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Abstract: The use of finite difference sensitivity analysis in large scale industrial problems is
frequently avoided due to its high computational cost and approximation errors when
compared to the analytical approach. Although in iteratively solved problems the high cost
may be greatly reduced, a major problem of the  usual finite difference approach is that it
fails when remeshing is required. This happens because the errors caused by parametric
inversion and interpolation in variables transfer from the old to the new mesh may have the
same order of magnitude than the sought gradient components. This paper presents an
efficient finite difference approach that allows remeshing, not being affected by the mentioned
errors. The low cost and the accuracy of the sensitivity fields obtained after remeshing are
shown in two examples, with shape and constitutive design variables respectively. Although it
is presented in the frame of large strain elastoplasticity with linear isotropic hardening, the
method opens the possibility of dealing in a simple manner with more complex material and
contact laws including thermo-mechanical coupling, damage, etc.
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1. INTRODUCTION

Sensitivity analysis is an important tool for decision making in engineering practice and a
necessary step in optimization procedures and reliability analyses. Efficient methodologies for
sensitivity determination in linear problems are well established at least since the 80’s ( Haug,
Choi and Komkov1). In nonlinear analysis different additional issues must be taken into
consideration, depending on the type of the nonlinearity ( Kleiber et al.2). Both references are
centered in analytical sensitivity methods.

In nonlinear problems such as those involving large strain elastoplasticity with frictional
contact, the computation of each displacement increment depends on the constitutive model
and the stress integration algorithm employed. This dependence affects directly the
displacements, stresses and internal variables history. Hence, in order to perform the
displacements sensitivity analysis at the n-th load increment, it is necessary to differentiate
displacements, stresses and internal variables at load increment n-1.

The analytical sensitivity analysis may clearly be difficult when non-differentiable
functions are involved and when complex constitutive laws are considered, especially in large
strain situations. The difficulty increases when the design variables are the shape parameters
that define the integration domain and when boundary conditions change along the process.

There are three main approaches for sensitivity analysis in nonlinear problems. One is the
analytical method, efficient and accurate but frequently limited to particular cases. Another
one is the finite difference method which is very simple and general but usually has a much
higher computational cost. Moreover, in large strain situations which require remeshing, the
finite difference method has been shown not to give acceptable results3,4, whereas the
analytical method still provides very accurate ones. The third is the semi-analytical aproach
which is cheaper but still suffers the remeshing limitation.

This work presents a very simple strategy that reduces considerably the time spent by the
finite difference method and solves its limitation in dealing with remeshing situations,
resulting in very accurate sensitivity fields. In this way, the proposed procedure is very
efficient and comprehensive and thus adequate for any kind of sensitivity determination either
in path-dependent or path-independent problems.

The implementation used the METAFOR® finite element code5, originally developed at the
University of Liège and available at CEMACOM – UFRGS through a cooperation agreement.
It  uses a Lagrangian – or Arbitrary Lagrangian Eulerian - description elastic-(visco)plastic
incremental approach and applies frictional contact by penalization. Different material and
contact models are available. The stress integration algorithm uses the combination of the
method of instantaneous rotation6 and radial return.

2. FINITE DIFFERENCE SENSITIVITY METHOD IN NONLINEAR ANALYSES
WITHOUT REMESHING

A path-dependent nonlinear structural problem may be posed by a set of incremental
equations of the type

1, ,n n n extintf u U b f b (1)
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1

n
n i

i

U u (2)

established for the n-th load increment. In Eq. (1), intf  is the vector of internal forces, which

is function of the displacement increment vector nu , the displacement vector 1nU  and the
design variables vector b , extf  is the vector of external loads and n  is an amplitude

parameter. Due to the dependence of Eq. (1) on nu , it must be solved iteratively. Using the
Newton-Raphson method one has

1 1, , , ,n n n n n n n ext
1 0 T 1 0

int intf u U b f u U b K u u f b (3)

where n
0u  is the initial displacement increment estimate and

,n
0

n

int

T

f u b
K

u
(4)

is the tangential stiffness matrix.
Hence,

1- , , -n n n ext n n n n
k+1 k T k k T k

-1 int -1u u K f b f u U b u K R (5)

where n
kR  is the residual of the equilibrium equations at the n-th step and k-th iteration. The

solution is obtained when the residual n
kR  reaches a prescribed convergence tolerance.

In order to obtain the desired sensitivity fields, one possibility is to employ overall finite
differences. In this case the equilibrium equations (1) are perturbed with respect to the j-th
design variable, resulting

1, ,n n n ext
j j

intf u U b b f b b (6)

1

n
n i

i

U u (7)

where 1

T

j j nvpb b bb (8)

jb  is the perturbation and nvp is the number of design variables. The gradients are then

evaluated by the approximation

n n n

j j

d

db b

U U U
. (9)

The numerical perturbations must not be too small nor too large in order to give acceptable
results. Too small perturbations have their effect polluted by the computer finite precision
residuals. Too large perturbations provide a secant rather than a tangent approximation7.
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In nonlinear problems there exist additional  inaccuracy sources because of the iterative
nature of the solution procedures and the associated residuals. Fig. 1 depicts the behavior of a
hypothetical displacement jU  as a function of a design variable kb . The red lines limit the

maximum deviation allowed, as a consequence of the prescribed residual tolerance. Note that
at the unperturbed situation, either 1

jU  or 2
jU  are acceptable solutions, situated inside the

tolerance range. The same occurs with 1
jU  and 2

jU  relative to the perturbed situation.

Nevertheless, it is possible to obtain completely different numerically computed gradients,
some of them completely wrong. This situation is worse when the perturbation is smaller and
the tolerance is larger8,9.

Figure 1. Finite difference sensitivity inaccuracy in nonlinear problems.

Numerical perturbations may be applied directly according to Eq. (6) in the case of
constitutive parameters or any design variable that does not affect the unperturbed mesh.
However, in the case of shape sensitivity, when using unstructured mesh generators, special
care must be taken in order not to change the mesh topology, as will be discussed next.

2.1. Shape parameters finite difference sensitivities using unstructured mesh generators

The satisfaction of the mesh topology invariance requirement is usually not met when
unstructured mesh generators are employed for the sensitivity task. An example is given in
Fig. 2, in which a slight boundary perturbation causes a complete mesh topology change. Fig.
2(a) presents the geometrical model which is given by 3 straight lines and 1 spline. Points 5, 6
and 7 are control points of the spline. Point 7 is perturbed upwards by 10-3 times the spline’s
length, causing a modification in the generated mesh. Fig. 2(b) and Fig. 2(c) show the meshes
generated for the unperturbed and perturbed geometries respectively. The problem was
noticed early by researchers as Braibant & Morelle10 who suggested to adopt a Laplacian
nodal smoothing as a possible solution. In this kind of procedure, the sensitivity of the
boundary nodal coordinates with respect to shape parameters is obtained analytically and
introduced as a non-homogeneous boundary condition of a properly defined Laplacian

jU

kb k kb b kb

1
jU

2
jU

2
jU

1
jU
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problem, leading to the determination of the sensitivity in the domain. The obtained field is
called “mesh sensitivity” or “velocity field” because the shape parameter may be seen as a
pseudo-time variable. Duysinx et al.11 studied the application of different Laplacian schemes
in linear elasticity problems. In the present work, this approach is employed and based on a
comparative study applied to metal forming optimization applications12, the power Laplacian
scheme13 was selected.

                                           (a)                                   (b)                                    (c)

Figure 2. Effect of perturbation in mesh topology using an unstructured generator.

The invariance of the mesh topology is necessary because otherwise interpolated values
would bring interpolation errors polluting the sensitivity calculation. Consider

j j j

k k

U U U

b b
(10)

in which jU  is an interpolated value of jU .

Then,

j jU U err (11)

where err is the interpolation error.
Replacing Eq. (11) in Eq. (10),

j j j

k k k

U U U err

b b b
(12)

that is

j j

k k k

U U err

b b b
(13)

Notice that although the interpolation error is negligible if compared to jU , for small

perturbations it will be “large” if compared to jU , hence, destroying the gradient

approximation. Some examples of this nature are given in Srikanth et al.3.
Although the traditional finite difference method is very general and simple, it is extremely

expensive because it demands one complete additional nonlinear analysis for each design
variable. Hence, cheaper alternatives need to be considered.



����

	����#&+��,��-����.��������������������/��.�� 
�&������������������������������������������������������������������

3. SEMI-ANALYTICAL SENSITIVITY METHOD WITHOUT REMESHING

One alternative to the traditional finite difference sensitivity method which avoids the
analytical differentiation of the constitutive equations and provides approximate results at a
fraction of the cost of the former is the semi-analytical approach. In this method, the
derivative of the nonlinear equations residual is approximated using finite differences.

Hisada14 pioneered the topic for path-dependent problems. He developed a semi-analytical
method for large strain elastoplasticity which was later extended by Chen to include frictional
contact15,16.

In 1993, Haftka established a relationship between the semi-analytical and an efficient
finite difference method that he developed for iteratively solved path-independent problems8.
This relationship shows that the former is equal to the efficient finite difference method based
in only one iteration. The extension to path-dependent problems is straightforward if the
effect of the perturbation in the whole loading history is taken into consideration.

3.1. Hisada and Chen’s semi-analytical sensitivity approach

In elastic-plastic problems, the discretized equilibrium equations may be put in the
infinitesimal form

T d = dK U F (14)

From (14) and due to the path-dependent nature of the problem, it is correct to affirm that
the integral below is valid provided the integration limits cover the whole loading history,

T

0 0

d = d
U F

K U F (15)

In practice, the loading extf F  is divided in ninc sufficiently small finite increments,
such that material behavior can be considered path-independent inside each interval. Hence,

1 2 ninc……F F F F . (16)

Therefore, the integral
n

n-1

n
T d

U

U

K U F (17)

is path-independent and may be solved using an iterative procedure. Hisada’s semi-analytical
approach is based in this equation.

Consider that an arbitrary parameter jb  suffers a variation jb  (= ; 1jb ) and the

tangent stiffness matrix is given by a
TK . In such a case, from  (17), one has

-

n n

n n-1

n
T Td d

U U

U U

K U K U F (18)
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The expression (18) may be approximated by

T
n n nK U U R (19)

with -

n

n-1

n n
T d

U

U

R K U F (20)

or, from (17)

-1

-

n n

n-1 n

n
T Td d

U U

U U

R K U K U (21)

The expression for nR  can still be put as

-

1 2 n

1 n-1

1 2 n

1 n-1

n
T T T0

T T T0

d d d

d d d

+ +

+ +

U U U

U U

U U U

U U

R K U K U K U

K U K U K U

(22)

Therefore,

1
n n n

n
T

j j j

d

db b b

U U R
K U (23)

The terms inside the second parenthesis in (22) are determined by the standard integration
procedure adopted for the unperturbed problem. However, in order to evaluate the terms in
the first parenthesis, it is important to note that the upper integration limit of the last integral
is configuration nU . As a consequence, the internal variables and stresses found are relative
to this configuration. In the next increment, however, it will be necessary to start with the
lower integration limit relative to configuration nU . These displacement values are obtained

by linear approximation, i.e.,

n
n n

j
j

d
b

db

U
U U (24)

Next, a new integration of the constitutive equations is performed, time in the interval
1,n nU U , obtaining the stress and internal variables state in configuration nU .

For a generic degree of freedom, the described procedure has the geometrical interpretation
depicted in Fig. 3. The displacement sensitivity obtained may be visualized in the U × b
plane, given by the tangent of the angle between the line defined by *

nU  and the line defined

by nU  (parallel to the b axis). This value has two main inaccuracy sources: the first one is
related to the use of matrix K to estimate the value of nU , which leads to point 1 instead of

point 2. This fact is very important since the problem is path-dependent and the error at each
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incremental solution will accumulate. This will clearly happen since after finding the value of

*
nU , according to point 1, the integration of the constitutive equations for this configuration

will lead to point 1’. Hence, the internal variables and stresses found will be relative to point
1’, not point 1, resulting in a cumulative error in the incremental determination of sensitivity.
The second inaccuracy source is relative to the magnitude of the perturbation kb , which

should be small in order to compute a tangent rather than a secant. If kb  tends to zero, these

errors become negligible but conditioning errors appear due to the computer finite precision.

Figure 3. Structural response with respect to b.

4. EFFICIENT FINITE DIFFERENCE SENSITIVITY METHOD WITHOUT
REMESHING

Kleinermann17,18, studied inverse optimization problems including preforms, die-shapes
and parameters identification in metal forming. In his developments,  he employed a variation
of Hisada’s and Haftka’s methods, establishing an efficient finite difference method for path-
dependent problems. In view of the incremental nature of the nonlinear solution method
adopted [Eq. (1)-(2) and (6)-(7)], the sensitivity field is given by

1 1

n i in n

i ik j j

d d

db db b

U u u
(25)

with i i iu u u . (26)

Based in Kleinermann’s developments this work presents a slightly modified efficient
finite difference sensitivity approach. As in Hisada’s method, the analysis begins with a
separate set of data  for each problem, the unperturbed and the perturbed ones. In the case of
shape design variables, the mesh topology must be maintained. The load history is divided in
ninc increments, and the procedure starts with the search of equilibrium for the first load
increment of the unperturbed problem. Once this condition is achieved within the tolerance
imposed for the iterative solution method, all the nodal and Gauss points information is stored

Un

intf

int
n n

extf f

U

kb
k kb b

nR

K

K

nUnU*
nU

1
1’ 2



���


#� �#����������
�����&��,$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

in a binary file. Then, the data of the first perturbed problem is loaded and a new analysis
takes place, but this time the converged configuration of the unperturbed problem is taken as
first the solution estimate of the perturbed problem. Moreover, the tangent matrix of the
unperturbed problem is used in a modified Newton-Raphson scheme, which converges
rapidly and at low cost. The same tolerance of the unperturbed problem is imposed to the
perturbed ones. After convergence, the information is stored in a binary file. This procedure is
repeated for every design variable. In each load step, after all the perturbed problems have
converged, the sensitivity obtained in the increment is determined by finite differences and
the total sensitivity up to the step is given by Eqs. (25) and (26). At the end of the cycle, the
data of the unperturbed problem is reloaded, the next load increment is considered and the
procedure continues until the last load step.

The perturbed incremental displacement is given by the iterative solution of

;
n

n n -1 n nk
,k+1 ,k T j ,0

j

d
= ± b

db

R
u u K u u (27)

where the signal depends if the finite difference is forward (negative signal) or backward
(positive signal). The relation of the method to Hisada’s approach is clear by comparing (27)
to (24) and (23).

Following Kleinermann, who employed central finite differences for the sensitivity
evaluation, the residual derivative is approximated using forward and backward finite
differences respectively, that is

j+

n n n-1 n n n-1
n k j

ik i

jij

; ; + - ; ;d

db b

R u U b b R u U bR
(28)

-
j -

n n n-1 n n n-1
n k k j

ik i

jij

; ; ; ;d

db b

R u U b R u U b bR
(29)

Replacing (28) and (29) in (27) gives, respectively

j+ j+

n n -1 n n n-1 n n n-1
T j= - ; ; + - ; ;u u K R u U b b R u U b (30)

1
j j

n
n i

i

U u (31)

and -
j - j-

n n -1 n n n-1 n n n-1
T j= - ; ; - ; ;u u K R u u b b R u u b . (32)

1
j j

n
n i

i

U u (33)

The final sensitivity matrix is obtained simply from
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j+ j-

n n
n

i

j

-d
=

d 2 b

U UU

b
(34)

In his efficient finite difference method, Haftka8 showed that the use of unperturbed
solution as an initial estimate for the perturbed problem may lead to completely erroneous
results if special care is not taken. The solution that he proposed is equivalent to
Kleinermann’s approach and is revised here.

For unilateral finite differences, two finite element problems are established which are
solved using the Newton-Raphson method. The first one is the unperturbed problem, given by

n n -1 n n n-1
k+1 k T k k= - ; ;u u K R u U b (35)

with
n
k

T n
=
R

K
u

. (36)

The second problem is the perturbed one whose equation is given by (30) or (32). Here,
forward finite differences will be adopted, yielding

;n n -1 n n n-1 n n
,k+1 ,k T k ,k j ,0= - ; ; +u u K R u U b b u u (37)

The solution of the sensitivity problem in the n-th load increment is found by the iterative
solution of (35) and (37) until the residuals reach a value below the tolerance imposed, that is

n n n-1, ,R u U b 0  and n n n-1
j, , +R u U b b 0 (38)-(39)

Haftka showed that in order to make the sensitivity results nearly independent of the initial
estimate, it suffices to modify the original and perturbed problems to

n n n-1 n n n-1, , - , , =R u U b R u U b 0 (40)

and -1n n n n n n-1
j, , + - , , =R u U b b R u U b 0 , (41)

where the tilde indicates the configuration at which the iterative search was stopped because
the residual reached a value below the imposed tolerance.

The problem (40) is negligibly different from the original problem since after convergence,
n n n-1, ,R u U b  is almost zero. Since for j =b 0  the exact solution of Eq. (41) is un , the

iterative process will only reflect the perturbation effect. Therefore, adding the residual of the
original problem in the perturbed one provides

1 1, , - , , ;n n -1 n n n n n n n n
,k+1 ,k T k j ,0= - +u u K R u U b b R u U b u u (42)

The expression is iterated until the term in brackets satisfies a predefined tolerance. In this
work the same tolerance that was imposed for the unperturbed residual was applied.
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Thus, the displacement sensitivity (9) may be obtained more accurately by

n n n

j j

-
=

b b

U U U
(43)

The iterative procedure on equation (42) is interpreted  graphically in Fig. 4, which is a
zoom of the box in Fig.3. It displays a modified Newton-Raphson method applied to the curve

int
kf b b  using the unperturbed stiffness matrix K and initial estimate nU , approaching

point 2 at each load increment. From Figure 4 it is clear that if only one iteration is performed,
Hisada’s semi-analytical method is obtained. This is in accordance with Haftka’s results for
path-independent problems19.

Figure 4. Iterative procedure for nU  determination.

The code METAFOR® allows to employ an automatic load incrementation procedure
aiming to accelerate the analysis convergence rate and to avoid the termination of the process
due to non convergence caused by a large increment. In the automatic incrementation method
it is possible to give an  initial configuration estimate through extrapolation based in previous
iterations. For the efficient finite difference method implementation one can choose to adopt
automatic or imposed increments in the unperturbed problem. However, in perturbed
problems imposed incrementation is necessary in order to use the converged unperturbed
solution as initial estimate. This situation is shown  in Fig. 5, in which the blue and the red
colors represent the unperturbed and the perturbed problems respectively. The point t* is
automatically found in the unperturbed problem but it is imposed in the perturbed ones.

5. EFFECTS OF REMESHING ON FINITE DIFFERENCE SENSITIVITY FIELDS:
PROBLEMS AND SOLUTIONS

Frequently in large strain problems it becomes necessary to remesh for avoiding numerical
errors associated to mesh distortion. This is the case in non-steady metal forming simulations
such as forging. In sensitivity analysis it has been shown that while the gradients obtained
using the analytical approach are unaffected by remeshing procedures, the gradients obtained
via finite differences might be severely affected producing unacceptable results. This happens

nU U

K

nU
*

nU

1

1’ 1’’
K

2extf

int
jf b b
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because small interpolation errors related to parametric inversion and variables transfer may
contaminate the gradients approximations in the same way that was indicated by Eq. (13)3.

t0 t1

t
t*

[ ]0t ,t* [ ]1t*,t

Figure 5. Search for equilibrium implemented in METAFOR using the “efficient finite difference method”.

However, a simple solution for this problem is possible. If the efficient finite difference
method presented so far is employed, at each load step the unperturbed and the perturbed
problems are solved sequentially. In this case, the program must perform a remeshing based
in the distortion criterion only in the unperturbed problem. After the new mesh is defined and
the parametric coordinates ,A A  of every new mesh node A are found – this is a necessary

step in any variables transfer procedure – these parametric coordinates are stored as depicted
in Fig. 6 and Table 1.

The new mesh of the perturbed problems is then defined by

1

,
nnel

A i A A i
i

x N x ,  (44)

where Ax  represents a generalized coordinate of point A in the new mesh, ix represents the

generalized coordinate of the i-th node of the old mesh element that contains node A and Ni

are the shape functions. The unperturbed and perturbed mesh connectivities are identical. In
this way, the interpolation errors in the unperturbed and perturbed problems will be almost
identical and will tend to cancel out providing a “clean” sensitivity field.

In the present work the remeshing strategy presented by Olmi20 was adopted. This strategy
defines a global remeshing estimator given by the sum of all the elements that exceed a
limiting distortion value. In other words, in each converged load increment the distortion level
of every element is verified. When the user defined allowable percentage of elements is
reached, a remeshing is performed. The new mesh is generated using the routine proposed by
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Alquati & Groehs21 yielding triangular and/or quadrilateral elements by a frontal scheme
starting at the boundary. Afterwards, Laplacian smoothing is applied for mesh regularization.

Figure 6. Parametric inversion for variables transfer and remeshing of perturbed problems.

Table 1. Mesh topology and local coordinates of the new mesh nodes with respect to the old mesh.

New mesh node Old mesh element

A 6
A A

The variables transfer strategy implemented by Olmi consists in transferring the deviatoric
and volumetric stress tensor components and the effective plastic strain at the Gauss points.
The approach follows the Gauss to node, node to node, node to Gauss procedure. Although
this strategy has the inconvenient of not assuring equilibrium and flow laws after remeshing,
the good results obtained by Olmi make believe that these are not critical issues. Hence, the
same procedure is used in this development. It must be clear, however, that the idea for
dealing with remeshing in sensitivity analysis proposed in this work independs on the
remeshing and variables transfer strategies adopted. The use of variables transfer schemes that
satify both equilibrium equations and constitutive laws, including the plastic increment
incompressibility condition, has been object of many discussions in the scientific
literature3,22,23,24,25,26.

6. NUMERICAL EXAMPLES

In order to demonstrate the potential of the method,  the upsetting of a cylinder of 200mm
height × 115mm radius is considered, as depicted in Fig. 7. Due to symmetry conditions, only
the right upper quadrant is discretized. The material parameters employed are: E=2.1×105

Element 6

1

,
nnel

n n
i i

i

x N x

1nx
1 1n n nx x u

1nu

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

A B

C D
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MPa, 0.3 , H=2.1×103 MPa and 270Y  MPa. Sticking contact is imposed with normal

penalization factor given by PN=108.

                               

Figure 7. Cylinder upsetting problem and discretized quadrant.

First, a geometrical model is needed to parameterize the boundary. For this purpose, three
straight lines (1-2, 2-3 and 3-4) and one spline (4-1) are used, according to Fig. 8(a). The red
dots on the spline are control points. Then, the domain must be meshed. A structured mesh
and an unstructured one are displayed in Figs. 8(b) and 8(c). Their velocity fields obtained by
the power Laplacian method (with power p=1.5) are shown in Figs. 9(a) and 9(b). In these
Figures the influence of the mesh is clear but in both cases meaningful results are obtained.

                  
                                          (a)                                            (b)                                        (c)

Fig.8. (a) Geometric model, (b) structured mesh and (c) unstructured mesh.

                     
                                            (a)                                                                       (b)

Fig.9. Power Laplacian velocity fields: (a) Structured mesh and (b) unstructured mesh.

The final deformed configuration of the meshes are depicted in Figs. 10(a) and 10(b).
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                                                (a)                                                                           (b)

Fig.10. (a) Deformed structured mesh and (b) deformed unstructured F.E. mesh.

For exemplification purposes, two design variables are considered. The first one is the
horizontal position of point 6 which is a spline control point. The second is a material
parameter, the elasticity modulus (E). In the case of the shape parameter the perturbation is set
as 4

1 Sb 10 L , where SL  is the spline length SL =100mm. In the case of the material

parameter, the perturbation is set as 3
2b 10 E . The displacement sensitivity fields

evaluated by the traditional finite difference method are displayed in Figs. 11 and 12 for the
structured and unstructured meshes. The same results obtained via the efficient finite
difference method are presented in Figs. 13 and 14 showing excellent agreement. The
Newton-Raphson tolerance is set to 10-6. An automatic load incrementation strategy with 10
compulsory matching points is applied.

              
                              (a)                                                                                      (b)

Fig.11. Traditional finite difference displacement sensitivity with respect to shape parameter at the end of
deformation (no remeshing). (a) structured mesh and (b) unstructured mesh.

             
                                    (a)                                                                                      (b)

Fig.12. Traditional finite difference displacement sensitivity with respect to material parameter at the end of
deformation (no remeshing). (a) structured mesh and (b) unstructured mesh.

             
                              (a)                                                                                      (b)

Fig.13. Efficient finite difference displacement sensitivity with respect to shape parameter at the end of
deformation (no remeshing). (a) structured mesh and (b) unstructured mesh.
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                                    (a)                                                                                      (b)

Fig.14. Efficient finite difference displacement sensitivity with respect to material parameter at the end of
deformation (no remeshing). (a) structured mesh and (b) unstructured mesh.

In order to make clear the efficiency of the proposed method compared to the traditional
finite difference approach, both methods are employed to obtain the sensitivity of an
increasing number of parameters. To simulate this situation, the sensitivity with respect to the
same shape design variable considered up to now is calculated repeatedly. Fig. 15, below
presents the time required for the calculations in the efficient finite difference method,
compared to the minimum time that would be required by using the traditional finite
difference method. In the analysis, the structured mesh of Fig. 8(b) with 600 nodes is used.
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Fig 15. Efficiency comparison between traditional and efficient finite difference methods.

Note that, for this mesh, when using the efficient finite difference approach, the cost of two
analyses is reached only after the consideration of 10 design variables. This efficiency
difference tends to get even more pronounced when the number of nodes increases because
the cost of the tangent matrix calculation increases in the third power of its order.

In order to analyze a remeshing case, the same problem depicted in Fig. 8(b) is considered,
this time allowing a limit of 2% of elements over the distortion threshold. Firstly the
traditional finite difference method is applied. Figs. 16(a), 16(b) and 16(c) display the final
deformed meshes of the unperturbed problem and the ones perturbed by the shape and
material parameters, respectively. In this case, the meshes are slightly different but as Figs.
17(a) and 17(b) illustrate, the interpolation errors are sufficiently large to pollute the
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sensitivity fields obtained by the small perturbations applied, in accordance to the results
reported by Srikanth at al.3.

  
                                       (a)                                             (b)                                                       (c)

Fig 16. Final configuration of the deformed remeshed meshes. Meshes relative to: (a) unperturbed problem,
(b) perturbation on the shape design variable and (c) perturbation on the material design variable.

                    
                                 (a)                                                                                           (b)

Fig 17. Displacement sensitivity fields using the traditional finite difference method for (a) shape parameter
and (b) material parameter.

On the other hand, the application of the method proposed in this work is displayed in Figs.
18 to 20. Figs. 18(a) and 18(b) display the unperturbed meshes before and after remeshing
respectively and Fig. 18(c) shows the final deformed configuration of the new mesh.

                  
                                                   (a)                                                                       (b)

                                                                                       (c)

Fig. 18. Meshes of the unperturbed problem (a) at the remeshing moment before remeshing, (b) at the remeshing
moment after remeshing and (c) at the end of the analysis.

Figs. 19(a) and 19(b) illustrate the shape sensitivity field transfer from the old to the new
mesh and Fig. 19(c) presents the final shape finite difference sensitivity field. Figs. 20(a),
20(b) and 20(c) play the same role for the sensitivity with respect to the material parameter.
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                                    (a)                                                                                (b)

                                                                             (c)

Fig. 19. Displacement sensitivity field with respect to the shape parameter. (a) in the old mesh at the remeshing
moment, (b) in the new mesh at the remeshing moment (transferred field) and (c) at the final configuration.

      
(a) (b)

                                                                              (c)

Fig. 20. Displacement sensitivity field with respect to the material parameter. (a) in the old mesh at the
remeshing moment, (b) in the new mesh at the remeshing moment (transferred field) and (c) at the final

configuration.

7. CONCLUSIONS

An efficient procedure for finite difference sensitivity evaluation which allows remeshing
has been developed and its formulation and computational details are presented.

With this procedure the finite difference method becomes competitive, particularly in
highly non linear history dependent problems that include remeshing.
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As shown in the examples with this new procedure considerable amount of computational
time was saved as compared with the traditional finite difference sensitivity method, while
clean and precise displacement sensitivity fields were obtained after remeshing for the shape
and material parameters considered even for very small perturbations. The extension for other
sensitivity fields determination is straightforward.
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