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Abstract

The number and type of boundary conditions to be used in the numerical modeling of fluid
mechanics problems is normally chosen according to a simplified analysis of the character-
istics, and also from the experience of the modeler. The problem is harder at input/output
boundaries which are, in most cases, artificial boundaries, so that a bad decision about the
boundary conditions to be imposed may affect the precision and stability of the whole com-
putation. For inviscid flows, the analysis of the sense of propagation in the normal direction
to the boundaries gives the number of conditions to be imposed and, in addition, the condi-
tions that are “absorbing” for the waves impinging normally to the boundary. In practice,
it amounts to counting the number of positive and negative eigenvalues of the advective
flux Jacobian projected onto the normal. The problem is even harder when the number of
incoming characteristics varies during the computation, and the correct treatment of these
cases poses both mathematical and practical problems. One example considered here is a
compressible flow where the flow regime at a certain part of an inlet/outlet boundary can
change from subsonic to supersonic and the flow can revert. In this work the technique for
dynamically imposing the correct number of boundary conditions along the computation,
using Lagrange multipliers and penalization, is discussed and several numerical examples
are presented.
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1 INTRODUCTION

Deciding how many and which boundary conditions to impose at each part of an
artificial boundary is often a difficult problem. This decision is made from the num-
ber of incoming characteristics n+ and the quantities known for each problem. If
the number of conditions imposed on the boundary is in excess they are absorbed
through spurious shocks at the boundary. On the other hand, if less conditions are
imposed, then the problem is mathematically ill posed. Even if the number of im-
posed boundary conditions is correct, this does not guarantee that the boundary
conditions are non-reflective.

When dealing with models in infinite domains an artificial boundary distant as far
as possible from the region of interest must be introduced. The simplest choice is to
impose a boundary condition, assuming that the flow far from the region of interest
is undisturbed. However, the boundary condition can be freely chosen so as to give
the best solution for a given position of the boundary. Boundary conditions that tend
to give the solution as if the domain were infinite are called generally “absorbing”
(ABC) or “non reflective” (NRBC). ABC’s tend to give a better solution for a given
position of the artificial boundary or, in other words, they allow to put the artificial
boundary closer to the region of interest for a given admissible error. Of course,
the advantage of putting the artificial boundary closer to the region of interest is
the reduction in computational cost. However, in some cases, like for instance the
solution of the Helmholtz equation on exterior domains, using absorbing boundary
conditions is required since using a non absorbing boundary condition (like Dirich-
let or Neumann) may lead to a lack of convergence of the problem, because these
conditions are completely reflective and therefore, wave energy is trapped in the
domain, producing false resonance modes.

There are basically two approaches for the design of ABC’s, global and local.
Global boundary conditions are usually more accurate but expensive. In the limit,
a global ABC may reproduce the effect of the whole external problem onto the
boundary, i.e., even maintaining a fixed position of the artificial boundary the ABC
may give a convergent solution while refining the interior mesh. In general these
ABC’s are non-local, i.e., its discrete operator is a dense matrix. Global boundary
conditions exist and are popular for the simpler linear operators, like potential flow
problems and frequency domain analysis of wave problems, like the Helmholtz
equations for acoustics or the Maxwell equations [1,2,3,4,5,6,7].

The discrete operator for local absorbing boundary conditions is usually sparse
but has a lower order accuracy and, in general, it is needed to move the artificial
boundary condition to infinity while refining meshes in order to make the whole
algorithm convergent. These kind of ABC’s are popular for more complex non-
linear fluid dynamic problems, like compressible or incompressible, Navier-Stokes
equations or the inviscid Euler equations. An excellent review has been written by
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Tsynkov [8].

In order to have an ABC not any n+ conditions must be imposed at the boundary
but exactly those n+ corresponding to the incoming characteristics. This can be
determined through an eigenvalue decomposition problem of the advective flux
Jacobian at the boundary.

In many cases, the number of incoming characteristics may change during the com-
putation. For instance, in compressible flow it is common that the flow goes from
subsonic to supersonic in certain parts of the outlet boundary. In 3D, this means
passing from one imposed boundary condition to none.

In more complex problems, several combinations of regimes can be attained: sub-
sonic inlet, supersonic inlet, subsonic outlet, supersonic outlet. A typical case where
this can happen is the free fall of a blunt symmetrical object like an ellipse, for in-
stance. If the body starts from rest, it will initially accelerate and, depending on the
size and relation between the densities of the body and the surrounding atmosphere,
it may reach the supersonic regime. As the body falls, even at subsonic speeds, its
angle of attack tends to increase until eventually it stalls, and then falls towards its
rear part, and repeating the process in a characteristic movement that recalls the
falling of tree leaves. During the falling, the speed of the object varies periodically,
accelerating when the angle of attach is small and the body experiences little drag,
and decelerating when the angle of attack is large. For a supersonic fall, the regime
may change from supersonic to subsonic and back during the fall. In addition, if the
problem is solved in a reference frame attached to the body, the unperturbed flow
may come from every direction relative to the body’s axis. In this way, the regime
and direction of the flow at a given point of the boundary may change through the
whole possible combinations.

Another example is the modeling of the ignition of a rocket exhaust nozzle. In this
case, the condition at the outlet boundary changes from rest to supersonic flow as
the shock produced at the throat reaches the exterior boundary.

For transport of scalars, this behavior may happen if the transport velocity varies in
time and the flow gets reverted at the boundary. One such situation is when model-
ing the transport of a scalar like smoke or contaminant concentration in a building
with several openings under an external wind. Assume that the concentration of
solid particles or contaminant is so low that its influence on the fluid is negligible
so that the movement of the fluid inside the building can be solved first and then
the transport equation for the scalar, taking the velocity of the fluid as the transport
velocity. As the flow in the interior fluctuates, the normal component of velocity at
a given opening may reverse its direction.

The change of the number of imposed boundary conditions at a given point of the
boundary is hard to implement from the computational point of view since it in-
volves the change of the structure of the Jacobian matrix. The solution proposed

3



here is to impose these conditions through Lagrange multipliers or penalization
techniques. The main objective of this paper is to discuss numerical aspects re-
lated to the use of this techniques, to discuss specific issues relative to the physical
problems described above, and to show some numerical examples.

2 GENERAL ADVECTIVE-DIFFUSIVE SYSTEMS OF EQUATIONS

Consider an advective diffusive system of equations in conservative form

∂H(U)

∂t
+

∂Fc,j(U)

∂xj

=
∂Fd,j(U,∇U)

∂xj

+ G. (1)

Here U ∈ IRn is the state vector, t is time, Fc,j,Fd,j are the advective and diffusive
fluxes respectively, G is a source term including, for instance, gravity acceleration
or external heat sources, and xj are the spatial coordinates.

The notation is standard, except perhaps for the “generic enthalpy function” H(U).
The inclusion of the enthalpy function allows the inclusion of conservative equa-
tions in terms of non-conservative variables. Some well-known advective diffusive
systems of equations may be cast in this general setting as follows.

2.1 Linear advection diffusion

The heat advection-diffusion equation in terms of temperature can be put in this
form through the definitions

U = T,

H(U) = ρCpT.

Fc,j(U) = ρCpTuj,

Fd,j(U,∇U) = −qj = −k
∂T

∂xj

,

(2)

where U is the state vector, Cp the specific heat, uj a component of a given velocity
field u, T the temperature (the unknown field), q the heat flux vector and k the
thermal conductivity of the medium.
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2.2 Gas dynamics equations

Gas dynamic equations of a compressible flow can be put in conservative form with
the following definitions

Up = [ρ,u, p]T ,

U = Uc = [ρ, ρu, ρe]T ,

H(Up) = U,

Fc,jnj =


ρ(u · n̂)

ρu(u · n̂) + pn̂

(ρe + p)(u · n̂)

 ,

Fd,j(U,∇U)nj =


0

T · n̂

Tikukni − qini

 ,

(3)

Note that even if the equations are put in terms of conservative variables, the
diffusive and convective fluxes are expressed in term of the primitive variables
Up = [ρ,u, p]T and where ρ is the density, p the pressure, e the specific total
energy, T the Newtonian viscous stress tensor and n̂ the normal vector (outward)
to a given surface. However, the fluxes can be thought as implicitly depending on
the conservative variables, since the relation Uc(U) is one to one. Now, the con-
servation equations can be also thought in terms of any other set of variables, for
instance the primitive variables, if the “enthalpy function” H(Up) = Uc(Up) is
introduced.

3 VARIATIONAL FORMULATION

In this section, the variational formulation of the compressible Navier-Stokes equa-
tions using SUPG Finite Element Method and the shock capturing operator is pre-
sented. Consider a finite element discretization of the Ω into sub-domains Ωe, e =
1, 2, . . . , nelem. Based on this discretization, the finite element function spaces for
the trial solutions and for the weighting functions, Vh and Sh respectively, can be
defined. These function spaces are selected as subsets of [H1h(Ω)]ndof when tak-
ing Dirichlet boundary conditions, where H1h(Ω) is the finite dimensional Sobolev
functional space over Ω, and ndof = nsd+2 is the number of dof’s in the continuum
problem (nsd is the number of spatial dimensions).

The stabilizing finite element formulation of the quasi-linear form of (3) is written
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as follows: find Uh ∈ Sh such that ∀Wh ∈ Vh

∫
Ω
Wh ·

(
∂H(Uh)

∂t
+

∂Fh
c

∂xi

)
dΩ =

∫
Ω
Wh ·

(
∂Fh

d

∂xi

+ G

)
dΩ,

∫
Ω
Wh ·

(
∂H(Uh)

∂t
+ Ah

i

∂Uh

∂xi

−G

)
dΩ−

∫
Ω

∂Wh

∂xi

·Kh
ij

∂Uh

∂xj

dΩ−
∫
Γh

Wh ·HhdΓ+

+
nelem∑
e=1

∫
Ωe

τ(Ah
k)

T ∂Wh

∂xk

·
{

∂Uh

∂t
+ Ah

i

∂Uh

∂xi

− ∂

∂xi

(
Kh

ij

∂Uh

∂xj

)
−G

}
dΩ+

+
nelem∑
e=1

∫
Ωe

δshc
∂Wh

∂xi

· ∂Uh

∂xi

dΩ = 0,

(4)

where

Sh = {Uh|Uh ∈ [H1h(Ω)]ndof ,Uh|Ωe ∈ [P 1(Ωe)]ndof ,Uh = g onΓg}
Vh = {Wh|Wh ∈ [H1h(Ω)]ndof ,Wh|Ωe ∈ [P 1(Ωe)]ndof ,Wh = 0 on∂Ωg},

(5)

and where matrices Ai and Kij are defined as

∂Fa

∂xi

=
∂Fa

∂U

∂U

∂xi

= Ai
∂U

∂xi

(6)

and
∂Fd

∂xi

=
∂Fd

∂U

∂U

∂xi

= Kij
∂U

∂xi

. (7)

The first three terms inside the first two integrals in the variational formulation (4)
constitute the Galerkin formulation of the problem and the third integral accounts
for the Neumann boundary conditions. The first series of element level integrals
in (4) are the SUPG stabilization terms added to prevent spatial oscillations in the
advection-dominated range. The second series of element level integrals in (4) are
the shock capturing terms added to assure the stability at high Mach and Reynolds
number flows, specially to suppress spurious overshoot and undershoot effects in
the vicinity of discontinuities.

Various options for calculating the stabilization parameters and defining the shock
capturing terms in the context of the SUPG formulation were introduced in Ref-
erence [9]. In this section some of these options are described. The first one is the
standard SUPG intrinsic time tensor τ introduced by Aliabadi and Tezduyar in Ref-
erence [10]. In this case, this matrix is defined as τ = max[0, τa − τd − τδ], with
each τx taking into account the advective and diffusive effects and also avoiding
the duplication of the shock capturing operator and the streamline upwind operator.
These matrices are defined as

τa =
h

2(c + |u|)
I, τd =

∑nsd
j=1 β2

j diag (Kjj)

(c + |u|)2
I, τδ =

δshc

(c + |u|)2
I, (8)
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where c is the acoustic speed, h = 2
(∑nen

a=1 |u · ∇Na|
)−1

is the element size com-

puted here as the element length in the direction of the streamline using for its def-
inition the multi-lineal trial function Na and δshc is the shock capturing parameter
defined in the next paragraph. The τ matrix computation is already an open problem
because it is not possible to diagonalize the system of equations. It follows some
heuristics arguments based on the maximum value of the set of eigenvalues of the
advective Jacobian matrices for the characteristic velocity, some measure of the el-
ement size that may not be very well justified but is equivalent to any other element
size and some mechanism able to remove stabilization when physical diffusion is
present.

The design of the shock capturing operator is also an open problem. Two versions
are presented here: an isotropic operator and an anisotropic one, both proposed by
Tezduyar et al. in [11]. A unit vector oriented with the density gradient is defined
as j = ∇ρh/|∇ρh| and a characteristic length as hJGN = 2 (

∑nen
a=1 |j · ∇Na|)−1,

where Na is the finite element shape function corresponding to the node a. The
above cited isotropic shock capturing factor included in (4) is then defined as

δshc =
hJGN

2
uchar

(
|∇ρh|hJGN

ρref

)β

, (9)

where uchar = |u| + c is the characteristic velocity defined as the addition of the
flow velocity magnitude and the acoustic speed. Here ρref is the Gaussian point
interpolated density and β parameter may be taken as 1 or 2 according to the sharp-
ness of the discontinuity to be captured as suggested in Reference [11]. However,
only β∗ = 1 was successfully used in this study.

The anisotropic version of the shock capturing term in (4) is changed as follows

nelem∑
e=1

∫
Ωe

∂Wh

∂xi

jiδshcjk
∂Uh

∂xk

dΩ. (10)

The anisotropic shock capturing term showed good behavior. Nevertheless, for
some applications, both terms may be needed, the isotropic one weighted by a
factor close to 0.2 or lower.

4 ABSORBING BOUNDARY CONDITIONS

For steady simulations using time-marching algorithms, it can be shown that the er-
ror going towards the steady state propagates like waves, so that absorbing bound-
ary conditions help to eliminate the error from the computational domain. In fact,
it can be shown that for strongly advective problems absorption at the boundaries
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is usually the main mechanism of error reduction (the other mechanism is phys-
ical or numerical dissipation in the interior of the computational domain). It has
been shown that in such cases the rate of convergence can be directly related to
the “transparency” of the boundary condition [12]. In general, absorbing boundary
conditions are based on an analysis of the characteristic waves. A key point is to de-
termine which of them are incoming and which are outgoing. Absorbing boundary
conditions exist from the simplest first order ones based on a plane wave analysis
at a certain smooth portion of the boundary (as will be described below), to the
more complex ones that tend to match a full analytic solution of the problem in the
external region with that obtained in the internal region. In this paper the usage of
absorbing boundary conditions is accomplished in situations where the conditions
at the boundary change, so as the number of incoming and outgoing characteris-
tic waves varies during the temporal evolution of the problem, or even when the
conditions at the boundary are not well known a priori.

4.1 Advective diffusive systems in 1D

Consider a pure advective system of equations in 1D, i.e., Fd,j ≡ 0

∂H(U)

∂t
+

∂Fc,x(U)

∂x
= 0, in [0, L]. (11)

If the system is “linear”, i.e., Fc,x(U) = AU, H(U) = CU (A and C do not
depend on U), a first order linear system is obtained

C
∂U

∂t
+ A

∂U

∂x
= 0. (12)

The system is “hyperbolic” if C is invertible, C−1A is diagonalizable with real
eigenvalues. If this is the case, it is possible to make the following eigenvalue de-
composition for C−1A

C−1A = SΛS−1, (13)

where S is real and invertible and Λ is real and diagonal. If new variables are
defined V = S−1U, then equation (12) becomes

∂V

∂t
+ Λ

∂V

∂x
= 0. (14)

Now, each equation is a linear scalar advection equation

∂vk

∂t
+ λk

∂vk

∂x
= 0, (no summation over k). (15)

vk are the “characteristic components” and λk are the “characteristic velocities” of
propagation.
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4.2 Linear 1D absorbing boundary conditions

Assuming λk 6= 0, the absorbing boundary conditions are, depending on the sign
of λk,

if λk > 0: vk(0) = v̄k0; no boundary condition at x = L

if λk < 0: vk(L) = v̄kL; no boundary condition at x = 0
(16)

This can be put in compact form as

Π+
V (V − V̄0) = 0; at x = 0

Π−
V (V − V̄L) = 0; at x = L

(17)

where Π±
V are the projection matrices onto the right/left-going characteristic modes

in the V basis,

Π+
V,jk =

1; if j = k and λk > 0

0; otherwise,

Π+ + Π− = I.

(18)

It can be easily shown that they are effectively projection matrices, i.e., Π±Π± =
Π± and Π+Π− = 0. Coming back to the boundary condition at x = L in the U
basis, it can be written

Π−
V S−1(U− ŪL) = 0 (19)

or, multiplying by S at the left

Π±
U (U− Ū0,L) = 0, at x = 0, L, (20)

where
Π±

U = SΠ±
V S−1, (21)

are the projection matrices in the U basis. These conditions are completely absorb-
ing for 1D linear advection system of equations (12).

The rank of Π+ is equal to the number n+ of positive eigenvalues, i.e., the number
of right-going waves. Recall that the right-going waves are incoming at the x = 0
boundary and outgoing at the x = L boundary. Conversely, the rank of Π− is equal
to the number n− of negative eigenvalues, i.e., the number of left-going waves
(incoming at x = L and outgoing at the x = 0 boundary).

Numerical example. 1D compressible flow

The solution of 1D compressible flow in 0 ≤ x ≤ L = 4 is considered. The
undisturbed flow has a Mach number of 0.5 and at t = 0 there is a perturbation in
the form of a Gaussian as follows

U(x, t = 0) = Uref + ∆U e(x−x0)/σ2

, (22)
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where ρref = 1, uref = 0.5, pref = 0.714, (Maref = 0.5) ∆ρ = ∆p = 0, ∆u = 0.1,
R = 1, x0 = 0.8 and σ = 0.3. The evolution of this perturbation is simulated using
N = 50 equal-spaced finite elements (h = L/N = 0.08) with SUPG stabilization
and Crank-Nicholson temporal scheme with ∆t = 0.05 (CFL number ≈ 0.84).
As the flow is subsonic two conditions at inlet and one at outlet must be imposed.
The results using standard and absorbing boundary conditions at outlet (x = L),
while imposing non-absorbing ρ = ρref and u = uref at inlet (x = 0) will be
compared. Figure 1 shows the evolution in time (in the form of an elevation view)
of the velocity when using the condition p = pref at outlet, while Figure 3 shows
the results when using first order linear absorbing boundary conditions based on
the unperturbed state. It can be seen that without absorbing boundary condition the
perturbation reflects at both boundaries. Even after t = 40 a significant amount of
perturbation is still inside the domain. At this point the perturbation has reflected
four times at the boundaries. When using the absorbing boundary condition the
perturbation is almost completely absorbed after it hits the outlet boundary. Note
that the absorption is performed in two steps. First the perturbation splits in two
components, one propagating downstream an another upstream. The first hits the
outlet boundary and is absorbed, the other travels backwards, reflects at the inlet
boundary and then travels to the outlet boundary, where it hits at t = 4.5. This
shows that in 1D it is enough with only one absorbing boundary to have a strong
dissipation of energy.

Fig. 1. Temporal evolution of axial velocity in 1D gas dynamics problem without absorbing
boundary condition at outlet

4.3 Multidimensional problems

For multidimensional problems a simplified 1D analysis can be done in the nor-
mal direction to the local boundary and with the flux Jacobian A in equation (13)
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Fig. 2. Temporal evolution of axial velocity in 1D gas dynamics problem with absorbing
boundary condition at outlet
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replaced with its projection onto the exterior normal n̂, as follows

Π−
n (U− Ū) = 0,

Π−
n = Sn Π−

V n S−1
n ,

(Π−
V n)jk =

1; if j = k and λj < 0,

0; otherwise.

C−1An = SnΛnS
−1
n , (Λn diagonal),

An = Alnl.

(23)

These conditions are perfectly absorbing for perturbations reaching the boundary
normal to the surface. For perturbations not impinging normally, the condition is
partially absorbing, with a reflection coefficient that increases from 0 at normal
incidence to 1 for tangential incidence.

4.4 Absorbing boundary conditions for non-linear problems

If the problem is non-linear, as the gas dynamics or shallow water equations, then
the flux Jacobian A is a function of the state of the fluid, and then the same happens
for the projection matrices Π±. If it is assumed that the flow is composed of small
perturbations around a reference state Uref , then the projection matrix at the state
Uref can be computed

Π(Uref)
−
n (U−Uref) = 0. (24)

However, as long as the fluid state departs from the reference value the condition
becomes less and less absorbing.

Numerical example. Varying section compressible 1D flow

Consider a one-dimensional flow in a tube with a contraction of 2:1. The inlet Mach
number is 0.2 and the variation of area along the tube axis is

A(x) = A0

(
1− C

tanh(x− Lx/2)

Lc

)
, (25)

where A0 is some (irrelevant) reference area, C is a constant given by C = (α −
1)/(α+1), α = Ain/Aout is the area ratio and Lc = 0.136 is a parameter controlling
the width of the transition. Variables ρ and u are imposed at the inlet and consider
different outlet conditions, namely

• non-absorbing, p =cnst,
• absorbing linear (see (20)), and
• absorbing non-linear (see (24)).
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Figure 3 and 4 show the evolution in time of the state vector increment (‖∆U‖) for
different absorbing and non-absorbing boundary conditions. Note that the absorb-
ing linear condition behaves worst than the non-absorbing one, due to the fact that
the state at the boundary has departed from the initial state, with which the pro-
jectors have been computed. This does not happens with the absorbing non-linear
condition since it uses always the last computed state for the computation of the
projection matrices.

4.5 Riemann based absorbing boundary conditions

Suppose that for a small interval t ≤ t′ ≤ t + ∆t the state U(t) is taken as the ref-
erence state, then, during this interval Π−(U(t)) is taken as the projection operator
onto the incoming characteristics and the absorbing boundary conditions are

Π−(U(t)) (U(t′)−U(t)) = 0. (26)

But regarding the equivalent expression (19) it can be written as

lj(U) · dU = 0, if λj < 0, (27)

where lj is the j-th left eigenvalue of the normal flux Jacobian. Note that, as lj is a
function of U, this is a differential form on the variable U. If it happens that this is
a exact differential, i.e.,

µ(U) lj(U) · dU = dwj(U), (28)

for some non-linear function wj and an “integration factor” µ(U), then it can be
imposed

wj(U) = wj(Uref), (for wj an incoming char.) (29)

which would be an absorbing boundary condition for the whole non-linear regime.
The functions wj are often referred as “Riemann invariants” (RI) for the flux func-
tion.

For the 2D shallow water equations, the Riemann invariants are well known (see
Reference [13]). For 1D channel flow, Riemann invariants are known for a few
channel shapes (rectangular and triangular). For general channel sections they are
not known and in addition there is not a general numerical method for computing
them. They could be computed by numerical integration of equation (28) along a
path in state space, but the integration factor is not known.

Riemann invariants are known for the shallow water equations

w± = u · n̂± 2
√

gh, (30)
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and for channel flow they, are known only for rectangular and triangular channel
shapes. For the triangular case, RI are

w± = u · n̂± 4
√

gh. (31)

For the gas dynamics equations, the well known Riemann invariants are invariant
only under isentropic conditions, so that they are not truly invariant. They are

w± = u± 2c

γ − 1
. (32)

4.6 Absorbing boundary conditions based on last state

While integrating the discrete equations in time, the state of the fluid in the previous
state can be taken as the reference state

Π−(Un) (Un+1 −Un) = 0. (33)

It is clear that the assumption of linearization is well justified, since in the limit
of ∆t → 0 it should be Un+1 ≈ Un. In fact, (33) is equivalent, for ∆t → 0
to (27), so that if Riemann invariants exist, then this scheme preserves them in the
limit ∆t → 0 and ∆x → 0. This strategy is called ULSAR (for Use Last State As
Reference).

However, if this scheme is used in the whole boundary, then the flow in the domain
is only determined by the initial condition, and it can drift in time due to numerical
errors. Also, in a steady state of a certain regime, there is no way to guarantee
that the regime will be obtained. For instance, to obtain the steady flow around an
aerodynamic profile at a certain Mach number, the initial state with a non perturbed
constant flow at that condition can be stated, but, it cannot be assured that the final
steady flow will preserve that Mach number. In practice, a mix of the strategies are
often used, with linear boundary conditions imposed at inlet regions and absorbing
boundary conditions based on last state on the outlet regions.

Numerical example. ULSAR strategy keeps RI constant.

Consider a 1D compressible flow example, as in §4.2, with ρref = 1, uref = 0.2,
pref = 0.714, (Maref = 0.2), ∆ρ = ∆p = 0, ∆u = 0.6, R = 1, x0 = 0.5L = 2 and
σ = 0.3. Note that this represents a perturbation in velocity that goes from Ma =0.2
to 0.8, so that full non-linear effects are evidenced. The evolution of this perturba-
tion is simulated using N = 200 equal-spaced finite elements (h = L/N = 0.08)
with SUPG stabilization and Crank-Nicholson temporal scheme with ∆t = 0.02
(CFL number ≈ 1.2). The values are dimensionless by selecting L, ρref and uref as

15



reference values for length, density and velocity. Absorbing boundary conditions
based on the ULSAR strategy are applied at both ends x = 0, L. The values of the
Riemann invariants (32) are computed there and they are plotted in Figure 5. It can
be seen that the incoming RI (the right going w+) is kept approximately constant
at the left boundary x = 0 and the same happens, mutatis mutandis, at the other
boundary x = L. Convergence history is shown in Figure 6. Note that absorption
is very good, despite the full non-linear character of the flow.
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4.7 Imposing non-linear absorbing boundary conditions

In this section, the integration of the absorbing boundary conditions in a numerical
code is discussed. For linear systems, the discrete version of equation (12) is of the
form

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
= 0,

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un+1

k−1

2h
= 0, k ≥ 1

(34)

where Un
k is the state at grid point k at time tn = n∆t. It is assumed a constant

mesh step size of h, i.e., xk = kh, and the boundary located at the mesh node
x0 = 0. Several simplifications were assumed here, no source or upwind terms, and
a simple discretization based on centered finite differences was used. Alternatively,
it can be thought as a pure Galerkin FEM discretization with mass lumping. Also,
backward Euler differencing in time is used.

If the projector onto incoming waves Π+
U has rank n+ = n, then Π+

U = I and the
absorbing boundary condition reduce to U = Uref (being Uref a given value or Un

0

for ULSAR). This happens for instance in a supersonic inlet for gas dynamics or an
inlet boundary for linear advection. In this case it is replaced the balance equation
for the boundary node (the first equation in (34)) with the absorbing condition U =
Uref , keeping the balance between equations and unknowns.

Conversely, if the projector onto incoming waves Π+
U has rank n+ = 0, then Π+

U =
0 and the absorbing boundary condition reduce to not imposing anything. This
happens for instance in a supersonic outlet for gas dynamics or an outlet boundary
for linear advection. In this case the absorbing condition U = Uref is discarded.
Again, the number of equations and unknowns is maintained.

The case is more complicated when 0 < n+ < n. It cannot be added the absorbing
condition (either (20), (29) or (33)), because the boundary balance equation cannot
be discarded or maintained.

There are at least two strategies for imposing this non-linear boundary conditions.
One possibility is to replace the boundary balance equation for the outgoing waves
with a null first derivative condition. Then a discrete version can be generated with
finite difference approximations. (This requires, however, a structured mesh at least
near the boundary). The other is to resort to the use of Lagrange multipliers or
penalization techniques. One advantage of using Lagrange multipliers or penaliza-
tion is that not only the boundary conditions coefficients can easily be changed for
non-linear problems, but also the number of imposed boundary conditions. This is
important for problems where the number of incoming characteristics can not be
easily determined a priori, or for problems where the flow regime is changing from
subsonic to supersonic, or the flow reverts. In the rest of this section the second
strategy will be described in detail.

17



In the base of the characteristic variables V, (34) can be written as

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn+1

0

h
= 0,

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn+1

k−1

2h
= 0, k ≥ 1.

(35)

For the linear absorbing boundary conditions (20) it should be imposed

Π+
V (Vref) (V0 −Vref) = 0, (36)

while discarding the equations corresponding to the incoming waves in the first
rows of (35). Here Uref/Vref is the state about which the linearization is done.

4.7.1 Using Lagrange multipliers

This can be done, via Lagrange multipliers in the following way

Π+
V (Vref) (V0 −Vref) + Π−

V (Vref)Vlm = 0,

Vn+1
0 −Vn

0

∆t
+ Λ

Vn+1
1 −Vn+1

0

h
+ Π+

V (Vref)Vlm = 0,

Vn+1
k −Vn

k

∆t
+ Λ

Vn+1
k+1 −Vn+1

k−1

2h
= 0, k ≥ 1,

(37)

where Vlm are the Lagrange multipliers for the imposition of the new conditions.
On one hand, if j is an incoming wave (λj ≥ 0), then the equation is of the form

vj0 − vref0 = 0,

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn+1

j0

h
+ vj,lm = 0,

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − vn+1

jk

2h
= 0, k ≥ 1.

(38)

Note that, due to the vj,lm Lagrange multiplier, it can be solved for the vjk values
from the first and last rows, while the value of the multiplier vj,lm “adjusts” itself
in order to satisfy the equations in the second row.

On the other hand, for the outgoing waves (λj < 0), the equations is

vj,lm = 0,

vn+1
j0 − vn

j0

∆t
+ λj

vn+1
j1 − vn+1

j0

h
= 0,

vn+1
jk − vn

jk

∆t
+ λj

vn+1
j,k+1 − vn+1

jk

2h
= 0, k ≥ 1.

(39)

So that the solution coincides with the unmodified original FEM equation, and the
Lagrange multiplier is vj,lm = 0.
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Coming back to the U basis, it can be written

Π+
U(Uref) (U0 −Uref) + Π−

U(Uref)Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
+ CΠ+

U(Uref)Ulm = 0,

C
Un+1

k −Un
k

∆t
+ A

Un+1
k+1 −Un+1

k−1

2h
= 0, k ≥ 1.

(40)

4.7.2 Using penalization

The corresponding formulas for penalization can be obtained by adding a diagonal
term scaled by a small regularization parameter ε to the first equation in (40)

−εUlm + Π+
U (U0 −Uref) + Π−

U Ulm = 0,

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
+ Π+

U Ulm = 0;
(41)

where, for the moment, the dependence of the projectors on Uref is dropped. Elim-
inating Ulm from the first and second rows it is obtained

C
Un+1

0 −Un
0

∆t
+A

Un+1
1 −Un+1

0

h
+Π+

U (Π−
U + εI)−1 Π+

U(U0−Uref) = 0. (42)

Now, using projection algebra it can be shown that

(Π−
U + εI)−1 = (

1

ε
Π+

U +
1

1 + ε
Π−

U) (43)

so that the last term in (42) reduces to Π+
U(U0 −Uref) and the whole equation is

C
Un+1

0 −Un
0

∆t
+ A

Un+1
1 −Un+1

0

h
+

1

ε
CΠ+

U(U0 −Uref) = 0. (44)

Here 1/ε can be thought as a large penalization factor.

4.8 Viscous compressible subsonic flow over a parabolic bump

In order to evaluate the absorption of waves impinging at fictitious boundaries
a 2D test consisting of a compressible subsonic flow over a parabolic bump at
Maref = 0.5 is considered (see Figure 7). The idea is to assess how the length
from bump trailing edge to the fictitious outflow (Lout) affects the predicted forces
and their time evolution. Two set of simulation were carried out. One set consid-
ering non-absorbent boundary conditions where variables are imposed as specified
in Figure 7. At inlet wall the imposed conditions are ρ = ρref = 1, u = uref =

Maref

√
γpref/ρref = 0.5 and v = 0. At the outflow boundary pressure is imposed,
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i.e., p = pref = 1/γ, where γ = 1.4. The second set of simulations is considering
ULSAR non-reflecting conditions at channel inlet and outlet. Initial state for both
set of problems is U = (ρref , uref , 0, pref). Parameters in Figure 7 are: Lin = 1.4,
Lbump = 2, hbump = 0.1 and Lout = 1, 2, 4, 8. The values are dimensionless by
selecting L, ρref and uref as reference values for length, density and velocity.

L in

Lbump

hbump

L out

ρ
u
v

p

slip condition

slip condition

Fig. 7. Problem geometry

Figures 8 and 9 show how ULSAR conditions produce the wave absorption at fic-
titious boundaries.
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Fig. 9. y-Force evolution for absorbent conditions

5 DYNAMICALLY VARYING BOUNDARY CONDITIONS

5.1 Varying boundary conditions in external aerodynamics

During a flow computation the number of incoming characteristics n+ may change.
This can occur due to a flow regime changing (i.e., from subsonic to supersonic)
or due to a flow sense changing (flow reversal). A typical case is the external flow
around an aerodynamic body as shown in Figure 10. Consider first a steady sub-
sonic flow. The flow is normally subsonic at the whole infinite boundary, even if
some supersonic pockets can develop at transonic speeds. Then the only two pos-
sible regimes are subsonic inlet (n+ = nd + 1, nd is the spatial dimension) and
subsonic outlet (n+ = 1). By looking at the projection of the unperturbed flow ve-
locity u∞ onto the local normal n̂ it can be settled whether the boundary is inlet or
outlet. For the steady supersonic case the situation is very different. A bow shock
develops in front of the body and forms a subsonic region which propagates down-
stream. Far downstream the envelope of the subsonic region approaches a cone with
an aperture angle equal to the Mach angle for the undisturbed flow. Now, the inlet
region is supersonic and the outlet one is both, subsonic and supersonic. The point
where the flow at outlet changes from subsonic to supersonic may be estimated
from the Mach angle, but it may be very inaccurate if the boundary is close to the
body. Having a boundary condition that can automatically adapt itself to the whole
possibilities can be of great help in such a case. Now, consider the unsteady case,
for instance a body slowly accelerated from subsonic to supersonic speeds. The in-
let part will change at some point from subsonic to supersonic. At outlet, some parts
will change also from subsonic to supersonic, and the separation between both parts
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will change its position, following approximately the instantaneous Mach angle.
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Fig. 10. Number of incoming/outgoing characteristics changing on an accelerating body

5.2 Aerodynamics of falling objects

An interesting case is the aerodynamics of a falling body[14,15,16,17,18]. Con-
sider, for simplicity, a two dimensional case of an homogeneous ellipse in free fall.
As the body accelerates, the pitching moments tend to increase the angle of attack
until it stalls (A). Then, the body starts to fall towards its other end, and accelerates
while its main axis aligns with gravity (B). As the body accelerates the pitching
moment grows until it eventually stalls again (C). The pattern is repeated during
the downfall. This kind of falling mechanism is typical of slender bodies with rela-
tively small moment of inertia like a sheet of paper and is called ‘flutter’. However,
depending on several parameters, but mainly depending on the moment of inertia
of the body, if it has a large angular moment at (B), it may happen that it rolls on
itself, keeping always the same sense of rotation. This kind of falling mechanism
is called ‘tumble’ and is a typical pattern for thicker and massive objects. For mas-
sive objects (like a ballistic projectile, for instance) tumbling may convert a large
amount of potential energy in the form of rotation, causing the object to rotate at
very large speeds. As the body falls it accelerates and can reach supersonic speeds.
This depends on the density of the body relative to the surrounding atmosphere,
its dimensions and shape. As the weight of the body goes with ∝ L3, being L the
characteristic length, while the drag force goes with ∝ L2, larger bodies tend to
reach larger limit speeds and eventually reach supersonic regime.

The falling of a body can be modeled in several ways. In order to avoid the use
of deforming meshes, a fixed mesh attached to the body can be used. Then, it is
possible to perform the computation in a non-inertial frame moving with the body
or using an inertial frame with a moving but not deforming mesh. In the first case
“inertial forces” (Coriolis, centrifugal) must be added, while in the second case
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Fig. 11. Falling ellipse

convective terms must take into account the mesh velocity as in the “Arbitrary La-
grangian Eulerian (ALE)” formulation. In this example the second strategy was
used.

The computation of the flow is linked to the dynamics of the falling object. The
strategy is a typically staggered fluid/solid interaction process [19,20,21,22]. First,
a standard predictor is applied in order to obtain a guess for the position of the
body at tn+1. Then, the fluid solver updates the state of the fluid from tn to tn+1

including the ALE terms. Then, with the state of the fluid at tn+1 the forces exerted
by the fluid on the body are computed and the equations for the rigid motion of
the body are solved (six degrees of freedom, accounting for two linear position and
velocities, rotation angle and its derivative).

Coming back to the boundary conditions issue, added the fact that the body can
accelerate and decelerate, and going back and forth from subsonic to supersonic
speeds, it must be taken into account that the angle from which the unperturbed
flow impinges on the body varies with time. So, as the body can rotate arbitrarily,
the flow can impinge from any direction relative to the boundary.
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Numerical example. Ellipse falling at supersonic speed

As an example consider the fall of an ellipse with the following physical data

• a = 1, b = 0.6 (major and minor semi-axes, eccentricity e =
√

1− b2/a2 =
0.8),

• m = 1, (mass),
• w = 2.5, (weight of body),
• r = 1, (Radius of inertia),
• c.m. = (−0.15, 0.0), (center of mass),
• ρa = 1, (atmosphere density),
• p = 1, (atmosphere pressure),
• γ = 1.4, (gas adiabatic index γ = Cp/Cv),
• Rext = 10, (Radius of the fictitious boundary),
• uini = [0, 0, 1.39, 0, 1.3, 0], (ellipse initial position and velocity [x, y, θ, u, v, θ̇]).

These values are dimensionless by selecting a, ρa and c0 as reference values for
length, density and velocity, so that the non-dimensional quantities are ρ′a = 1, p′ =
1/γ, u′ = 0.5 (in the following the prime indicating non-dimensional quantities is
dropped). A coarse estimation of the limit speed v can be obtained by balancing
the vertical forces on the body, i.e., the drag on the body (Faero), the weight and the
hydrostatic flotation

Faero + W + Ffloat = CDρav
2A− ρsgV + ρagV, (45)

where V = πab is the volume of the body (the area in 2D) and A = 2b the area of
the section facing the fluid (length in 2D). CD = 0.2 is an estimation for the drag
coefficient of the body and ρs = m/V, ρa the densities of solid and atmosphere
respectively. For the data above, this estimation gives a limit speed of v = 2.8

approximately. The speed of sound of the atmosphere is c =
√

γp/ρa = 1.18, so
that it is expected that the body will reach supersonic speeds. Of course, if the body
does reach supersonic speed, then the drag coefficient will be higher and probably
the average speed will be lower than that one estimated above.

The initial conditions are the ellipse starting at velocity (0,−1.39), null angular
velocity, and an angle of its major axis of 80

◦ with respect with the vertical. The
fluid is initially at rest. The computed trajectory until t = 50 time units is shown
in Figure 12. The computed trajectory is shown in a reference system falling at
velocity v = (−0.5, 0.5) (this is done in order to reduce the horizontal and vertical
span of the plot). Figures 13 show colormaps of Mach number at six instants, in the
inertial frame fixed to the fluid. The instants are marked as A, B, C and identified in
the trajectory. Note that as the ellipse rotates, each part of the boundary experiments
all kind of regimes and the absorbing boundary condition copes with all of them.
Note also that the artificial boundary is located very near to the body, the radius
of the external circle is 3.25 times the major semi-axis of the ellipse (in the case
simulated with the minor external radius, i.e., Rext = 5).
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Fig. 12. Computed trajectory of falling ellipse

In Figure 14, the velocities of the ellipse are shown in order to evaluate the absorp-
tion of ULSAR conditions when waves reach boundaries as the ellipse falls and
tumble/flutter when the fictitious boundary (exterior circle) is located at Rext = 5 m
and Rext = 10 m and the size of finite elements remain constant.

6 CONCLUSIONS

Absorbing boundary conditions reduce computational cost by allowing to put the
artificial exterior boundary closer to the region of interest. Extension to the non-
linear cases can be done either by using Riemann invariants or by using the state
at the previous time step as reference state for a linearized boundary condition. In
complex simulations, the number of incoming characteristic waves may vary during
the computation or may not be known a priori. In those cases, absorbing boundary
conditions can be imposed with the help of Lagrange multipliers or penalization
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Fig. 13. Ellipse falling at supersonic speeds. Colormaps of Mach number. Top left: station
A (t = 3.75), top right: station B (t = 6.25), bottom: station C (t = 10). Stations in
the trajectory refer to Figure 12. Results are shown in a non-inertial frame attached to the
ellipse 26
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