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Abstract

MPI for Python provides bindings of the Message Passing Interface (MPI) standard

for the Python programming language and allows any Python program to exploit

multiple processors.

In its first release, MPI for Python was constructed on top of the MPI-1 speci-

fication defining an object oriented interface that closely followed the MPI-2 C++

bindings, and provided support for communications of general Python objects. In

the latest release, this package is improved to enable direct blocking/nonblocking

communication of numeric arrays, and to support almost all MPI-2 features.

Improvements in communication performance have been tested in a Beowulf class

cluster. Results showed a negligible overhead in comparison to compiled C code.

MPI for Python is open source and available for download on the web (http:

//www.cimec.org.ar/python)

Key words: Message passing, MPI, High level languages, Parallel Python

Preprint submitted to Elsevier Science 16th November 2006



1 Introduction

During the last decade, high performance computing has become an affordable

resource to many more scientists and engineers than ever before. The conjunc-

tion of quality open source software and commodity hardware strongly influ-

enced the now widespread popularity of dedicated Beowulf [1] class clusters

and cluster of workstations. Message-passing has proven to be an effective com-

putational model, specially suited for (but not limited to) distributed memory

architectures. Although portable message-passing parallel programming used

to be a nightmare in the past because of the many incompatible options de-

velopers were faced with, this situation definitely changed after the MPI Fo-

rum [2] released its standard specification, which rapidly gained widespread

acceptance.

At the same time, the popularity of scientific computing environments such as

MATLAB, and IDL has increased considerably. Users simply feel more pro-

ductive in such interactive environments with tight integration of simulation

and visualization. They are alleviated of low-level details associated to com-

pilation/linking steps, memory management and input/output of traditional

programming languages like Fortran, C, and C++. However, native support

for parallel processing is absent and motivated different approaches to over-
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rodrigop@intec.unl.edu.ar (Rodrigo Paz), mstorti@intec.unl.edu.ar (Mario

Storti), jdelia@intec.unl.edu.ar (Jorge D’Eĺıa).
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come it [3,4].

Recently, the Python programming language has attracted the attention of

many users and developers in the scientific community. Python offers a clean

and simple syntax, is a very powerful language, and allows skilled users to

build their own computing environment, tailored to their specific needs and

based on their favorite high-performance Fortran, C, or C++ codes [5]. So-

phisticated but easy to use and well integrated packages are available for

interactive work [6,7], visualization [8,9], efficient multidimensional array pro-

cessing [10], and scientific computing [11].

Following the aforementioned trends, some researchers have taken advantage

of Python for writing the high-level parts of large-scale, massively parallel

scientific applications and driving simulations in parallel architectures [12,13],

while others have tried to make available the benefits of parallel computing to

general Python codes using MPI [14,15].

In this work, the latest advances in the development of MPI for Python [16]

are reported. MPI for Python is a package for the Python programming lan-

guage enabling general applications to exploit multiple processors by using

any available MPI implementation as a back-end.

The next section presents a brief overview of MPI, Python and MPI for Python.

Section 3 describes the most relevant features added to MPI for Python. Sec-

tion 4 presents some efficiency comparisons between MPI for Python and

compiled C code communicating numeric arrays. Finally, section 5 presents

some conclusions and plans for future work.
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2 Background

2.1 What is MPI?

MPI [17,18], the Message Passing Interface, is a standardized and portable

message-passing system designed to function on a wide variety of parallel

computers. The standard defines the syntax and semantics of library routines

(MPI is not a programming language extension) and allows users to write

portable programs in the main scientific programming languages (Fortran, C,

and C++).

Since its release, the MPI specification has become the leading standard for

message-passing libraries in the world of parallel computers. Implementations

are available from vendors of high-performance computers and well known

open source projects like MPICH [19,20] and Open MPI [21,22].

MPI follows an object oriented design defining a high-level abstraction for

fast and portable interprocess communication[23,24]. Applications can run in

clusters of (possibly heterogeneous) workstations or dedicated nodes, (sym-

metric) multiprocessors machines, or even a mixture of both. MPI hides all

the low-level details, like networking or shared memory management, simplify-

ing development and maintaining portability, without sacrificing performance.

2.2 What is Python?

Python [25] is a modern but mature, easy to learn, powerful programming

language with a constantly growing community of users. It has efficient high-
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level data structures and a simple but effective approach to object-oriented

programming with dynamic typing and dynamic binding. Python’s elegant

syntax, together with its interpreted nature, makes it an ideal language for

scripting and rapid application development in many areas on most platforms.

The Python interpreter and its extensive standard library are available in

source or binary form without charge for all major platforms, and can be

freely distributed. It can be easily extended with new functions and data

types implemented in C or C++ and is also suitable as an extension language

for customizable applications that require a programmable interface.

Python is an ideal candidate for writing the higher-level parts of large-scale

scientific applications and driving simulations in parallel architectures. Python

codes are quickly developed, easily maintained, and can achieve a high degree

of integration with other libraries written in compiled languages.

2.3 What is MPI for Python?

MPI for Python [26] is a Python package providing bindings of the MPI stan-

dard, allowing any Python program to exploit multiple processors. This pack-

age is constructed on top of the MPI-1/MPI-2 specification and defines an

object oriented interface that closely follows MPI-2 C++ bindings.

In its first release, MPI for Python provided support for blocking point-to-

point and collective communications of general Python objects, as well as

many facilities for managing process groups and defining new communication

domains. Its API was designed with a focus on translating syntax and seman-

tics of standard MPI-2 bindings from C++ to Python. Users with only a basic
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knowledge of standard C/C++ MPI bindings were able to use this package

without having to learn a new interface.

3 New Features in MPI for Python

This section presents a survey of MPI capabilities and the new available fea-

tures in MPI for Python to enhance communication performance and better

support classic MPI-1 operations [17] in a Python programming environment.

The recent availability of free, high quality, open-source MPI-2 implementa-

tions strongly motivated the inclusion of another set of features, in order to

provide support full for almost all MPI-2 extensions [18].

3.1 Object Serialization

The Python standard library supports different mechanisms for data persis-

tence. Many of them rely on disk storage, but pickling and marshaling can

also work with memory buffers.

The pickle (slower, written in pure Python) and cPickle (faster, written

in C) modules provide user-extensible facilities to serialize general Python

objects using ASCII or binary formats. The marshal module provides facilities

to serialize built-in Python objects using a binary format specific to Python,

but independent of machine architecture issues.

MPI for Python can communicate any general or built-in Python object tak-

ing advantage of the features provided by cPickle and marshal modules.

Their functionalities are wrapped in two classes, Pickle and Marshal, defining
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dump() and load() methods carefully optimized for serialization of Python

objects on memory streams. This approach is also fully extensible; that is,

users are allowed to define new, custom serializers implementing the generic

dump()/load() interface.

Any provided or user-defined serializer can be attached to communicator in-

stances. They will be routinely used to build binary representations of objects

to communicate (at sending processes), and restoring them back (at receiving

processes).

3.2 Direct Communication of Memory Buffers

Although simple and general, the serialization approach (i.e. pickling and un-

pickling) previously discussed imposes important overheads in memory as well

as processor usage, especially in the scenario of objects with large memory

footprints being communicated. Indeed, in the case of large numeric arrays,

this is certainly unacceptable and precludes communication of objects occu-

pying half or more of the available memory resources.

MPI for Python was improved to support direct communication of any object

exporting single-segment buffer interface. This interface is a standard Python

mechanism provided by some type of objects (e.g. strings and numeric arrays),

allowing access in the C side to a contiguous memory buffer (i.e. address and

length) containing the relevant data.

This new feature, in conjunction with the capability of constructing user-

defined MPI datatypes describing complicated memory layouts, enables the

implementation of many algorithms involving multidimensional numeric ar-

7



rays (e.g. image processing, fast Fourier transforms, finite difference schemes

on structured Cartesian grids) directly in Python, with negligible overhead,

and almost as fast as compiled Fortran, C, or C++ codes.

3.3 Nonblocking and Persistent Communications

On many systems, performance can be significantly increased by overlapping

communication and computation. This is especially true on systems where

communication can be executed autonomously by an intelligent, dedicated

communication controller. Nonblocking communication is a mechanism pro-

vided by MPI in order to support such overlap.

The Isend() and Irecv() methods of the Comm class initiate a send and

receive operation respectively. These methods return a Request instance,

uniquely identifying the started operation. Its completion can be managed

using the Test(), Wait(), and Cancel() methods of the Request class.

Often a communication with the same argument list is repeatedly executed

within an inner loop. In such a case, communication can be further optimized

by using persistent communication, a particular case of nonblocking commu-

nication allowing the reduction of the overhead between processes and com-

munication controllers. This kind of optimization can also alleviate the extra

overheads associated to interpreted, dynamic languages like Python, especially

for fine-grained tasks.

The Send_init() and Recv_init() methods of the Comm class create a per-

sistent request for a send and receive operation respectively. These methods

return an instance of the Prequest class, a subclass of the Request class. The
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actual communication can be effectively started using the Start() method,

and its completion can be managed as previously described.

The inherently asynchronous nature of nonblocking communications currently

imposes some restrictions in what can be communicated using MPI for Python.

Communication of memory buffers, as described in section 3.2 is fully sup-

ported. However, communication of general Python objects using serialization,

as described in section 3.1, is possible but not transparent since objects must

be explicitly serialized at sending processes, while receiving processes must

first provide a memory buffer large enough to hold the incoming message and

next recover the original object.

3.4 MPI-2 Extensions

3.4.1 Dynamic Process Management

An MPI-1 application is static; that is, no processes can be added to or deleted

from an application after it has been started. This limitation was addressed in

MPI-2. The new specification added a process management model providing

a basic interface between an application and external resources and process

managers. This extension can be really useful, especially for serial applications

built on top of parallel modules, or parallel applications with a client/server

model. The MPI-2 process model provides a mechanism to create new pro-

cesses and establish communication between them and the existing MPI ap-

plication. It also provides a mechanism to establish communication between

two existing MPI applications, even when one did not “start” the other.

In MPI for Python, new processes can be created by calling the Spawn()
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method within an intracommunicator (i.e., an Intracomm instance). This call

returns a new intercommunicator (i.e., an Intercomm instance), which can be

used to perform point to point and collective communications between the

parent and child groups of processes.

Alternatively, disjoint groups of processes can establish communication in a

client/server approach. Server applications must first call the Open_port()

function to open a “port” and the Publish_name() function to publish a

provided “service”, and next call the Accept() method within an Intracomm

instance. Client applications can first find a published “service” by calling the

Lookup_name() function, which returns the “port” where a server can be con-

tacted; and next call the Connect() method within an Intracomm instance.

Both Accept() and Connect() methods return an Intercomm instance. When

connection between client/server processes is no longer needed, all of them

must cooperatively call the Disconnect() method of the Comm class. Addition-

ally, server applications can release resources by calling the Unpublish_name()

and Close_port() functions.

3.4.2 One-Sided Communications

One-sided communications (also called Remote Memory Access, RMA) supple-

ments the traditional two-sided MPI communication model with a one-sided

interface that can take advantage of the capabilities of RMA network hard-

ware. This extension lowers latency and software overhead in applications

written using a shared-memory-like paradigm. The semantics of one-sided

communication are fairly complex. The MPI RMA API revolves around the

use of objects called windows, which intuitively specify regions of a process’s
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memory that have been made available for remote operations.

Windows are created by calling the Create() method of the Win class at all

processes within a communicator and specifying a memory buffer (i.e., a base

address and length). Three one-sided operations for remote write, read and

reduction are available using the Put(), Get(), and Accumulate() methods

respectively within a Win instance. These methods need an offset into the

window and an integer rank identifying the remote target. This one-sided

operations are implicitly nonblocking, and must be synchronized.

Windows are synchronized by using two primary modes. Active target synchro-

nization requires the origin process to call the Start()/Complete() methods

at the origin process, and target process cooperates by calling the Post()/Wait()

methods. There is also a collective variant provided by the Fence() method.

Passive target synchronization is more lenient, only the origin process calls

the Lock()/Unlock() methods.

3.4.3 Extended Collective Operations

In the MPI-1 specification, collective communications were only defined for

intracommunicators. The MPI-2 specification introduces extensions generaliz-

ing many of the collective routines to intercommunicators. They can be really

useful for collective interaction between disjoint group of processes created or

connected as described in section 3.4.1.

MPI for Python was enhanced in order to support these extensions. The

Barrier(), Bcast(), Gather(), Scatter(), Allgather(), Alltoall(), Reduce(),

and Allreduce() methods are defined for both Intracomm and Intercomm
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classes. They are able to collectively communicate general Python objects,

as discussed in section 3.1, or memory buffers, as discussed in section 3.2.

Notably, scan and exclusive scan operations as defined in MPI do not apply

to intercommunicators; that is, the Scan() and Exscan() methods are only

available for Intracomm instances.

3.4.4 Parallel I/O

POSIX provides a model of a widely portable file system. However, the opti-

mization needed for parallel I/O cannot be achieved with this interface, and

can only be if the parallel I/O system provides a high-level interface sup-

porting partitioning of file data among processes and a collective interface

supporting complete transfers of global data structures between process mem-

ories and files. Additionally, further efficiencies can be gained via support for

asynchronous I/O, strided accesses, and control over physical file layout on

storage devices.

The common patterns for accessing a shared file (broadcast, reduction, scatter,

gather) is expressed using user-defined MPI datatypes. Compared to communi-

cation patterns of point to point and collective communications, this approach

has the advantage of added flexibility and expressiveness. Data access oper-

ations (read and write) are defined for different kinds of positioning (using

explicit offsets, individual file pointers, and shared file pointers), coordination

(non-collective and collective), and synchronism (blocking, nonblocking, and

split collective).

All these features are available in MPI for Python by using instances of the

File class. Parallel files are created by calling method Open() at all pro-
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cesses within a communicator; they can be closed or even destroyed by calling

Close() and Delete() methods respectively. The data layout in the file can

be set and queried with the Set_view() and Get_view() methods respec-

tively. Data access is provided by many methods related to read and write

operations, but with different behavior regarding positioning, coordination,

and synchronism.

4 Testing

Some efficiency tests were run on the Beowulf class cluster Aquiles [27] at

CIMEC, Argentina. Its hardware consists of sixteen disk-less uniprocessor

computing nodes with Intel Pentium 4 Prescott 3.0GHz 2MB cache proces-

sors, Intel Desktop Board D915PGN motherboards, Kingston Value RAM

2GB DDR 400MHz memory, and 3Com 2000ct Gigabit LAN network cards,

interconnected with a 3Com SuperStack 3 Switch 3870 48-ports Gigabit Eth-

ernet.

MPI for Python was compiled on a Linux 2.6.17 box using GCC 3.4.4 with

Python 2.4.4. The chosen MPI implementation was MPICH2 1.0.4p1. Com-

munications between processes involved numeric arrays, they were provided

by NumPy 1.0.

The first test consisted in blocking send and receive operations (MPI SEND and

MPI RECV) between a pair of nodes. Messages were numeric arrays of double

precision (64 bits) floating-point values. The two supported communications

mechanisms, serialization and memory buffers, were compared against com-

piled C code. A basic implementation of this test using MPI for Python with
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direct communication of memory buffers (translation to C or C++ is straight-

forward) is shown below.

from mpi4py import MPI

from numpy import empty, float64

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

array1 = empty(2**16, dtype=float64)

array2 = empty(2**16, dtype=float64)

sendbuf = [array1, 2**16, MPI.DOUBLE]

recvbuf = [array2, 2**16, MPI.DOUBLE]

wt = MPI.Wtime()

if rank == 0:

comm.Send(sendbuf, 1, tag=0)

comm.Recv(recvbuf, 1, tag=0)

elif rank == 1:

comm.Recv(recvbuf, 0, tag=0)

comm.Send(sendbuf, 0, tag=0)

wt = MPI.Wtime() - wt

Results are shown in figures 1 and 2. Throughput is computed as 2S/∆t, where

S is the basic message size (in megabytes), and ∆t is the measured wall-clock

time. Clearly, the overhead introduced by object serialization degrades overall

efficiency; the maximum throughput in Python is about 60% of the one in C.

However, the direct communication of memory buffers introduces a negligible

overhead for medium-sized to long arrays.

The second test consisted in a small variation of the first one. The interchange

of messages consisted in a bidirectional send/receive operation (MPI SENDRECV).

Results are shown in figures 3 and 4. In comparison to the previous test, the

overhead introduced by object serialization is lower (the maximum through-

put in Python is about 75% of the one in C) and the overhead communicating
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Figure 1. Throughput in blocking Send and Receive
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Figure 2. Relative overhead in blocking Send and Receive

memory buffers is similar (and again, it is negligible for medium-sized to long

arrays).

The third test consisted in an all-to-all collective operation (MPI ALLTOALL)

on sixteen nodes. As in previous tests, messages were numeric arrays of double

precision floating-point values. Results are shown in figures 5 and 6. Through-

put is computed as 2(N − 1)S/∆t, where N is the number of nodes, S is the
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Figure 3. Throughput in bidirectional Send/Receive
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Figure 4. Relative overhead in bidirectional Send/Receive

basic message size (in megabytes), and ∆t is the measured wall-clock time.

The overhead introduced by object serialization is notably more significant

than in previous tests; the maximum throughput in Python is about 40% of

the one in C. However, the overhead communicating memory buffers is always

below 1.5%.

Interested readers should review previous results from a similar set of tests [16],
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but obtained with older hardware components and software distributions.

5 Conclusions

MPI for Python provides a base layer for applying the message-passing paradigm

in parallel applications written in Python. It makes use of any available MPI
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implementation retaining the syntax and semantics of the standard MPI spec-

ification. It can communicate general Python objects as well as any Python

object exposing a memory buffer. In the later case, efficiency tests have shown

that performance degradation is negligible, even for medium sized numeric

array objects. In fact, the introduced overhead is far smaller than the normal

one associated to the use of interpreted versus compiled languages.

Future work will be directed towards the improvement of MPI for Python by

adding some currently unsupported MPI functionalities like datatype decod-

ing, attribute catching and interoperability with Fortran libraries. Addition-

ally, an automatic mapping between MPI datatypes and NumPy datatypes

will be provided in order to simplify the parallelization of demanding applica-

tions involving multidimensional array processing.
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