
j − ρ2

s)
2 ≥ 1

4ρ4
j . Using the fact that

|xs|ρs ≥ ζ the inequality follows. (Recall that by hypothesis rs ≤ 1− ζ2

|xs|2 .)
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Now in order to prove (ii) we define

I1 = {j : j ∈ J and νρj ≥ κ}

I2 = {j : j ∈ J and
Rj

2
< νρj < κ}

I3 = {j : j ∈ J and νρj ≤ Rj

2
}

where Rj = |xj |
rj

(1− rj).

We will prove

(4.1)
∑

j∈Ii

χBν
j
(z) ≤ Cν2n for i = 1, 2, 3,

from which (ii) follows.

Now we prove (4.1). Let us consider I1(z) = {j ∈ I1 : z ∈ Bν
j }. In order to

obtain the desired estimate all we need is to find a sequence of pairwise disjoint

measurable sets {Sj}j∈I1(z) such that

(4) Sj ⊂ B(z, Cν);

(5) |Sj | ≥ C
νn for some constant C.

The case i = 1 in (4.1) follows from (4) and (5).

We define Sj = B(xj

rj
; θ

2ρj); (5) is immediate since j ∈ I1 which implies ρj ≥ κ
ν . In

order to get (4) let us take h ∈ Sj . Since z ∈ Bν
j , we have

|h− z| ≤ |h− xj

rj
|+ |xj

rj
− z|

≤ θ

2
ρj + νρj

≤ Cν.

That {Sj}j∈I1(z) is a family of pairwise disjoint sets follows from (3).

Now, consider I2(z) = {j ∈ I2 : z ∈ Bν
j }. In order to obtain the desired estimate

we just need to find a sequence of pairwise disjoint measurable sets {Sj}j∈I2(z) such

that

(6) Sj ⊂ B(z, Cν2);

(7) |Sj | ' 1 for some constant C.

The case i = 2 in (4.1) follows from (6) and (7).



ON GAUSIAN RIESZ TRANSFORMS AND MAXIMAL FUNCTIONS 19

We define Sj = B(z +(xj

rj
− z) |xj |

rj
, C), therefore (7) is immediate. Let us prove (6).

Take h ∈ Sj , using the fact that z ∈ Bν
j and Rj

2 ≤ νρj or equivalently ρj
|xj |
rj

≤ 2ν,

we get

|h− z| ≤ C + |(xj

rj
− z)| |xj |

rj

≤ C + νρj
|xj |
rj

≤ C + 2ν2

≤ Cν2.

To prove that the Sj are pairwise disjoint we will use consecutively the following

facts:

i) |xs

rs
− xj

rj
| ≥ θρs;

ii) |xs|ρs ≥
√

ζ ;

iii) |xj

rj
− z| ≤ νρj ≤ κ (j ∈ I2); and

iv) | |xs|
rs
− |xj |

rj
| ≤ |xs

rs
− xj

rj
≤ |νρs + νρj ≤ 2κ.

So
∣∣∣∣(

xj

rj
− z)

|xj |
rj

− (
xs

rs
− z)

|xs|
rs

∣∣∣∣ ≥ |xs|
rs

∣∣∣∣
xj

rj
− xs

rs

∣∣∣∣−
∣∣∣∣
xj

rj
− z

∣∣∣∣
∣∣∣∣
|xs|
rs

− |xj |
rj

∣∣∣∣

≥
√

ζ
θ

rs
− 2 κ2

≥ C

after choosing ζ and κ properly.

Finally, consider I3(z) = {j ∈ I3 : z ∈ Bν
j }. In order to obtain the desired estimate

all we need is to find a sequence of pairwise disjoint measurable sets {Sj}j∈I3(z)

such that

(8) Sj ⊂ B(z, Cνρτ );

(9) |Sj | ≥ Cρn
τ for some constant C, where ρτ = ρmin{j: j∈I3(z)}.

The case i = 3 in (4.1) follows from (8) and (9).

We define Sj = B(xj

rj
, θ

2ρj) . We will prove that

(4.2)
1
2
ρτ ≤ ρj ≤ 3

2
ρτ for all j ∈ I3(z).
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From (4.2) we have (8) and (9). That Sj are disjoint follows from (3).

Let us prove (4.2). From (3), |xτ

rτ
− xj

rj
|2 ≥ 1

rj

[
|xτ |2
r2

τ rj
(rj − rτ )2 + 2 (1−rτ )

rτ

]
, then

|xj

rj
− xτ

rτ
|2 ≥ |xτ |2

r2
τ

(ρ2
j − ρ2

τ )2 and since τ, j ∈ I3(z), we have |xτ |
rτ

≥ 2 ν
ρτ

. Therefore

(νρj + νρτ )2 ≥ |xj

rj
− xτ

rτ
|2

≥ |xτ |2
r2
τ

(ρ2
j − ρ2

τ )2

≥ 4
ν2

ρ2
τ

(ρ2
j − ρ2

τ )2.

Then 1 ≥ 2 |ρj−ρτ |
ρτ

. Now, this inequality is equivalent to |ρj − ρτ | ≤ 1
2ρτ which in

turn is equivalent to (4.2).

Proof of Lemma 1.2. We can write every y ∈ Rn as y = (ξ + |x| 1−s
r ) x

|x| + v;

with 〈v, x〉 = 0. It is clear that y ∈ B(x
r , |x|r s) if and only if ξ ∈ (0, 2s |x|r ) and

|v| <
√

2 |y|r s ξ − ξ2. Then, using this fact we have that

γ
(
B(

x

r
,
|x|
r

s)
)

=
∫

B( x
r ,
|x|
r s)

e−|y|
2
dz

= e−
|x|2
r2 (1−s)2

∫ 2s
|x|
r

0

e−2ξ
|x|
r (1−s) e−|ξ|

2

∫

{v∈Rn−1: |v|<
√

2
|x|
r s ξ−ξ2}

e−|v|
2

dv dξ

≤ Cne−
|x|2
r2 (1−s)2

∫ 2s
|x|
r

0

e−2ξ|x| 1−s
r (2

|x|
r

s ξ − ξ2)
n−1

2

dξ

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2

∫ 2s
|x|
r

0

e−2ξ|x| 1−s
r (2

|x|
r

ξ)
n−1

2

dξ

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2

|x|(1− s)
n+1

2

∫ 4s
|x|2
r2 (1−s)

0

e−t t
n−1

2 dt

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2

|x| min (1, s|x|2)

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2 min (

1
|x| , s |x|)

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2 min (

1
|x| , s

1
2 ).
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Proof of Corollary 1.1. We choose Φ(t) = 1
πn/2 e−t2 . From Lemma 1.2, γ((1+

δ)B(x
r , |x|r (1 − r)) ≤ C e−|x|

2
(1 − r)

n
2 . Then T ∗f ≤ CMΦf(x), and therefore the

γ-weak type (1,1) inequality for T ∗ follows from Theorem 1.1.
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