Regularity of the Schrödinger equation for the harmonic oscillator
Abstract
We consider the Schrödinger equation for the harmonic oscillator $i \partial_t u = Hu$, where $H = -\Delta + |x|^2$, with initial data in the Hermite-Sobolev space $H^{-s/2} L^2(\real^n)$. We obtain smoothing and maximal estimates and apply these to perturbations of the equation and almost everywhhere convergence problems.
Accepted: Arkiv för matematik
Accepted: Arkiv för matematik