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Abstract

For any space of homogeneous type a quasi-distance equi-
valent to the original one is obtained satisfying that, if
B and B' are balls such that the center of B' belongs to
B and the radius of B' is smaller than the radius of B then,
the measure of BN B' is smaller than a constant fraction of
the measure of B'. An application to weighted norm inequali-

ties for the Hardy-Littlewood maximal function, which extends

a result of A. P. Calderén, is given.



Introduction.

A particular case of space of homogeneous type is R" with
the euclidean distance and the Lebesgue measure. Some fami-
liar facts in R" do not remain valid in general. However,
whenever it is possible, it is desirable to recover them in
some way or another. For instance in [ 5] it is shown that
it can always be found a suitable quasi-distance, equivalent
to the original one, havingthe property that the open balls
are open subsets . A troublesome feature of spaces of homo-
geneous type is that, if B is a ball and B' is another ball
with center in B and radius smaller than that of B, the measure
of BN B' is not, in general, greater than a constant fraction
of the measure of B', as it is the case in R" . This problem
arises, for example , even in the rather simple case of the
parabolic space ( see [2] ) induced in R by the 2 x 2 diagonal
matrix (ail) with ag; =3 and a,, = 1. This handicap of the
spaces of homogeneous type originates technical difficulties,
for instance, when trying to solve problems involving weights.
In this paper we give a method of constructing a quasi-distance
equivalent to the original one, such that the balls defined by
the new quasi-distance have the desired property (see Theorem
(2.7)). In situations where the substitution of the original

quasi-distance by an equivalent one does not affect the nature of the

problem under study this method may be useful. We ilustrate this



situation by giving in part 3 of this paper an application
to the problem of weighted norm inequalities for the Hardy-
Littlewood maximal function. This problem in spaces of
homogeneous type was already considered by A.P. Calder6n in
[ 1] , where some additional restrictions on the space of
homogeneous type are imposed. The usc <I Theorem (2.7)
enables us to apply, in an almost 'iteral manner, the’
method developped by R. R. Coi.man and C. Fefferman for the
case of R* (se~[ 3] ). The rccsult obtained in Theorem (3.2)
extends that cf [1] since less restrictions are imposed on

the space of homogeneous t .

§ 1. Definitions and Notation.

Let X be a set. A real valued nonnegative function d(x, y)
on Xx«X shall be called a quasi-distance on X, if the fol-

lowing conditions are satisfied:

(1:1) d(x, y) 0 if and only if x =y,

(1.2) d(x, y)

d(y, x) for every x and y in X,

and there exists a finite constant K such that

(1.3) d(x, vJ < K [d(x, z) + d(z, y)]



for every x, y and z in X. Let U(r) = {(x, y): d(x, y) <r}.
The family {U(r)}ﬂ>o of subsets of x xx defines a

basis of a metrizable uniformity for X. The balls

B‘ (x, r) = ({y: d(x, v) <r} , r >0, form a basis

of neighborhoods for the topology induced by the uniformity.
Let us consider a set X endowed with a quasi-distance d(x,y)

and a positive measure y, , defined on a c—-algebra of sub-

sets of X containing all the balls Bd (x, r). We shall say

that (X, d , y ) is a space of homogeneous type if there exists

a finite constant A such that
(1.4) 0 < u (Bd (x, 2r)) < A y (Bd (x, r))< = ,

hold for every x in X and r > 0. Using a Wiener type covering
lemma (see, for instance, lemma 3 of [1].)'we can see that
every open subset is a countable union of balls. This shows
that every open subset ismeasurable. As usual, if U and V are
subsets of Xx X , U o V shall stand for the composition of U and
V, that is to say, the set of all the ordered pairs (x, y) such

that there 'is an element z in X satisfying that (x, z) € U and

(Zr Y) € V.

§ 2. Construction of an equivalent quasi-distance.

Let n be a nonnegative integer, 0< 2Ka <1 and r> 0. We

define the subsets U(r, n) of XxX as



c
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o
]

U(r)

and, for n >0,

U(a" r) oU (r, n-1) o U(a" r).

U(r, n)

Moreover, we shall denote by V(r) the union

V(r) = U U(r, n).
n «0

It is easy to see that the family {V(r)}r> 5 also defines a
uniformity for X. The following lemma shows that the uniformi

ties for X defined by {U(r)h S o and {V(r)h S0 coincide .

Lemma (2.1). For every r >0, the following inclusions hold:

Ulr) € V(r) C U3 k>r) .

Proof: It is clear from the definitions of V(r) and U(r, 0)
that U(r) is contained in V(r). In order to show the remaining
inclusion, let us consider (x, y) € V(r). Then, by definition

of V(r), there exists n > 0 such that (x, y) € U(r, n). There-
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fore, we can get a finite sequence ~[y;} rkmes 1, 22, ..o

t (n+ 1),satisfying the following conditions:

(2.2)  y, =v,¥

1 Lasy T Bu (Y.

,+ Y, ) e Ulr), and 1f,0 <k <n,

«,both (yIl . yt‘l) and (y_k_l, y ., ) belong to U(all r).

From this and the quasi-triangular property (1.3), we obtain

d(x, y) < K[d(x,y) +dly,, y)] < Kr +Kjdl(x, y J+aly .v)] .

By repeated application of property (1.3) it follows that

n ) n i .
d(y,, y) <1.}:1 K dly,, ¥,,) fnd d(x, Y“)<II-‘ K d(y_l ' Y-:-:"

Taking into account the definition of ‘{yk} and that 2Ka: < 1,

we obtain

dix, y) <kr+2k°] k' a'r<kr (1+xa (1-ra)'<3Krc,
=1

which proves that V(r) C U(3 K’r), as we wanted to shows

Definition (2.3). Let x and y belong to X, We define § (x, y)

6(x, y) = inf {r: (x, y) € v(r) }

It is immediate that 6 (x, y) is a nonnegative function on

XxX and satisfies (1.2).
The following lemma shows that § (x, y) is equivalent to d(x, y).



Lemma (2.4). For every x and y in X, we have

s(x, y) < d(x, y) < 3 K? 5(x, v).

Proof. Given r > d(x, y), from lemma (2.1), we get (x, y)
€ V(r) . Therefore §(x, y) < r. This implies that

§ (x, y) < d(x, y). On the other hand, if s > §(x, y)
then (x, y) € V(s). Applying again Lemma (2.1) we obtain
(x, y) € U(3 kzs) or, equivalently, d(x, y) < 3 k’ s. Hence

d(x, y) < 3 k' s(x, y)e

Corollary (2.5) . The function § (x, y) is a quasi-distance

on X which is equivalent to d(x, y) and satisfy the quasi-trian-

gular property (1.3) , with a constant K' = 3 K 3.

In the next lemma we show the relationship between the quasi-

distance § (x, y) and the subsets V(r) of XxX .

Lemma (2.6). Let x belong to X and r>0. 1If Ba(x, r)

={y : 6(x, y) <r }. Then

Bﬁ(x. r) ={y : (x, y) € V(r)}

Proof. Take y € B6 (x, r). Then 6 (x, y) < r, implying that



(x, y) € V(r). To prove the converse, let us assume tha§ &
(x, v) € V(r). As in the proof of Lemma (2.1), there exist I
n> 0 such that (x, y) € U(r, n) and a sequence {yk} , k = S
= +1, +2, ..., t (n+l), satisfying (2.2). Since this se-
guence 1is finite it also satisfies the conditions (2.2)

with some s<r instead of r. This shows that (x, y)€ U(s, n)

C V(s). Therefore, ¢(x, y) < s< r. Hencey € B,(x, 1),

as we wanted to prove

The main result of this paper is stated in the next theorem.

15)

Theorem (2.7). Let 6(x,y) be the quasi-distance defined in (2.3).

There exists a constant C >0 such that, if x € X, 0<r<2 K R,and

y € BG(X,R), then

w(Bgly, r) N Bg(x, R) 2> C u(Bgly, r) .

Proof. Let pand m be the integers satisfying a®™2 K < &',

and a"*'R < r € a® R, respectively. Observe that p <0. From
the assumption r <2 K R, we get that m + 1 > p - 1. Then, if
j=m-p+ 3, it follows that j #2. Since yGEBG(x, r), from
Lemma (2.6) we obtain that (x, y) € V(r). Let n be the nonneg
ative integer such that (x, y) € U(R, n),and let us consider
the sequence { yk}  k=¢t1, 2, ..., t(n+l) satisfying the con
ditions (2.2). We shall distinguish two cases, n »j and n < j.

Let us consider the case n »j. If z is a point in the ball



Bd(y_ , a' R), by repeated use of the quasi-triangular inequal-
I

ity, the definition of the sequence { yk} and the fact that

2 K a< 1, we get

(2.8) d(z, y)< K |d(z, Y;) +dly, ., y) ]
Ne j

< kKa'R+x §J K'"' awy .,y )
1

*
@ ieg i R

< a'*?* R ) (K a) < 2K a'"" R.

[ |
This implies that B (y a! rR)C B (y, 2 K a'"'R). From the
definition of the integers p and j, we have 2 K gt g atti=?

a™ ' ., Therefore

i m L1
Bd(y], a R)C Bd(y, a R) C Bd(y, By € Béty, r).

On the other hand, by considering the sequence obtained from

: Yu} replacing y : throughout y by z, it is clear that
1+ +

a Yy a' R) © B (x, R). Thus, we obtain
)

B, (Y a' Ry C B (y, r) NB(x, R).
1 (v]

“rom Lemma (2.4) and (2.8) applied to z = y, » we get

B (y, r) C B (y, 3 K'r) C By, 6 ka’' a'm).

The homogeneity of the measure (1.4) and these inclusions imply

that there exists a constant C, depending only on K and A, such

that



i
cu(BG(y, r)) < wB,/(y ,a R).
Summing up, we have

Cy (B6 (Y; r )) < 1] (Bd(Y’: aj R”QU (B \S(Y' r) N B }‘(X. R,

as we wanted to provea

Let us consider now the case n<j. In this case, we have

B, (y,d R C B,(y,a 'R. Let z€B,(y, a"'R.

= z to the sequence (v, 1},

If we add the terms Y. .* % and Yo, 2
..., ¥(n+1), the resulting sequence shows that

na+1 R) C

k = t1, t2,
(x, z) € V(R). By Lemma (2.1), we get B, (y, a

Ba(x, R) . Hence
(2.9) B (v, al rR) C B,(x, R).

On the other hand, using Lemma (2.4) and the facts that p <0

and am+*! R <« r, we have

(2.10) Bd(y. a' R) C B (v, a' R) C B (v, a®v'R) CB (y, r).

From (2.9) and (2.10), we obtain
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i
Bd (Y, a R) CBG(Y' r) F\Ba(x' R) .

Finally, since r< a™ R and using again Lemma (2.4), we get

B, (y, r) CB (y, 3 kK> a™ R) C B, (v, 6 K? af*? a! R).

Therefore, by homogeneity of the measure, it turns out that

(& u{BG(y, r)) < u(B . (y, r) n BG(x, r))
holds with the same constant C obtained for the first case.
This finishes the proof of the theorem .

From corollary (2.5) and theorem (2.7)we obtain.

Corollary (2.11). Let (X, d, ;) be a space of homogeneous

type. Then the function § (x, y) , defined in (2.3), is a
guasi-distance equivalent to d(x, y). Moreover, the balls

Bs(x, R) endowed with the restrictions of the quasi-distance
§ (x, y) and the measure u become spaces of homogeneous type

with constants K' and A' independent of R>0 and x € X.
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§ 3. Application.

Let f be a locally integrable function defined on a space
of homogeneous type (X, d, u). Given a measurable set E, we
denote by m (f) the average m g (£) = p (E) '] f d y. The Hardy-
Littlewood maximal function f* of f is def;;ed as f*(x) =

=sup m ( |£|). As usual, we shall say that a non-
I'>0 B(:l')

negative function w(x) satisfies the condition A, if there
exists a constant C such that

<1 /(p=1)

(a)) m, (w) . mg(w ) € C < =

holds for any ball B.

B. Muckenhoup proves in [ 6 ] that in the case of the euclidean

space R with the ordinary distance and the Lebesgue measure

f*(x) w(x) dx < CJ[f(x)|p w(x) dx

R" R"

holds with a constant C independent of f if and only if w(x)
satisfies ﬁa . Later R. R. Coifman and C. Fefferman gave in
[ 3], among other things, a simplified demonstration of

this fact. Imposing some restrictions on the space, A.P.
.

Calderén (see[ 1] ) generalized this result to spaces of homo-
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geneous type. In all these proofs the crucial step is to
show that if w(x) satisfies A o ! then it also satisfies a
"reverse HOlder inequality". Namely, there exists a constant

C, and gq> 1 such that

m (w")"“ < C m (w).

holds for every ball B. The core of the dificulty in the extension
of the results above to spaces of homogeneous type lies in the
proof of an adequate Calder6n-Zygmund type lemma. A more careful
analysis seems to indicate that the dificulty is due to the fact
that in spaces of homogeneous type if B is a ball and B' is another
ball with center in B and radius smaller than that of B then,
‘the measure of B M B' is not necessarily grater than a constant
fraction of the measure of B'. The result obtained in Theorem
(2.7)allows us to handle this problem, making possible to apply,
almost without change , the simplified method given in [ 3],
and eliminating some of the restrictions imposed in[1] .

We proceed to give an outline of this application of the results
of the preceding paragraph. Given a ball B = B(x, r) we denote
by ; the ball ; =B (x, 5Kr).

We shall make use of the following version of the Calderfn-

Zigmund lemma:
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Lemma (3.1). Let (Y, d,» ) be a bounded space of homo- o

geneous type, and let f(y) be a nonnegative integrable function
on Y. Then for any A 2 mY(f) there exists a sequence {Bl}

of disjoints balls such that

(i) » < m (f) « A ), where A is the constant satisfying
i
(1.4) in Y.

"

(ii) For every y in the complement ofkﬁ B and every ball
i
B centered at vy

m_(f) < 2 -

Proof. Since Y is bounded, there exists R positive such
that Y = B(y, R) for every y in Y. Let 2 be the set of points
y €Y such that there exists a ball B with center at y satisfying
m (f) >\ . For any y inQ the set {r: Hln(,.') (f) > 2}

is not empty,and bounded above by R. Hence, there exists

r(y) > 0 such that

m > n f) <
B(y.r(v))(f) A ade(r.Il(v))() A

Applying a Wiener type lemma (see for instance Lerma 3in[11])
to the family {B(y, r(y)‘}Ye Q , we obtain a countable subfami-

Y
ly of disjoint balls % = B (x P T ) such that ' C Ui B1
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From the definiton of the B’ and (1.4) we have

A<m, (D) < wBG, 26)) uBG, X ))"n\mlml, () < A

N
This proves (i).To prove (ii) let y be such that y ¢§UB .

Then y & @ . By definition of @ , this implies that for

every ball B centered at y m. (f) < A, as we wanted to showa

Theorem (3.2). Let (X, 4, u) be a space of homogeneous

type such that the continous functions with compact support
are dense in L' (X, d w). If w(x) satisfies condition A

then there exist 6 > 0 and C < = such that

1, 8 1, 6
m, (W ) < C my(w)
holds for every ball B.
Proof. It follows easily from condition'Ap that malxzrfw)<

Sisieh (w) , where C is a finite constant independent of
x and r. Using this property it is simple to see that if
d' (x, y) is a quasi-distance equivalent to d(x, y) then the
theorem is valid in (X, d,uy ) if and only if it is valid in
(X, d', u). Accordingly, by lemma (2.4), it is enough to prove

the theorem for the guasi-distance §(x, y) defined in (2.3).



=15

Proceeding exactly like in [3] it can be proved that the
condition A, implies the existence of two positive numbers

a and g such that for every ball B g Ve have

We proceed to prove that there exists C >0 satisfying that

for every ball B, and A > m, (W),
)

(3.3) j w(x) du(x) <C A p( {x: w(x)> gr} N B.G)'
{x sw(x)>AIN 35

holds. Applying Corollary (2.11), we get that (BG , 6§ ,u ) is

a bounded space of homogeneous type with constants K' and A'

independent of the ball B6 under consideration. Applying

Lemma (3.1) to (B 6'6 ,u) and f(x) = w(x) we get that there

exists a sequence of disjoint balls B, in this space such that

(3.4) A < mBl (w) < A'x .

Moreover, since we assume that the continuous functions are dense
in L' (x) then, the Lebesgue differentiation theorem is valid
~ee f.i. [4], pp. 39-40). From part (ii) of Lemma (3.1) we

n
¢ ain that w(x) <2 for almost every x € v B' . Therefore
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"]
{x: w(x) > 2} N B(5 C lij B; 7
Hence,

wix) du (x) < Z[ w(x) du (x).
i I

) B,

(3.5) J
{xzw(x) >2}N'B
It can be easily deduced from Theorem (2.7) that if w(x) satis-

fies Ap then its restriction to any ball By also satisfies Ap in
the space of homogeneous type (B 578 1 ) . Therefore , proceeding

in the usual manner, it can be shown that

I w(x) duy (x) < C I w(x) d p(x)
?I B,

Thus, from (3.4), (3.5) and condition A; it follows

(3.6) J w(x) d u(x) < C I [ w(x) du(x)< A' 2 ) p(B!)
B i

{x :w(x)>A)}N B s i ¢

< CA'a A Ju {x:w(x)>8 m_(w)} NB).
i i

Since the sets B, form a family of disjoint balls in the space of
homogeneous type (BG,G ;¥ ), we have

YJul {x:w(x) > 8 m, (w)} N B|)= p( {x:w(x)> B8 mB(w)}ﬂ BG)'

i i i

This equality and (3.6) imply (3.3), as was to be showne



To finish the proof of the Theorem we just have to repeat

the arguments given in [ 3, p. 248] o
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