
MPI for Python

Lisandro Dalćın ∗, Rodrigo Paz and Mario Storti

Centro Internacional de Métodos Computacionales en Ingenieŕıa (CIMEC),
Instituto de Desarrollo Tecnológico para la Industria Qúımica (INTEC),

Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas (CONICET),
Universidad Nacional del Litoral (UNL)

(3000) Santa Fe, Argentina.

Abstract

MPI for Python provides bindings of the Message Passing Interface (MPI) standard
for the Python programming language and allows any Python program to exploit
multiple processors. This package is constructed on top of the MPI–1 specification
and defines an object oriented interface which closely follows MPI–2 C++ bind-
ings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters,
gathers) communications of general Python objects. Efficiency has been tested in a
Beowulf class cluster and satisfying results were obtained. MPI for Python is open
source and available for download on the web (http://www.cimec.org.ar/python)

Key words: Message passing, MPI, High level languages, Parallel Python

1 Introduction

Over the last years, high performance computing has become an affordable re-
source to many more researchers in the scientific community than ever before.
The conjunction of quality open source software and commodity hardware
strongly influenced the now widespread popularity of Beowulf [1] class clus-
ters and cluster of workstations.

Among many parallel computational models, message-passing has proven to
be an effective one. This paradigm is specially suited for (but not limited

∗ Corresponding author.
Email addresses: dalcinl@intec.unl.edu.ar (Lisandro Dalćın),

rodrigop@intec.unl.edu.ar (Rodrigo Paz), mstorti@intec.unl.edu.ar (Mario
Storti).

Preprint submitted to Elsevier Science 23rd December 2004

to) distributed memory architectures and is used in today’s most demanding
scientific and engineering application related to modeling, simulation, design,
and signal processing. However, portable message-passing parallel program-
ming used to be a nightmare in the past because of the many incompatible
options developers were faced to. Fortunately, this situation definitely changed
after the MPI Forum [2] released its standard specification.

High performance computing is traditionally associated with software devel-
opment using compiled languages. However, in typical applications programs,
only a small part of the code is time-critical enough to require the efficiency
of compiled languages. The rest of the code is generally related to memory
management, error handling, input/output, and user interaction, and those
are usually the most error prone and time-consuming lines of code to write
and debug in the whole development process. Interpreted high-level languages
can be really advantageous for this kind of tasks.

MATLAB is the dominant interpreted programming language for implement-
ing general numerical computations. In the open source side, Octave and
Scilab are well known, freely distributed software packages providing com-
patibility with MATLAB language. Even in a specialized application domain
like multi-physics simulations by finite element methods, the developers of
OOFELIE [3,4] toolkit had early realized the importance of providing end-
users with a high-level, interpreted, interactive language in order to simplify
the access to an object oriented library written in C++.

In this work, we describe our experiences using Python, a well established
interpreted programming language, in parallel environments. We also present
MPI for Python, a new package enabling general applications to exploit mul-
tiple processors using standard MPI “look and feel” in Python scripts.

The next section presents a brief overview of MPI, Python and related work.
Section 3 describes design, implementation and provided functionality of MPI
for Python. Section 4 presents some efficiency comparisons between MPI for
Python and C codes communicating numeric arrays. Finally, section 5 presents
our conclusions and plans for future work.

2 Background

2.1 What is MPI?

MPI [5,6], the Message Passing Interface, is a standardized and portable
message-passing system designed to function on a wide variety of parallel

2

computers. The standard defines the syntax and semantics of library routines
(MPI is not a programming language extension) and allows users to write
portable programs in the main scientific programming languages (Fortran, C,
or C++).

Since its release, the MPI specification has become the leading standard for
message-passing libraries in the world of parallel computers. Implementations
are available from vendors of high-performance computers as a component
of the system software, and also from well known open source projects like
MPICH [7,8] and LAM [9,10].

MPI follows an object oriented design. Among the different abstractions in-
troduced, communicators play the most important role. Basically, communi-
cators specify a communication domain between an ordered set of processes or
group. This abstraction enables division of processes, avoids message conflicts
between different modules, and permits extensibility by users.

2.2 What is Python?

Python [11,12] is a modern but mature, easy to learn, powerful programming
language with a constantly growing community of users. It has efficient high-
level data structures and a simple but effective approach to object-oriented
programming with dynamic typing and dynamic binding. Python’s elegant
syntax, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most platforms.

The Python interpreter and its extensive standard library are available in
source or binary form without charge for all major platforms, and can be
freely distributed. It can be easily extended with new functions and data types
implemented in C or C++ [13] and is also suitable as an extension language
for customizable applications that require a programmable interface.

Python is an ideal candidate for writing higher-level parts of large-scale sci-
entific applications and driving simulations in parallel architectures [14,15,16]
like clusters of PC’s or SMP’s. Python codes are quickly developed, easily
maintained, and can achieve a high degree of integration with other libraries
written in compiled languages.

2.3 Related Works

As this work started and evolved, some ideas were borrowed from well known
open source projects related to MPI and Python.

3

OOMPI [17] is an excellent C++ class library specification layered on top
of the C bindings encapsulating MPI into a functional class hierarchy. This
library provides a flexible and intuitive interface by adding some abstractions,
like Ports and Messages, which enrich and simplify the syntax.

Pypar [18] is a rather minimal Python interface to MPI. There is no sup-
port for communicators or process topologies. It does not require the Python
interpreter to be modified or recompiled, but does not permit interactive par-
allel runs. General Python objects of any type can be communicated. There is
also good support for communicating numeric arrays and practically full MPI
bandwidth can be achieved.

pyMPI [19] rebuilds the Python interpreter and adds a built-in module for
message passing. It permits interactive parallel runs, which are useful for
learning and debugging, and provides an interface suitable for basic parallel
programing. There is no full support for defining new communicators, process
topologies or intracommunicators. General Python objects can be messaged
between processors, but there is no support for direct communication of nu-
meric arrays.

Scientific Python [20] provides a collection of Python modules that are useful
for scientific computing. Among them, there are interfaces to MPI and BSP
(Bulk Synchronous Parallel programming). The MPI interface is simple but
incomplete and does not resemble the MPI specification. However, there is
support for communicating numeric arrays.

Additionally, we would like to mention some available tools for scientific com-
puting and software development with Python.

Numeric (discontinued) and Numarray [21] (a reimplementation) are exten-
sion modules that provide array manipulation and computational capabilities
similar to those found in IDL, MATLAB, or Octave. Using Numarray, it is
possible to write many efficient numerical data processing applications directly
in Python without using any C, C++ or Fortran code.

Pyfort [22] is a tool for connecting Fortran routines (and “Fortran-like” C)
to Python and Numeric. Pyfort translates a module file that describes the
routines to access from Python into a C language source file defining a Python
module.

SciPy [23] is an open source library of scientific tools for Python, gathering
a variety of high level science and engineering modules together as a single
package. It includes modules for graphics and plotting, optimization, integra-
tion, special functions, signal and image processing, genetic algorithms, ODE
solvers, and others.

4

SWIG [24] is a software development tool that connects programs written
in C and C++ with a variety of high-level programming languages like Perl,
Tcl/Tk, Ruby and Python. Issuing header files to SWIG is the simplest ap-
proach to interfacing C/C++ libraries from a Python module.

3 Implementation

Python has enough networking capabilities as to successfully develop an imple-
mentation of MPI in “pure Python”, i.e., without using compiled languages or
third-party MPI distributions. The main advantage of such kind of implemen-
tation is surely portability. As an example of this approach, MatlabMPI [25] is
a MPI toolbox for MATLAB written in “pure MATLAB” and based in built-
in file I/O capabilities, without relying on any foreign language or library.
However, Python is really easy to extend and connect with external software
components developed in compiled languages. Additionally, there are many
useful and high-quality MPI-based parallel libraries to justify some extra com-
plexities. The development of an MPI package based in calls to a third-party
MPI implementation will sensibly ease the integration of other parallel tools
in Python.

3.1 Parallelization

Python and MPI distributions can be optionally built as shared libraries in
recent operating systems supporting dynamic linking. After that, the Python
interpreter can be easily enabled to run scripts in parallel and support exten-
sion modules calling MPI functions.

The following C code shows a basic (it should be improved with some er-
ror checking) Python parallelization. After compiling this source and linking
it with MPI and Python libraries, the resulting executable will be a fully-
functional Python interpreter providing MPI initialization before the Python
main program is called. 1

#include <Python.h>

#include <mpi.h>

int main(int argc, char **argv)

{

int status;

1 Early MPI initialization is a requirement of some MPI–1 implementations, e.g.
MPICH, which need to access original command line arguments in order to success-
fully start parallel jobs. MPI–2 suggests to implementors not to follow this approach
to assure code portability.

5

MPI_Init(&argc, &argv);

status = Py_Main(argc, argv);

MPI_Finalize();

return status;

}

In order to build a Python interpreter capable of providing interactive ses-
sions in parallel, the mechanism for obtaining input from the user should be
modified. There are different alternatives, but the simplest one is overriding
the function called by the parser to get its input in interactive sessions. Ba-
sically, the new function should call the original one in the root process (any
one with input/output capabilities) and broadcast the input obtained from
the user (actually, string data) while other processes different from root are
waiting for the arriving of broadcast-ed data.

3.2 Design

In subsection 2.3 some previous attempts of integrating MPI and Python
were mentioned. However, all of them lack from completeness or interface
conformance with the standard specification. MPI for Python provides an
interface designed with focus on translating MPI syntax and semantics from
standard MPI-2 [6,26] C++ bindings to Python. As syntax translation from
C++ to Python is generally straightforward, any user with some knowledge
of those C++ bindings should be able to use this package without need of
learning a new interface.

MPI for Python is implemented with Python code defining MPI constants,
class hierarchies and functionalities. This code calls wrapper functions from an
extension module written in C, which provides access to MPI-1 [5,27] handles,
constants and functions in the native C implementation.

Following previous approaches already mentioned in 2.3, any Python object
to be transmitted is first serialized using the module cPickle from Python
standard library. After that, string data is communicated (using MPI CHAR
datatype). Finally, received strings are unpacked and the original object is
restored. Serialization process introduces some overheads: dynamic memory
allocations, heavier messages and extra processing. However, this methodol-
ogy is easily implemented and quite general. Direct communication, i.e., with-
out serialization, of consecutive numeric arrays is feasible but not currently
supported. This issue will be addressed in the near future.

6

3.3 Interface Overview

3.3.1 Communicators

Comm is the base class of communicators. Communicator size and calling pro-
cess rank can be respectively obtained with methods Get_size() and Get_rank().
Communicator comparisons can be done with (static) method Compare(),
which returns one of the integer values IDENT, CONGRUENT, SIMILAR, or UNEQUAL.

Intracomm and Intercomm classes are derived from Comm class. Method Is_inter()

(and Is_intra(), provided for convenience) is defined for communicator ob-
jects and can be used to determine the particular communicator class.

Two predefined intracommunicators instances are available: COMM_WORLD and
COMM_SELF (or WORLD and SELF, provided for convenience). In fact, they are
obtained by duplication of MPI COMM WORLD and MPI COMM SELF. Nev-
ertheless, the original predefined MPI communication domains can be accessed
via __COMM_WORLD__ and __COMM_SELF__ instances, but this not recommended
as it may cause message conflicts with other modules calling MPI functions.

New communicator instances can be obtained with method Clone() of Comm
objects, methods Dup() and Split() of Intracomm and Intercomm objects,
and methods Create_intercomm() and Merge() of Intracomm and Intercomm

objects respectively. Set operations with Group objects like like Union(),
Intersect() and Difference() are fully supported, as well as the creation
of new communicators from groups.

Virtual topologies (Cartcomm and Graphcomm classes, both being a specializa-
tion of Intracomm class) are fully supported. New instances can be obtained
from intracommunicator instances with factory methods Create_cart() and
Create_graph() of Intracomm class.

3.3.2 Point-to-Point and Collective Communications

Methods Send(), Recv() and Sendrecv() of communicator objects provide
support for blocking point-to-point communications within Intracomm and
Intercomm instances. Non-blocking communications are not currently sup-
ported. Nevertheless, Request class and some of its methods are already im-
plemented.

Methods Bcast(), Scatter(), Gather(), Allgather() and Alltoall() of
Intracomm instances provide support for collective communications.

Global reduction operations Reduce(), Allreduce() and Scan() are sup-

7

ported but naively implemented.

3.3.3 Environmental Management

Functions Init() and Finalize() respectively provide MPI initialization and
finalization. Functions Is_initialized() and Is_finalized() provide the
respective tests for initialization and finalization.

MPI version number supported for the underlying MPI implementation can be
retrieved from function Get_version(). Standard attributes of MPI COMM WORLD
can be accessed from constants TAG_UB, HOST, IO and WTIME_IS_GLOBAL. Func-
tion Get_processor_name() returns the calling processor name. Timer func-
tionalities are available through functions Wtime() and Wtick(), constant
WTIME_IS_GLOBAL indicates whether clocks at all processes in COMM_WORLD

communicator are synchronized.

Error handling functionality is almost completely supported. Errors originated
in native MPI calls will throw an instance of the exception class Exception,
which derives from standard exception RuntimeError. In order to facilitate the
sharing of communicators with other modules interfacing MPI-based parallel
libraries, default MPI error handlers ERRORS_RETURN and ERRORS_ARE_FATAL

can be assigned to and retrieved from communicators with methods Set_errhandler()
and Get_errhandler().

3.3.4 Extensions

MPI for Python adds some extensions to the standard MPI syntax. The ra-
tionale is simplified usage and conformance with some usual Python idioms.

An elegant abstraction for message-passing borrowed from OOMPI is intro-
duced: communicators can be seen as containers of ports. A port is a tiny
object with references to a communication domain and a process id. This id
is used as source or destination process in point-to-point communications, or
root process in collective communications. Communicators can now be treated
as container of Port instances and indexing/iteration can be defined for them.
Data streams can be messaged between Port instances using “<<” and “>>”
operators.

Accessors methods for different objects are mapped to properties, i.e., managed
attributes. For example, communicator rank and size of COMM_WORLD can be
directly obtained with COMM_WORLD.rank and COMM_WORLD.size instead of
calling Get_rank() and Get_size() methods.

Some constants are added for convenience. Integers rank and size are short-

8

cuts for the accessor methods Get_rank() and Get_size() of COMM_WORLD

instance. Booleans zero, last, even and odd have values related to the pro-
cess rank in COMM_WORLD.

3.3.5 Documentation

The standard Python on-line help mechanism provides information about de-
fined constants, classes and functions using their documentation strings.

4 Efficiency

Some efficiency tests were run on the Beowulf class cluster Geronimo [28] at
CIMEC. Hardware consisted of ten computing nodes with Intel P4 2.4Ghz
processors, 512KB cache size, 1024MB RAM DDR 333MHz and 3COM 3c509
(Vortex) Nic cards interconnected with an Encore ENH924-AUT+ 100Mbps
Fast Ethernet switch. MPI for Python was compiled with MPICH 1.2.6 and
Python 2.3, Numarray 1.1 was also used.

The first test was a bi-directional blocking send and receive between pairs
of processors. Messages were numeric arrays (NumArray objects) of double
precision (64 bits) floating-point values. A basic implementation of this test
using MPI for Python (translation to C or C++ is straightforward) is shown
below.

from mpi4py import mpi

import numarray as na

sbuff = na.array(shape=2**20,

type= na.Float64)

wt = mpi.Wtime()

if mpi.even:

mpi.WORLD.Send(buffer,mpi.rank+1)

rbuff = mpi.WORLD.Recv(mpi.rank+1)

else:

rbuff = mpi.WORLD.Recv(mpi.rank-1)

mpi.WORLD.Send(buffer,mpi.rank-1)

wt = mpi.Wtime() - wt

tp = mpi.WORLD.Gather(wt, root=0)

if mpi.zero: print tp

Results are shown in figure 1. Maximum bandwidth in Python is about 85%
of maximum bandwidth in C. Clearly, the overhead introduced by object se-
rialization degrades overall efficiency.

The second test consisted in wall-clock time measurements of some collective
operations on ten uniprocessor nodes. Messages were again numeric arrays of
double precision floating-point values. Results are shown in figures 2 to 6. For

9

10
1

10
2

10
3

10
4

10
5

10
60

10

20

30

40

50

60

70

80

90

100

Array Size [bytes/8]

B
an

dw
id

th
 [M

bp
s]

C
Python

Figure 1. Bandwidth in blocking Send/Receive

array sizes greater than 103 (8KB), timings in Python are between 5% (for
Bcast) to 20% (for Alltoall) greater than timings in C.

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Array Size [bytes/8]

Ti
m

e
[s

ec
s]

C
Python

Figure 2. Timing in Broadcast

10

10
1

10
2

10
3

10
4

10
5

10
610

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Array Size [bytes/8]

Ti
m

e
[s

ec
s]

C
Python

Figure 3. Timing in Scatter

10
1

10
2

10
3

10
4

10
5

10
610

−6

10
−4

10
−2

10
0

10
2

Array Size [bytes/8]

Ti
m

e
[s

ec
s]

C
Python

Figure 4. Timing in Gather

11

10
1

10
2

10
3

10
4

10
5

10
610

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Array Size [bytes/8]

Ti
m

e
[s

ec
s]

C
Python

Figure 5. Timing in Gather to All

10
1

10
2

10
3

10
4

10
5

10
610

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Array Size [bytes/8]

Ti
m

e
[s

ec
s]

C
Python

Figure 6. Timing in All to All Scatter/Gather

12

5 Conclusions and future work

Python is a very attractive language for rapid development of small scripts and
code prototypes as well as large applications and highly portable and reusable
modules and libraries. Unfortunately, like any scripting language, Python is
not as efficient as compiled languages. However, it was conceived and carefully
developed to be extensible in C (and consequently in C++). This exceptional
characteristic enables Python to achieve performance in the time-critical parts
of demanding applications. Moreover, Python can be used as a glue language
capable of connecting existing software components in a high-level, interactive,
and productive environment.

Running Python on parallel computers is a good starting point for decreas-
ing the large software costs of using HPC systems. MPI for Python provides
the base layer for applying the message-passing paradigm. This package is
just another example of successful interconnection of Python with an external
library, in this case MPI; its interface was designed to be as conforming as
possible with standard MPI for C++, saving users from learning a new inter-
face specification. Additionally, MPI for Python can be used for learning and
teaching message-passing parallel programming taking advantage of Python’s
interactive nature. Efficiency tests have shown that performance degradation
is not prohibitive, even for moderately sized objects. In fact, the overhead
introduced by MPI for Python is far smaller than the normal one associated
to the use of interpreted versus compiled languages.

Future work will be directed towards the improvement of MPI for Python by
adding some currently unsupported functionalities like non blocking commu-
nications and direct communication of numeric arrays. We will also develop
Python packages providing access to very well known and widely used MPI-
based parallel libraries like PETSc [29,30] and ParMETIS [31]. Furthermore,
the higher-level portions of the parallel multi-physics finite elements code
PETSc-FEM [32,33] developed at CIMEC are planned to be implemented
in Python in the next major rewrite. This work has already started and pre-
liminary results are promising.

Acknowledgements

This work received financial support from Consejo Nacional de Investiga-
ciones Cient́ıficas y Técnicas (CONICET, Argentina), Agencia Nacional de
Promoción Cient́ıfica y Tecnológica (ANPCyT) and Universidad Nacional del
Litoral (UNL) through grants CONICET-PIP-198 Germen-CFD, ANPCyT-
PID-99/74 FLAGS, ANPCyT-FONCyT-PICT-6973 PROA and CAI+D-UNL-

13

PIP-02552-2000.

The authors make extensive use of freely available software such as GNU/Linux
operating system, GCC compilers, Python, Perl, MPICH and LAM/MPI im-
plementations, PETSc libraries, METIS/ParMETIS libraries, Octave, OpenDX
and others. Many thanks to open source community for those excellent prod-
ucts.

A Examples

A.1 Startup

In the following examples, we assume that a parallelized, interactive version
of the Python interpreter was launched using the startup mechanism provided
by the MPI implementation. As an example, using LAM on a cluster of PC’s
running GNU/Linux and listed in file nodes.dat, this step involves:

$ lamboot nodes.dat

$ mpirun -np 3 ppython

>>> from mpi4py import mpi

As an initial test, by typing the following sentences in the Python prompt,
output from all processes should be obtained.

>>> print ’Hello World! I am process’, \

... mpi.rank, ’of’, mpi.size

Hello World! I am process 0 of 3

Hello World! I am process 1 of 3

Hello World! I am process 2 of 3

A.2 Point-to-point Communications

First, we prepare some different integer data in each process send it to process
with rank 0 in COMM_WORLD.

>>> sendbuf = 10*mpi.size + mpi.rank

>>> print ’[%d]’ % mpi.rank, sendbuf

[0] 30

[1] 31

[2] 32

>>> mpi.WORLD.Send(sendbuf, dest=0, tag=7)

14

Next, process 0 receives data from other processes.

>>> recvbuf = []

>>> if mpi.WORLD.Get_rank() == 0:

... for i in xrange(mpi.size):

... data = mpi.WORLD.Recv(source=i, tag=7)

... recvbuf.append(data)

...

>>> print ’[%d] %s’ % (mpi.rank, recvbuf)

[0] [30, 31, 32]

[1] []

[2] []

Similar results can be achieved by using “stream” syntax. In this case, input
and output streams must be list instances.

>>> sendbuf = 100*mpi.size + (mpi.rank+1)**2

>>> mpi.WORLD[0] << [sendbuf]

>>>

>>> recvbuf = []

>>> if mpi.rank == 0:

... for p in mpi.WORLD:

... p >> recvbuf

...

>>> print ’[%d] %s’ % (mpi.rank, recvbuf)

[0] [101, 104, 109]

[1] []

[2] []

A.3 Collective Communications

The following code generates a dictionary in process with rank 0 and broad-
casts it to other processes in COMM_WORLD:

>>> if mpi.rank == 0:

... sendbuf = { ’foo’ : True, \

... ’bar’ : 3.14, \

... ’spam’ : ’yes’ }

... else:

... sendbuf = None

...

>>> print ’[%d]’ % mpi.rank, sendbuf

[0] {’foo’: True, ’spam’: ’yes’, ’bar’: 3.14}

[1] None

15

[2] None

>>>

>>> recvbuf = mpi.WORLD.Bcast(sendbuf, root=0)

>>> print ’[%d]’ % mpi.rank, recvbuf

[0] {’foo’: True, ’spam’: ’yes’, ’bar’: 3.14}

[1] {’foo’: True, ’spam’: ’yes’, ’bar’: 3.14}

[2] {’foo’: True, ’spam’: ’yes’, ’bar’: 3.14}

In the next example, a list of tuples is generated in the “middle” process and
data is scattered to other processes. The syntax is slightly different than in
previous examples (communicator indexing is used in order to specify the root
processor):

>>> root = mpi.size/2

>>>

>>> sendbuf = None

>>> if mpi.rank = root:

... sendbuf = [(i,i**2,i**3) \

... for i in [2,3,4]]

>>> print ’[%d] %s’ % (mpi.rank, sendbuf)

[0] None

[1] [(2, 4, 8), (3, 9, 27), (4, 16, 64)]

[2] None

>>>

>>> recvbuf = mpi.WORLD[root].Scatter(sendbuf)

>>> print ’[%d] %s’ % (mpi.rank, recvbuf)

[0] (2, 4, 8)

[1] (3, 9, 27)

[2] (4, 16, 64)

Finally, some lists with integer an boolean values are generated in each pro-
cessor. Next, they are gathered to last process in COMM_WORLD:

>>> sendbuf = [mpi.rank**2 , mpi.rank%2!=0]

>>> print ’[%d] %s’ % (mpi.rank, sendbuf)

[0] [0, False]

[1] [1, True]

[2] [4, False]

>>>

>>> root = mpi.size-1

>>> recvbuf = mpi.WORLD[root].Gather(sendbuf)

>>> print ’[%d] %s’ % (mpi.rank, recvbuf)

[0] None

[1] None

[2] [[0, False], [1, True], [4, False]]

16

References

[1] Beowulf.org, The Beowulf cluster site, http://www.beowulf.org/ (2004).

[2] Message Passing Interface Forum, Message Passing Interface (MPI) Forum
Home Page, http://www.mpi-forum.org/ (1994).

[3] Open Engineering, OOFELIE toolkit, http://www.open-engineering.com/
(2004).

[4] A. Cardona, I. Klapka, M. Gerardin, Design of a new finite element
programming environment, Engineering Computation 11 (4) (1994) 365–381.

[5] MPI Forum, MPI: A message passing interface standard, International Journal
of Supercomputer Applications 8 (3/4) (1994) 159–416.

[6] MPI Forum, MPI2: A message passing interface standard, High Performance
Computing Applications 12 (1–2) (1998) 1–299.

[7] MPICH Team, MPICH: A portable implementation of MPI, http://www-unix.
mcs.anl.gov/mpi/mpich/ (2004).

[8] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard, Parallel
Computing 22 (6) (1996) 789–828.

[9] LAM Team, LAM/MPI parallel computing, http://www.lam-mpi.org/
(2004).

[10] G. Burns, R. Daoud, J. Vaigl, LAM: An Open Cluster Environment for MPI, in:
Proceedings of Supercomputing Symposium, 1994, pp. 379–386, http://www.
lam-mpi.org/download/files/lam-papers.tar.gz.

[11] G. van Rossum, Python programming language, http://www.python.org/
(1990–2004).

[12] G. van Rossum, Python documentation, http://docs.python.org/index.
html (May 2004).

[13] G. van Rossum, Extending and embedding the Python interpreter, http://
docs.python.org/ext/ext.html (May 2004).

[14] S. Team, SPaSM: Parallel molecular dynamics code, http://bifrost.lanl.
gov/MD/MD.html (1994–2001).

[15] D. M. Beazley, P. S. Lomdahl, Feeding a large scale physics application to
Python, in: Proceedings of 6th. International Python Conference, San Jose,
California, 1997, pp. 21–29.

[16] K. Hinsen, The Molecular Modelling Toolkit: A new approach to molecular
simulations, Journal of Computational Chemistry 21 (2) (2000) 79–85.

17

[17] J. M. Squyres, J. Willcock, B. C. McCandless, P. W. Rijks, A. Lumsdaine,
OOMPI Home page, http://www.osl.iu.edu/research/oompi/ (1996).

[18] O. Nielsen, Pypar Home page, http://datamining.anu.edu.au/~ole/pypar/
(2002–2004).

[19] P. Miller, pyMPI: Putting the py in MPI, http://pympi.sourceforge.net/
(2000–2004).

[20] K. Hinsen, ScientificPython: Home page, http://starship.python.net/
~hinsen/ScientificPython/ (2004).

[21] P. Greenfield, T. Miller, R. L. White, J. C. Hsu, Numarray: a new scientific
array package for Python, http://www.stsci.edu/resources/software_
hardware/numarray (2003–2004).

[22] P. F. Dubois, Pyfort: The Python-Fortran connection tool, http://pyfortran.
sourceforge.net/ (2000–2004).

[23] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools
for Python, http://www.scipy.org/ (2001–2004).

[24] D. M. Beazley, SWIG: Simplified wrapper and interface generator, http://
www.swig.org/ (1996–2004).

[25] J. Kepner, S. Ahalt, MatlabMPI, Journal of Parallel and Distributed
Computing 64 (8) (2004) 997–1005.

[26] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI - The
Complete Reference: Volume 1, The MPI Core, 2nd Edition, Vol. 1, The MPI
Core, MIT Press, Cambridge, MA, USA, 1998.

[27] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface, MIT Press, Cambridge, MA, 1994.

[28] M. A. Storti, Geronimo cluster at CIMEC, http://www.cimec.org.ar/
geronimo (2001–2004).

[29] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, H. Zhang, PETSc: Portable, extensible toolkit for
scientific computation, http://www.mcs.anl.gov/petsc (2001).

[30] S. Balay, V. Eijkhout, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient
management of parallelism in object oriented numerical software libraries, in:
E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software Tools in
Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.

[31] G. Karypis, ParMETIS: Parallel graph partitioning and sparse matrix ordering,
http://www-users.cs.umn.edu/~karypis/metis/parmetis/ (1996–2004).

[32] M. A. Storti, N. Nigro, R. Paz, PETSc-FEM: A general purpose, parallel, multi-
physics FEM program, http://www.cimec.org.ar/petscfem (1999-2004).

18

[33] V. E. Sonzogni, A. M. Yommi, N. M. Nigro, M. A. Storti, A parallel finite
element program on a Beowulf cluster, Advances in Engineering Software 33 (7–
10) (2002) 427–443.

19

