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SUMMARY

In this paper, the efficiency and the quality of the solutions obtained with a new parallelizable
preconditioner for Domain Decomposition Methods (DDM) by means of Finite Element discretization
of partial differential equations arising in the context of CFD problems is studied. We compare the
convergence to the analytical solution or measured data for problems that have been considered
as ‘benchmarks’ in the computational fluid dynamic literature. For this purpose, we study the
solution obtained via parallelized iterative methods that have been extensively used (e.g. CG and
GMRES global iteration and its variants) in CFD computations and those obtained with the Interface
Strip (IS) preconditioner for the Schur Complement method. The idea is to present the new solver
as an alternative to obtain more accurate and faster solutions in the context of monolithic and
non-monolithic CFD schemes. For this purpose, the confined internal flows and external viscous
compressible/incompressible flow around (complex-shape) bodies are considered.
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1. INTRODUCTION

In Reference [1], Storti et al. introduced the mathematical formulation and the sequential
implementation of a new preconditioner for Schur complement Domain Decomposition
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Methods (i.e. the IS Preconditioner) based on solving a problem in a narrow strip around
the interface between sub-domains. Also, convergence properties of the iterative solution step
were contrasted with several preconditioners [3, 6, 5] for the discretization of the Poisson and
the scalar convection-diffusion equations. In Reference [2] the implementation details in parallel
environments, were presented. Besides, in this work it is showed that the IS preconditioner
is much less memory and time-consuming than classical optimal preconditioners such as
Neumann-Neumann [3, 4], in the context of the solution of non-symmetric linearization of
equations arised from the discretization of the governing equations of hydrological problems.
The performance of this preconditioner was assessed with an analytical study of Schur
complement matrix eigenvalues.

The aim of this article is to study the efficiency of this new preconditioner and the
quality of the solution obtained when classical Finite Element formulation is applied to a
partial differential equations that describe different kind of flows. Also, we will show that the
computational effort and/or resources could be insufficient if we try to solve some problems
(i.e. the linear system that results at each time simulation step) with classical global iterative
methods, like Krylov Subspace methods (e.g. Conjugate Gradient and Generalized Minimum
RESidual and its variants). For this purpose, we study the CPU consumed time, the required
core memory and the accuracy in the solution of several problems in Computational Fluid
Dynamics.

Moreover, we present this new solver as an alternative to obtain more accurate and faster
solutions in the context of monolithic and non-monolithic CFD schemes.

2. THE NAVIER-STOKES EQUATIONS

We focus this work in the solution of both compressible and incompressible Navier-Stokes
equations with the SUPG and SUPG-PSPG methods proposed by Brooks et al. [30] and
Tezduyar et al. [19], respectively.

2.1. Incompressible Navier-Stokes equations.

The incompressible Navier-Stokes equations present two important difficulties for the solution
with finite elements. First, the character of the equation becomes more and more advective
dominant when the Reynolds number increases. In addition the incompressibility condition
represents not an evolution equation but, rather, a constraint on the equations. This has the
drawback that only some combination of interpolation spaces for velocity and pressure can be
used, namely those ones that satisfy the so called Brezzi-Babǔska condition. In the formulation
of Tezduyar et al. advection is stabilized with the well known SUPG stabilization term, and
a similar stabilization term called PSPG is included in order to stabilize incompressibility.
In this way, it is possible to use stable equal order interpolations. Once these equations. are
discretized, the resulting system of ODE’s are discretized in time with the standard trapezoidal
rule (backward and forward Euler and Crank-Nicholshon schemes are allowed to use). At every
time step, the resulting non-linear system of equation is solved iteratively.

Viscous flow is well represented by Navier-Stokes equations. The incompressible version of
this model includes the mass and momentum balances that can be written in the following
form. Let Ω ∈ R

nsd and (0, T ) be the spatial and temporal domains respectively, where nsd is

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 00:1–27
Prepared using fldauth.cls
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the number of space dimensions, and let Γ be the boundary of Ω.

∇ · u = 0 in Ω × (0, T )

ρ(
∂u

∂t
+ u · ∇u) −∇ · σ = 0 in Ω × (0, T ),

(1)

with ρ and u the density and velocity of the fluid and σ the stress tensor, given by

σ = −pI + 2µ∗ε(u)

ε(u) = 1/
2
(∇u + (∇u)t)

(2)

where p is the pressure and µ∗ is the effective dynamic viscosity defined as sum of the
dynamic (molecular) viscosity and the algebraic eddy viscosity of the LES model proposed
by Smagorinsky [16], i.e. µ∗ = µ + µSGS. I represents the identity tensor and ε the strain rate
tensor. The initial and boundary conditions are

Γ = Γg ∪ Γh

Γg ∩ Γh = ∅

u = g at Γg

n · σ = h at Γh,

u(t = 0) = u0 ∀x ∈ Ω

p(t = 0) = p0 ∀x ∈ Ω

(3)

where Γg and Γh are the Dirichlet and Neumann boundaries, respectively. When the flow
velocity is very small, the fluid is very viscous; or the geometric dimensions are very small (i.e.
when Reynolds number is very small), the inertial term in (1) play a minor role and can be
neglected. The flow is then dominated by the viscous and pressure.

2.1.1. Spatial discretization The spatial discretization is equal order for pressure and velocity
and is stabilized through the addition of two operators. Advection at high Reynolds numbers is
stabilized with the well known SUPG operator, while the PSPG operator proposed by Tezduyar
et al. [19] stabilizes the incompressibility condition, which is responsible of the checkerboard
pressure modes.

The computational domain Ω is divided in nel finite elements Ωe, e = 1, . . . , nel, and let E
be the set of these elements, and H1h the finite dimensional space defined by

H1h =
{

φh|φh ∈ C0(Ω), φh|Ωe ∈ P 1, ∀Ωe ∈ E
}

, (4)

with P 1 representing polynomials of first order. The functional spaces for weight and
interpolation are defined as

Sh
u

= { uh|uh ∈ (H1h)nsd ,uh=̇gh on Γg }

V h
u = { wh|wh ∈ (H1h)nsd ,wh=̇0 on Γg }

Sh
p = { q|q ∈ H1h }.

(5)
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The SUPG-PSPG is written as follows: Find uh ∈ Sh
u and ph ∈ Sh

p such that

∫

Ω

wh · ρ
(∂uh

∂t
+ uh · ∇uh

)

+

∫

Ω

ε(wh) : σhdΩ+

+

nel∑

e=1

∫

Ω

δh ·
[

ρ(
∂uh

∂t
+ uh · ∇uh) −∇ · σh

]

︸ ︷︷ ︸

(SUPG term)

+

+

nel∑

e=1

∫

Ω

εh ·
[

ρ(
∂uh

∂t
+ uh · ∇uh) −∇ · σh

]

︸ ︷︷ ︸

(PSPG term)

+

+

∫

Ω

qh∇ · uhdΩ =

∫

Γh

wh · hhdΓ ∀wh ∈ V h
u , ∀qh ∈ V h

p

(6)

The stabilization parameters and the resultant system of equations are defined in
Reference [19]

2.1.2. Disaggregated Scheme Fractional step methods for the incompressible Navier-Stokes
equations have enjoyed popularity in the last two decades. The reason for this relies on the
computational efficiency of these methods, basically because of the uncoupling of the pressure
from the velocity components. In Reference [17] the study of computed pressure stability of
schemes that use a pressure Poisson equation was presented. We use these results in this paper.

The results to be presented refer to second-order algorithm based on the Crank-Nicholson
discretization for the viscous and convective terms and a second-order pressure splitting,
leaving the pressure gradient at a given time level in the first step and computing its increment
in the second one (see Reference [17]).

Let us introduce the discretization in time in the compact matrix form of the problem (1).

M∆tUn + K(Un+θ)Un+θ + GPn+1 = Fn+θ (7)

DUn+1 = 0 (8)

The fractional step schemes we will consider applied to the fully discrete problem (7) and (8)
is exactly equivalent to

M
1

∆t
(Ûn+1 −Un) + K(Un+θ)Un+θ + γGPn = Fn+θ (9)

M
1

∆t
(Un+1 − Ûn+1) + G(Pn+1 − γPn) = 0, (10)

DUn+1 = 0 (11)

where Ûn+1 is an auxiliary variable and γ is a numerical parameter, whose values of interest
are 0 and 1. We make the essential approximation

K(Un+θ)Un+θ ∼ K(Ûn+θ)Ûn+θ (12)
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where Ûn+θ = θÛn+1 + (1 − θ)Un. If we write Un+1 in terms of Ûn+1 using (10) and
inserting the result in (11), the equations to be solved are

M
1

∆t
(Ûn+1 −Un) + K(Ûn+θ)Ûn+θ + γGPn = Fn+θ, (13)

∆tDM−1G(Pn+1 − γPn) = DÛn+1, (14)

M
1

∆t
(Un+1 − Ûn+1) + G(Pn+1 − γPn) = 0, (15)

which have been ordered according to the sequence of solution, for Ûn+1, Pn+1 and
Un+1. We can approximate the operator DM−1G in (14) to the Laplace operator if M is
approximated by a diagonal matrix.

2.2. The Compressible Navier-Stokes equations.

The differential form of the conservation equations of mass, momentum and total energy that
governs the dynamics of compressible and viscous fluid flow may be written in a compact
vector form as (Einstein summation convention is assumed):

∂U

∂t
+

∂(Fa)i

∂xi
=

∂(Fd)i

∂xi
+ G

U =
(
ρ ρu ρe

)

(16)

where U is the unknown state vector expressed in conservative variables as above, e

represents the specific total energy, Fa accounts for the advective fluxes, Fd for the diffusive
fluxes and G is used for the external source terms (i.e G = (0, ρfe, Wf + qH), Wf = ρfe · u is
the work done by the external forces fe and n represents the boundary unit normal vector).

The above mentioned advective and diffusive fluxes are defined as:

Fa =









ρui

ρu1ui + δi1p
ρu2ui + δi2p
ρu3ui + δi3p
(ρe + p)ui









Fd =









0
Ti1

Ti2

Ti3

Tikuk − qi









(17)

Here δij is the Kronecker operator or the components of the identity tensor, qi are the
components of the heat flux vector, and Tij are the components of the Newtonian viscous
stress tensor: T = 2µε(u)− 2/3µ(∇·u)I. The strain rate tensor ε is equal to the equation (2).
qi is the heat flux defined according to the Fourier law assumptions as: qi = −κ∇T with κ the
thermal conductivity and T the temperature.

The coefficients of viscosity and thermal conductivity are assumed be given by the
Sutherland formula,
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µ = µ0

(
T

T0

)3/2
T0 + 110

T + 110

κ =
γRµ

(γ − 1)Pr

(18)

where µ0 is the viscosity at the reference temperature T0 and Pr is the Prandtl number.
The physical model is closed by the definition of the constitutive law for the specific internal

energy in terms of the thermodynamic state and some state equation for the thermodynamic
variables, normally an ideal gas law is adopted:

ρe =
p

γ − 1
+ 1/

2
ρ||u||2

p = ρRT
(19)

where R = (γ − 1)Cv is the particular gas constant and γ =
Cp

Cv
is the ratio of the specific

heat at constant pressure relative to that at constant volume.

2.2.1. Finite element formulation for fix domains The stabilized finite element formulation
of the quasi-linear form of (16) is written as follows: find Uh ∈ Sh such that ∀Wh ∈ Vh

∫

Ω

Wh · (
∂Uh

∂t
+ Ah

i

∂Uh

∂xi
−G)dΩ +

∫

Ω

∂Wh

∂xi
·Kh

ij

∂Uh

∂xj
dΩ −

∫

Γh

Wh · HhdΓ+

+

nel∑

e=1

∫

Ωe

(τ)T (Ah
k)T ∂Wh

∂xk
· {

∂Uh

∂t
+ Ah

i

∂Uh

∂xi
−

∂

∂xi
(Kh

ij

∂Uh

∂xj
) −G}dΩ+

+

nel∑

e=1

∫

Ωe

δshc
∂Wh

∂xi
·
∂Uh

∂xi
dΩ = 0

(20)

where

Sh = {Uh|Uh ∈ [H1h(Ω)]ndf ,Uh|Ωe ∈ [P 1(Ωe)]ndf ,Uh = g onΓg}

Vh = {Wh|Wh ∈ [H1h(Ω)]ndf ,Wh|Ωe ∈ [P 1(Ωe)]ndf ,Wh = 0 on∂Ωg}
(21)

where matrices Ai and Kij are defined in Reference [20] and in Reference [21].
The first three terms inside the first two integrals in the variational formulation of (20)

constitute the Galerkin formulation of the problem, the third integral accounts for the
Neumann boundary conditions. The first series of element level integrals in (20) are the SUPG
stabilization terms added to prevent spatial oscillations in the advection-dominated range.
The second series of element level integrals in (20) are the shock capturing terms added to
assure the stability at high Mach and Reynolds number flows, specially to suppress spurious
overshoot and undershoot effects in the vecinity of discontinuities.

The stabilization parameters are defined in Reference [20]
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3. SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD

We consider solving in each time step a linearized form of systems (1) and (16) (i.e Au = f)
resulting from finite element discretization as described in the previous sections. Let Ω
denote the computational domain, and {Ωi}i=n

i=1 its decomposition into n non-overlapping sub-
domains. We shall re-order the state variables vector u and the forces vector f as u = (uL, uI)

T

and f = (fL, fI)
T , numbering the global nodes such that the coefficient matrices of the state

variables (velocity, pressure and eventually the energy) assume block-ordered structure

A =

[
ALL ALI

AIL AII

]

, (22)

where ALL = diag[A11, A22, ..., Ann] is a block-diagonal with each block Aii, i = 1, 2, ..., n being
the matrix corresponding to the unknowns belonging to the interior vertices of sub-domain
Ωi. ALI and AIL represents connections between sub-domains to interfaces.

AII corresponds to the discretization of the differential operator restricted to the interfaces
and represents the coupling between local interface points.

The numerical solution of Au = f is equivalent to solving

SuI = g on interfaces Γ, (23)

ALLuL = fL −ALIuI in Ωi (24)

where

S = AII −
n∑

i=1

AILA−1

LL
ALI, (25)

and

g = fI −
n∑

i=1

AILA−1

LL
fL, (26)

where S is the well-known Schur complement matrix.
The Schur domain decomposition method starts by first determining uI on the interfaces

between sub-domains by solving (23). Upon obtaining uI , the sub-domain problems (24)
decouple and may be solved in parallel. The main computational cost for the iterative solution
of (23) depends on the number of iteration, i.e. the condition number, to achieve convergence
to a given accuracy criterion.

In order to further improve the efficiency of iterative methods, a preconditioner has to
be added so that the condition number of the Schur complement matrix is lowered. In
Reference [1], Storti et al. studied the spectrum of the Schur complement matrix in order to
develop a suitable preconditioners. This is one of the most important issues in preconditioning
techniques.

4. THE INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION
METHODS

Consider a sub-domain interface with a strip of two element layers (nlay = 2), as shown in
figure (1).
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nlay = 2strip

21

interface (I)strip boundaries (SB)

internal layers (S)

Figure 1. Strip Interface problem.

The preconditioning consists in, given a vector fI defined on the nodes at the interface (I
in the figure) to compute an approximate solution vI given by





AII AIS AI,SB

ASI ASS AS,SB

ASB,I ASB,S ASB,SB









vI

vS

vSB



 =





fI

0
0



 , (27)

with ‘Dirichlet boundary conditions’ at the strip boundary vSB = 0, so that it reduces to
[

AII AIS

ASI ASS

] [
vI

vS

]

=

[
fI

0

]

, (28)

Once this equation is solved, vI is the value of the proposed preconditioner applied to fI , i.e.

vI = P−1
IS fI (29)

A direct solution of this interface problem is not easily parallelizable. This approach would
involve transferring all the interface matrix to a single processor and solving the problem
there. So that, the possibility is to partition the strip problem among processors, much in the
same way as the global (i.e. the non-overlapping Domain Decomposition method) problem
is, and solving the strip problem by an iterative method. The idea of an iterative method
is also suggested by the fact that the preconditioning matrix (i.e. the matrix obtained by
assembling on the strip domain with Dirichlet boundary conditions at the strip boundary)
is highly diagonal dominant for narrow strips. Care must be taken to avoid nesting a non-

stationary method like CG or GMRES inside another outer non-stationary method [9]. We
recall that in a stationary method the solution x at the iteration k depends, only, on the
solution at the previous step (i.e., xk = f(xk−1)), then we can find the guess xk after k
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Prepared using fldauth.cls



EFFICIENCY AND QUALITY OF SOLUTIONS IN CFD USING THE IS PREC. FOR DDM. 9

successive applications of the same operator to the initial value x0. The problem here is that
a non-stationary method executed a finite number of times is not a linear operator, unless the
inner iterative method is iterated enough and then approaches the inverse of the preconditioner.
In this respect, relaxed Richardson iteration is suitable.

For the Richardson interface problem, a fixed predetermined number m of Richardson
iterations are performed. If m is too low, then the preconditioner has no effect, and if it
is too large the efficiency of the preconditioner tends to saturate, while the cost is roughly
proportional to m, so in general there is an optimal value for m. We have found that adjusting m
so that Richardson iteration converges one order of magnitude (relative to the initial residual)
is fine for most problems. Note that the number of iterations may depend on the intrinsic
conditioning of the interface problem and also on the strip width. For small strip widths
(nlay < 5) m was chosen in the range 5 ≤ m ≤ 10.

A subsequent possibility is preconditioning the Interface Strip preconditioner problem itself
with block Jacobi.

In general, in parallel implementation, each processor may have several sub-domains. In
this way, the memory and time computation requirements (i.e. the cost to factorize smaller
matrices) are reduced. If the number of dof’s in the interfaces grows toward the number of
total dof’s the method results in a fully iterative method.

Even if the preconditioner has been described through figures in terms of finite element
structured meshes, the implementation is purely algebraic (in contrast to previous approaches,
like, notably, the wire-basket ones, see References [7] and [8]) based on the graph connectivity
of the matrix. The preconditioner has been implemented in a FEM production code [10] and
it is used to solve large scale problems with unstructured 1D/2D/3D meshes.

5. NUMERICAL TEST IN SEQUENTIAL ENVIRONMENT

The hypersonic flow over a flat plate test.

In this section we analyze the hypersonic flow around a flat plate, a typical flow problem
where the nonlinearities are so high that any difficulty in the convergence of the linear system
may influence the nonlinear convergence and finally make the solution to blow up. This
problem, deeply documented by James Carter [11], has from the physical point of view a
strong interaction between the boundary layer and the shock wave and also a discontinuity
introduced at the flat plate leading edge where the flow has to stagnate from a very high free
stream velocity. Both are sources of numerical drawbacks making this test a very challenge
problem. Figure (2) shows the problem definition with a sketch of the physical structures
present in the flow field and the boundary condition applied to it.

For solving this problem a compressible laminar Navier-Stokes flow solver was used with a
constant viscosity for a Reynolds number of 104 based on the flat plate length and the free
stream state. The Mach number was chosen as 5. This problem was successfully solved using
IISD+ISP solver but it was not possible to obtain a solution with a global GMRES solver,
using in both cases a Krylov subspace dimension of 200. In this last case after some time
steps the solution began to present a poor resolution of the strong shock wave and finally the
solution crashed.

Figures (3,4) show the skin friction coefficient and the Stanton number against theoretical
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∂T

∂y

pw

p∞

T∞

u∞

boundary layer edge

x/L

y/L shock wave

free stream conditions

dow
nstream

 conditions: unknow
n

unknown

T=
p=

u=

or =0wall conditions: u=0,  T=

Figure 2. Problem definition.

predictions based on analytical solutions of an approximate theory. These results show an
acceptable behavior of the numerical results relative to the analytical predictions.
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f 

Skin friction
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Figure 3. Skin friction coefficient.

The mesh used was composed by 24150 quadrangular elements and 24462 nodes. In order
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Figure 4. Stanton number.

to capture the high thermal and flow gradients the normal spacing close to the flat plate was
chosen about 4 × 10−6.

This other kind of examples is for cases where it is not possible to get a solution using single
processor architectures (as in the case of Global GMRES iteration). The physical solution
contains some features that are hard to be solved. Also in such a case IISD+ISP does not
show difficulties to get an accurate solution.

6. NUMERICAL TESTS AND EXAMPLES IN PARALLEL ENVIRONMENT

In this section, we study the quality of numerical results for several problems considered as
benchmarks in CFD community. The tests were carried out on a Beowulf cluster of PC’s. The
cluster at CIMEC laboratory has twenty (uniprocessor) nodes; where 10 nodes are Pentium
IV - 2.4 GHz, 1 GB RAM (DDR, 333 MHz), 7 nodes Pentium IV - 1.7 GHz, 512 MB RAM
(RIMM, 400/800 MHz) and 2 nodes Pentium IV 1.7 GHz, 256 MB RAM (RIMM, 400/800
MHz). Usually, the first node works as server. The nodes are connected through a switch Fast
Ethernet (100 Mbit/sec, latency=O(100) µsecs).

We develop the code PETSc-FEM (see Reference [10]) that is a general purpose, parallel,
multi-physics FEM program for CFD applications based on MPI and PETSc libraries (see
[22] and [23], respectively). PETSc-FEM comprises both a library that allows the user
to develop FEM (or FEM-like, i.e. non-structured mesh oriented) programs, and a suite
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12 R. R. PAZ, N. M. NIGRO AND M. A. STORTI

of application programs (e.g. compressible/incompressible Navier-Stokes, multi-phase flow,
compressible Euler equations, shallow water model, general advective-diffusive systems,
coupled surface/subsurface water flow over multi-aquifer systems, linear elasticity and Laplace
equation). These involves two parts:

• The element routines does the computation of the state vector, the residual and/or the
stiffness matrix, etc.

• The main algorithm which describes the general strategies of resolution (i.e. linear/non-
linear, steady/unsteady, etc.). In this, the application writer calls a set of routines that
read the mesh, assemble MPI/PETSc vectors and matrices, check convergence, etc.

Mesh partitioning is performed by using METIS and the library takes in charge of passing
the appropriate elements to each processor, to find out the vectors, to assemble the residual
and matrices, and to fix the boundary conditions, for all the processors. It is written in the
C++ language with an Object Oriented Programming philosophy, but always keeping in mind
the scope of efficiency.

6.1. The Stokes flow in a long horizontal channel.

Initiated by observed discrepancies between the results of experiments and the results of
computer simulations [12] using standard solvers [13] (i.e. GMRES with acceptable rates of
convergence), this example shows the improvement of the solutions of lubricated contacts
by means of the IS preconditioner. Until now in tribology the lubricant flow in the narrow
gap between two contacting elements has been described using the Reynolds equation. This
equation follows from the Navier-Stokes equations when a narrow gap is assumed (i.e. when
e = H/L � 1 if H is the gap width and L a characteristic length scale). Nominally the
assumption e � 1 will generally hold. However, technical surfaces are never perfectly smooth
and at least locally in the contact, due to surface roughness, it may be violated. Accurate
description of the flow then requires the use of Stokes or Navier-Stokes equations. Because
the viscosity will generally be large, convective terms are likely to be negligible. Therefore we
restrict ourselves to the Stokes equations.

The channel is 8 · 10−5m width and 9 · 10−2m long. The dynamic viscosity used is
5.33 · 10−4m2/sec and no body forces are considered. The aspect ratio of the quadrilateral
elements is 5 to assure non-stretched elements. This problem conducts to a ill-conditioned
matrix due to the high aspect ratio of channel dimensions and it is necessary a big number
of residual vectors (iterations) in Krylov methods to converge to an accurate solution. We
consider the nonlinear steady simulation with a maximum of 100 Newton loops. The normalized
residuals in the solution step of the linear system are shown in figure (5) for all nonlinear
iterations. In the case of global GMRES solver two Krylov subspace dimension are considered
(i.e. 400 y 800). The test was conducted in 16 nodes and each sub-domain was sub-partitioned
into 7 interior sub-domains (2,000 dof’s per interior sub-domains in average) in the case of
IISD+ISP solver. The interface strip width used is nlay = 1. Although the Stokes problem
leads to a symmetrical matrix, it is not positive definite. For this reason GMRES iteration is
accomplished. The core memory demanded for the IISD+ISP solver was 48.9 Mb per processor
at each Newton iteration, including the factorization stage (solution of local problems) and
the GMRES iteration. The CPU consuming time was 0.33 minutes per Newton iteration.

The memory used in the global GMRES stage was 126.9 Mb per processor for a Krylov
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Figure 5. Iteration counts.

subspace dimension (KSPdim) of 800 and 63.2 Mb per processor for a KSPdim of 400. The
CPU time was 6.61 minutes and 1.87 minutes per Newton interior, respectively.

In figures (6), (7), (8) and (9) the numerical solution of the horizontal velocity and pressure
fields are compared with the analytical one. Figures (6) and (7) correspond to the solution
of both fields after one loop in the Newton scheme and figures (8) and (9) correspond to ten
iterations in Newton’s loop. For the IISD+ISP solver the residual of the Newton loop after
three iterations was 10−14 and we consider that there is no need to go further in this loop to
converge to the solution.

Figures (6) and (8) show a slight loss in momentum due to the coarse discretization in the
transversal direction in order to maintain the aspect ratio of the elements.

This example was the first evidence that inspire this work. It shows that for high aspect ratio
geometries the global GMRES suffers of a strong convergence deterioration and even though
using an unussually high size of Krylov subspace dimension the final solution is unacceptable.

6.2. The Navier-Stokes flow around an infinite cylinder.

The unsteady viscous external flows past objects have been studied (experimentally and
numerically [24, 14, 25, 26, 27, 28, 29]) extensively because of their many practical applications.
This example is directly related to a great number of problems. For example, airfoils are
made into streamline shapes in order to increase the lifts, and at the same time, reducing the
aerodynamic drag exerted on the wings. On the other hand, flow past a blunt body, such as
a circular cylinder (e.g. the wind forces acting on the tensors of a hanging bridge), usually
experiences boundary layer separation and very strong flow oscillations in the wake region
behind the body. In certain Reynolds number range, a periodic flow motion will develop in
the wake as a result of boundary layer vortex being shed alternatively from either side of
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Figure 6. Velocity field in the channel height (nnwt=1).
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Figure 7. Pressure field along channel (nnwt=1).
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Figure 8. Velocity field in the channel height (nnwt=100 for gmres,
nnwt=3 for IISD+ISP).
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Figure 9. Pressure field along channel (nnwt=100 for gmres, nnwt=3
for IISD+ISP).

the cylinder. This regular pattern of vortices in the wake is called a Kármán vortex street. It
creates an oscillating flow at a discrete frequency that is correlated to the Reynolds number
of the flow. The periodic nature of the vortex shedding phenomenon can sometimes lead to
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unwanted structural vibrations, especially when the shedding frequency matches one of the
resonant frequencies of the structure.

In the case of numerical simulation of the unsteady flow over a circular cylinder the
destabilizing effects are no absent but the simulation time needed to make them appreciable
could be outsize. As the geometry of the flow and the initial boundary conditions are
symmetric, the Navier-Stokes equations obviously lead to a symmetric solution even for
Re ∼ 100. The round-off errors are, of course, disturbances which could eventually generates
vortex shedding. Nevertheless, numerical simulations for Reynolds numbers of 100 and 200
and even up to 1000 have shown a symmetric pattern in the flow . In order to generate
vortex shedding an artificial perturbation may be imposed, for example introducing a rotation
of the cylinder for a short time. The perturbations introduced correspond to a clockwise
rotation of the cylinder followed by a counterclockwise rotation (it is of the same nature as the
perturbation used by Braza et al [24]). The mesh of 138,600 quadrilaterals (with homogeneous
refinement near the cylinder wall) was partitioned into 15 sub-domains (processors) and sub-
partitioned into 14 interior (local) sub-domains in average (2,000 dof’s per local subdivision).
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Figure 10. Re = 100. Iteration counts.

In figure (10) we see the iteration number for several time steps for the unsteady simulation
of this flow. We consider only one Newton iteration for time step. Clearly, the IISD+ISP
solver reaches the lower residual tolerances (10−7 vs. 10−3) with 70 % less iterations (roughly)
compared to global GMRES iteration with different KSPdim. The lower tolerances achieved
with IISD are directly related to the accuracy in the solution and the reduction of the iteration
number has influence in the overall simulation time.

In figures (11), (12) and (13) we see the viscous forces and moment evolution in time.
The solution obtained with both Global Iteration (KSPdim = 400) and IISD+ISP are in
agreement with the experimental results reported by Braza et al., and with the numerical
results shown by Shih et al. and Behr et al. (References [24, 25, 26]). However, if we stop Global
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Figure 11. Re = 100. viscous x-force coefficient.
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Figure 12. Re = 100. viscous y-force coefficient.

iteration prematurely (i.e. KSPdim = 200, see figure (10)) the solution is no more accurate and
divergences of 50% are observed (se figure (13)). Although the residuals are lowered between
two and three orders of magnitud the error in the solution of the linear system is not accurate
enough. We recall that to pass from 200 iterations to 400 iterations in GMRES scheme the
computational resources (CPU and consumed memory) are considerably increased due to the
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Figure 13. Re = 100. viscous z-moment coefficient.

Krylov base orthonormalization against all previous residual vectors and the resolution of a
minimization problem. The CPU consumed time and core memory requirements for each time
step were: 28 secs and 100 Mbytes for Global GMRES with KSPdim = 200, 107.5 secs and
152 Mbytes for Global GMRES with KSPdim = 400 and 18.5 secs and 98 Mbytes for IISD+ISP.

This well known test case shows the necessity of global GMRES to be used with a commonly
high Krylov subspace dimension size to reach the accuracy of IISD+ISP solver. Commonly the
user is pushed to adopt a small value of Krylov subspace dimension in order to reduce memory
and cpu time consumed. The sensitivity of the results obtained using global GMRES to the
Krylov subspace dimension size is high, and with no a priori knowledge of this dimension the
uncertainties in the results tend to be high. Therefore, IISD+ISP makes the simulation less
user-dependent.

6.3. Navier-Stokes flow using the Fractional Step Scheme. The Lid Driven Cavity

A test of the disaggregated method was performed on two-dimensional unit cavity flow at
Re = 1000. This is a test that has been computed extensively in the past and it is well
understood (see Reference [18]). A structured mesh of 400 × 400 quadrilateral was used for
calculations. We used 14 processor for Global GMRES iteration and 14 sub-domains subdivided
into local partitions in order to have 1,500 dof’s per subdivision for the IISD+ISP solver. The
time step and γ used in equations (13-15) were ∆t = 0.05 (see Reference [17]) and γ = 0.9.

In figure (14) we can see the iteration count for the Poisson step for both solvers.
In the predictor (advection-diffusion equation) and projection steps a few iterations are

needed to achieve relative low tolerances for both schemes. Nevertheless, in the Poisson step,
the mesh size used leads to a high condition number for CG iteration (i.e. ∝ 1/h2), so
we need to go further in iterations to achieve a converged solution of this step in order to
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Figure 14. Iteration counts for both solvers: Poisson Step

avoid spurious oscillation in the solution. If we stop the global CG iteration around 1000-1200
iterations (Poisson step), where convergence history reaches a ‘plateau’ and the residuals may
be considered acceptable, spurious oscillations with high amplitude appear in the solution
at times where the steady state is accomplished). Moreover, we need to overpass the 2,400
iterations to avoid oscillation in all time steps. Although the required memory is not affected
(we recall that in CG iteration, we need only the last two residual vectors), but the CPU
time grows linearly with the iterations. Using IISD+ISP we can choose the amount of memory
to solve the interior direct problem and the preconditioning (1500 dof’s where considered for
each interior subdivision). The residuals reach low tolerances with few iterations and the CPU
time required for each time step is diminished (although the local and interface problems
are solved). Moreover, it is not necessary to iterate over the 50 iterations to obtain accurate
solutions. Figure (15) shows the steady-converged solution when we stop the iteration in 50
using IISD+ISP. The total CPU time consumed in average for each time step (i.e. predictor,
pressure and projection steps) for Global iteration (GMRES in predictor step, CG in Poisson
and projection step) was 23.61 seconds and for IISD+ISP (with one layer around the interface)
solver was 2.13 secs. Although we stop the IISD+ISP simulation with residuals being higher
than residuals for 1000 iterations of globlal CG (see figure (14), i.e. the pressure step), the
solution for domain decomposition method and preconditioning, IISD+ISP, is accurate enough
and oscillating for global iteration. This behavior can be explained if we study the error in
residuals when iteration proceeds.

Let b, uk, u0 ∈ R
N , A non-singular such that u∗ = A−1f . Here f is the load vector and uk
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the solution at iteration k. Since

rk = b − Auk = Au∗ − Auk = A(uk − u∗) = −Aek, (30)

where e is the error in the solution u at the iteration k. Then,

‖ek‖ =
∥
∥A−1Aek

∥
∥ ≤

∥
∥A−1

∥
∥ ‖Aek‖ =

∥
∥A−1

∥
∥ ‖rk‖ , (31)

and

‖r0‖ ≤ ‖A‖ ‖e0‖ , (32)

thus,

‖ek‖

‖e0‖
≤

∥
∥A−1

∥
∥ ‖rk‖

‖A‖−1 ‖r0‖
= κ(A)

‖rk‖

‖r0‖
. (33)

κ(A) is the condition number of A and ‖.‖ is any suitable norm. The division by ‖r0‖ and
‖e0‖ in equation (33) normalizes the residuals. Storti et al. showed that the condition number
is κ(A) ∝ O(1/h2) for Global iteration and κ(A) ∝ O(1/h) for Schur complement domain
decomposition methods. Moreover, the IISD+ISP still reduces the last condition number.
Though the error in residuals for IISD+ISP (due to stop iteration earlier) is higher than the
error in residuals for CG at high iteration count, the factor that determines the error in the
solution (xk) is the condition number κ (see equation 33). If the solution in the Poisson step is
not accurate, the error is propagated to the other steps and oscillation may occur. We remark
that this problem is stressed with the refinement (i.e. h → 0).
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Figure 15. Time-converged solution for IISD+ISP solver (Re = 1000).
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The primary vortex center was computed to be at (x, y) = (0.531, 0.562) when the
coordinate reference is at the bottom left corner of the cavity. IISD+ISP solver compares
well (for the 50 iteration) with the values reported by Ghia et al. The core memory used
was 45 Mbytes/processor for Global iteration and 60 Mbytes/processor for IISD+ISP (direct
problems in sub-domain’s subdivisions and interface problem). We recall that for CG iteration
only we need the last two residuals, then the memory is not increased with iterations.

This example allows to emphasize other interesting usage of IISD+ISP solver. In fractional
step like flow solvers the Poisson step has normally the major CPU time consume and for
ill-conditioned problems this step demands a lot of resources for getting a good solution. It is
difficult to know at the beginning how large the Krylov subspace dimension size of conjugate
gradient method has to be and this example shows its strong influence on the final solution.
Moreover, with an unussually high Krylov subspace dimension of 1000-1500 the solution of lid
driven square cavity is already unacceptable making so dangerous its usage. With IISD+ISP it
is possible to strongly reduce these requirements improving drastically the solution and mainly
making the system solution less user-dependent.

6.4. The wind flow around a 3D immersed body. The AHMED model.

Current vehicle design needs a strong background in aerodynamics to improve flow control
by means of active or passive control devices. The complexity involved in the automobile
design specially due to the great amount of accessories and devices that form its geometry
makes the validation tasks unfordable. The Ahmed model is a simple geometric body that
retains the main flow features, specially the vortex wake flow where most part of the drag
is concentrated and it is a good candidate to be used as a benchmark test. The flow regime
of interest for car designers is fully turbulent. So, a large eddy simulation (LES) turbulence
model is employed (see References [31, 16]). We compare the results obtained with several
solvers and preconditioners with the detailed flow patterns previously published by Ahmed
and coworkers [15].

The Ahmed reference model is a generic car type blunt body shape which is simple enough for
accurate flow simulation but retains some important practical relevant features of automobile
bodies. The body geometry is defined in [15]. The flow domain chosen is one in which the
body of length L is suspended to 0.05 m to the ground in a domain of 10L × 2L × 1.5L in
the stream-wise (y), span-wise (x) and stream-normal (z) directions. The boundary conditions
for the problem are uniform flow at the inlet, slip at both sides, at rest for the surface of
the body, non-slip at the floor with velocity equal to inlet and imposed pressure is used at
the outflow boundary condition. The aerodynamics forces on road vehicles are the result of
complex interactions between flow separations and the dynamic behavior of the released vortex
wake.

6.4.1. Ahmed body: Numerical results for 3D Stokes flow. First, we consider the steady Stokes
flow around the Ahmed body in order to compare the performance of the solvers in a more
complicated problem than the flow presented in section §6.1. In this test, the computational
domain is more complex and the flow is fully three dimensional. Nevertheless, the gap between
the model and the floor acts like a elongated channel and we expect the same effect as in
section §6.1). In this test a non-structured tetrahedral mesh is used in the whole flow domain.
An 3-layer structured mesh of wedge (prismatic) elements is constructed for simulations of
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boundary layers. This set of elements improves the resolution of the boundary layer around
the blunt body. The body surface mesh contains 90,606 nodes and the boundary layer mesh
has 180,600 elements. The tetrahedral mesh has 1,322,876 elements. The tests were carried
out on 15 processors. For IISD solver 2,000 dof’s were considered for each local subdivision.

The iteration counts for several Newton loops are shown in figure (16).
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Figure 16. Stokes Flow. Iteration Counts (max. of 100 Newton
iterations).

The calculated forces and moments for both solvers are shown in figures (17) to (19)
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Figure 17. Stokes Flow. Force and moment coefficients.
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Figure 18. Stokes Flow. Force and moment coefficients
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Figure 19. Stokes Flow. Force and moment coefficients

Clearly, IISD+ISP converges to the steady solution in one Newton iteration whereas Global
iteration needs more iteration counts to achieve convergence. This behavior is directly related
to the CPU time needed to obtain converged solution in a simulation.

The CPU consumed time and core memory requirements (in average) for each Newton
iteration were: 185.1 secs and 443 Mbytes for Global GMRES with KSPdim = 300 and 64.18
secs and 588 Mbytes for IISD+ISP.

6.4.2. Ahmed body: Numerical results for full 3D Navier-Stokes flow using LES In this section
unsteady simulation for the flow around the Ahmed body are shown for Re = 1000 and
Re = 105. The same architecture, mesh and partitions of the previous example was used. The
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initial state used for the Re = 1000 simulation is the steady converged solution for the Stokes
problem (IISD+ISP case). In the same manner the converged solution to the steady regime
for Re = 1000 is used as initial condition for the Re = 105 test.

The iteration count for several time steps at Re = 1000 is shown in figure (20)
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Figure 20. Re = 1000. Iteration Counts (100 time steps, 10 seconds
simulation).

The calculated force and moment coefficients for both solvers (Re = 1000.) are shown in
figures (21) to (23)
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Figure 21. Re = 1000. Force and moment coefficients.
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Figure 22. Re = 1000. Force and moment coefficients.
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Figure 23. Re = 1000. Force and moment coefficients

The force and moment coefficients scale in the figures is dominated by the bad approximation
and oscillations in the solution obtained with Global Iterations. The calculated forces with IISD
solver converge very fast to the values reported in the literature.

The CPU consumed time and core memory requirements (in average) for time step in the
Re = 1000 test were: 186 secs and 460 Mbytes for Global GMRES with KSPdim = 300 and
114.5 secs and 630 Mbytes for IISD+ISP.

This 3D example shows that even though the final solution of global GMRES seems to be
similar to IISD+ISP the former needs more time steps or more Newton iterations to reach the
final solution. This fact is strongly highlight for the Stokes problem. For medium Reynolds
numbers the global GMRES has a strong oscillatory behavior until reach the good solution
making more unstable the scheme under external perturbations. Therefore, here it is possible
to argue the robustness as an indicator of the better behavior of IISD+ISP versus global
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GMRES.

7. CONCLUSIONS

Numerical experiments of several physical (real) problems have been carried out to show its
convergence properties, the computation time and memory requirements using both monolithic
and disaggregated schemes. Through those tests, we have shown that not always is possible to
obtain an acceptable solution for the problem using classical global Krylov methods.

Whe have shown that Domain Decomposition techniques, especially the Schur Complement
Domain Decomposition using the Interface Strip Preconditioner, are suitable in order to achieve
accurate solutions.

In all cases, the performance shown by IISD is decisive at the point of assigning
computational resources to solve a time step in the simulation of a (real world) problem.

Also, The IS preconditioner is easy to construct as it does not require any special calculation
(it can be assembled with a subset of sub-domain matrix coefficients). It is much less
memory-consuming than classical optimal preconditioners such as Neumann-Neumann in
primal methods (or Dirichlet in FETI methods) as it has been showed in References [1] and [2].
Moreover, it permits to decide how much memory to assign for preconditioning purposes.

The IS preconditioner is well suited for flows with high Reynolds numbers where the
contribution of advective terms are predominant in the governing equations, while it is capable
to handle reasonably well diffusion-dominated regions.

Furthermore, IISD+ISP is a good alternative to treat problems where domain discretization
presents high refination gradients.
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