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Abstract. This paper presents the problem of volume minimization of two-dimensional 
continuous structures with compliance and stress constraints. Problems are solved by a 
topology optimization technique, formulated as finding the best material distribution into the 
design domain. Discretizing the geometry into simpler pieces and approximating the 
displacement field, equilibrium equations are solved through the finite element method. A 
material parametrization method is used to represent the fictitious constant material 
distribution into each finite element. Sequential Linear Programming is used to solve the 
optimization problem. For both compliance and stress constrained problems, an analytical 
sensitivity analysis for elastic behavior is derived, and for this last problem, Von Mises 
equivalent stress is the failure criteria considered. A first neighborhood filter was 
implemented to minimize the effects of checkerboard patterns and mesh dependency, two 
common problems associated to topology optimization. Stress constrained problems have a 
further difficulty, the stress singularity, which may prevent the algorithm to reach a feasible 
solution. To overcome this problem, the feasible domain is modified using a mathematical 
perturbation technique, the epsilon-relaxation. 
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1 INTRODUCTION 
More and more, the human being is increasingly aware of the necessity of saving natural 

resources. This fact is the main motivation for researching optimum designs. 
Structural engineers also adopted this trend in the design of new structures or modification 

of existent ones. In this context, a structure can be considered as an amount of distributed 
material over a design domain, in order to support loads (static or dynamic), absorb and 
distribute energy and transmit it to the supports. One of the goals of optimum design is best 
distribute the available material into the design domain. 

Initially, only relatively simple optimization problems could be addressed, due to the 
difficulty in solving equilibrium equation for more complicated structures. In 1872, Maxwell1 
derived analytical solutions for the minimum volume problem in uniaxial structures subjected 
to several types of loads. Some years after, in 1904, Michell2 developed analytical solutions 
for minimum weight trusses, also subjected to different load types and applying constraints on 
stresses in each bar (figure 1): 

 
Figure 1: One load case Michell-like truss structure. It is the best possible truss for this specific load case. Notice 

that the bars crossing themselves forming 90°. This is an unstable structure for any other type of loads 

However, structural optimization became practical only when numerical methods began to 
be used, specially for solving the equilibrium equations. One very popular method is the 
Finite Elements Method, where the continuum is approximated by an assembly of simpler 
geometric domains. 

Mathematical programming is another important tool created to help the solution process 
in optimization problems. According to Rozvany et. al.3, before the arise of the mathematical 
programming, the updating of the design parameters was based on analytical methods (many 
of them heuristically decided), known as optimality criteria. 

In the early 60’s, Schmit4 published an important work, considered the dawn of the modern 
structural optimization. In his work with trusses, he combined the Finite Elements Method for 
the structural analysis with Linear Programming for the optimization. 

With the development of 2-D and 3-D finite elements, new contributions to the structural 
optimization field were developed. An important result was obtained by Cheng and Olhoff5, 
in 1981. Studying the problem of optimum thickness distribution in plates under compliance 
and natural frequency constraints, they concluded that the geometrical irregularities obtained 
in the thickness distribution could be interpreted as ribs (stiffeners). They also concluded that 
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the exact solution for plate optimization contains an infinite number of ribs, so the finer the 
finite elements mesh more ribs will appear. This result showed the necessity of considering 
some kind of microstructure to find one valid macroscopic solid-void layout. 

Addressing this problem, several authors worked with relaxed formulations, by relating the 
constitutive material properties with microstructural parameters. Works by Allaire and Kohn6 
(1993), Niordson7 (1983) and Rossow and Taylor8,(1973) present different methods of 
material parameterization. 

Rossow and Taylor8, for example, proposed a minimum compliance problem for 
membranes in plane stress behavior. Design variables were the thickness of each finite 
element, and they were related to the material stiffness according to the equation: 

  (1) 0E hE

where h is the thickness and E0 is the isotropic material stiffness. Imposing upper and lower 
bounds to the possible values of thickness, the obtained solution is a combination of elements 
with maximum, minimum and intermediary thickness. 

However, topology optimization only received more attention after the introduction of 
Homogenization Method by Bendsøe and Kikuchi9, in 1988. This theory is considered a 
natural extension of previous works, like Reiss10 (1976) and Cheng11 (1981). 

This material parameterization model considers the existence of periodic microstructures 
(figure 2), from which composite material effective properties are computed. Mathematically, 
the different material scales are split using an asymptotic expansion (Sanchez-Hubert and 
Sanchez-Palencia12). 

 
Figure 2: Representation of a composite material made of a periodic microstructure 

Dealing either with isotropic or anisotropic material constitutive laws, this model considers 
the material stiffness as a function of microstructure and a density-like parameters, as follows: 

  (2) 0 , , ,E E

In 1989, Bendsøe13 proposed another type of material parameterization, nowadays named 
SIMP (Solid Isotropic Microstructure with Penalization). Differently from the 
homogenization, this approach considers the existence of only one design variable, a constant 
fictitious density ( ) in each finite element. Therefore, the new stiffness parameterization is 
calculated as follows: 
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  (3) 
0

0 1

nE E

where n defines the amount of penalization. If n>1, material stiffness is penalized, avoiding 
the appearing of low stiffness elements (with intermediary densities). This parameterization is 
an extension of the work of Rossow and Taylor8 (1973). If n=1, we have a very similar 
problem to that shown in equation (1), except that the upper bound is set to unity. 

Besides the common problems associated to the topology optimization solution 
(checkerboard patterns and mesh dependency, for example), stress constraints (as considered 
in this work) bring further ones. Firstly, stress is a local constraint, then, each infinitesimal 
point of the structure should have its stress level under control. Moreover, the singular 
optimum phenomenon can arise. 

Stress singularity was firstly pointed by Sved and Ginos14, in 1968. Performing an 
analytical study on the 3 bar truss problem with 3 load cases and stress constraints, they have 
found out that only removing one structural bar the global optimum could be reached. This 
apparently simple problem defied all mathematical programming algorithms, causing stress 
constraint violation, or even non-convergence. Moreover, algorithmic difficulties appear 
because in most codes finite elements can not be simply removed from the mesh. The 
physical cause is easily understandable: in bars, the cross sectional area of each bar (or 
density, in SIMP model, according to Duysinx and Bendsøe15 (1998) ) is inversely 
proportional to the stress. Thus, when areas tend to vanish, stresses may increase 
unreasonably. 

This problem was insolvable for many time, until 1997, when Cheng and Guo16 proposed a 
perturbation technique called epsilon-relaxation. Thus, reformulating the stress constrained 
problem, the design space is modified, including new subdomains to the design space. This is 
a manner to modify the dimension of this space, without add or remove bars. Then, the design 
space is successively diminished, by decreasing this perturbation value, so that the solution of 
these series of modified sub-problems converge to the correct solution of the original 
problem. 

Finally, in 1998 Duysinx and Bendsøe15 extended this technique for two-dimensional 
continuum problems. In this work, they also developed an analytical solution for the 
sensitivity analysis of Von Mises equivalent stress. 

The present paper presents some classical results obtained when solving the minimum 
volume problem with compliance and with Von Mises stress constraints. Both source codes 
were developed in MATLAB, including analysis and optimization sub-routines. Taylor non-
conforming element is used to solve the equilibrium and Sequential Linear Programming is 
the chosen first order decision algorithm. 
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2 STRUCTURAL OPTIMIZATION 

2.1 Basic concepts and definitions 
Structural optimization aims to increase the structural performance of components and 

mechanical systems in a systematic way. Thus, firstly we need to identify which design 
variables best describes the features of some component. Then, by modifying these variables, 
following some criteria, we obtain the best solution, among a set of solutions. 

Design variables for a typical structural optimization problem can be the elements size, 
structural configuration, mechanical or physical properties of materials, or other qualitative 
aspects for the project being analyzed. Cost function, also known as objective function is the 
scalar function to be minimized (or maximized) during optimization process. Constraints are 
conditions imposed to the physical problem, representing the limit of the admissible space. 
Any solution with a violated constraint represents an infeasible solution. More details 
concerning these and other basic concepts can be found in Arora17 (1989), Haftka and 
Gürdal18 (1992) and Bendsøe19 (1995). 

Sensitivity analysis is the computation of the derivatives of the objective function and the 
constraints with respect to the design variables. It points the direction where the optimization 
algorithm should follow in the design space. This work focus on the sensibility analysis of the 
compliance and Von Mises stress constraints with respect to the design variables, using the 
analytical method. This approach is simple to derive and allows the efficient use of 
mathematical programming. Figure 3 illustrates the iterative process: 

 
Figure 3: Basic algorithm for solving a topology optimization problem 
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Topology optimization aims to find the best stiffness distribution within an admissible 
domain while satisfying the constraints. Figure 4 better illustrates this concept: 

 
Figure 4: Representation of topology optimization problem, where the goal is to find the best material (or 

stiffness) distribution along the design domain 

Mathematically, the material stiffness is formulated as follows: 

  (4) 

01

1 if 
where 1

0 if \

m

m

m

m

E E

x
x

Solving this problem is a very hard task, due to its combinatorial nature. In 1997, 
Beckers20 solved this problem in an efficient way. In her formulation, she considered 
compliance and perimeter constraints, in order to guarantee the existence of solution. 

However, to make the solution process easier, this problem is usually relaxed, by making 
use of microstructure parameters as design variables. Homogenization Method (as represented 
in (2)) or SIMP Method (equation (3)) are commonly used. 

Due to its relative simplicity, SIMP method was used in this work. The optimization 
problem is solved by using sequences of isotropic materials. Doing this, the only design 
variable is the constant density in each finite element, designed as . The next picture shows 
the relation between  and different penalization levels concerning to the material stiffness (in 
normal direction, for example): 
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Figure 5: Relation between  and material stiffness 

Intermediary densities represent an unknown isotropic microstructure with a known 
stiffness. In practical sense, these intermediary densities are not desirable, because their 
stiffness is too low and, at least nowadays, it is not possible to manufacture a stable composite 
microstructure formed by solid isotropic material and voids. 

Penalizing intermediary densities make their stiffness low comparing to the stiffness of a 
solid-void structure. Thus, to respect equilibrium and constraint, the optimization decision 
algorithm makes the intermediary densities attain the upper and lower bounds. 

Another important consideration arises when the mixtures theory is considered. One can 
see that n=1 represents an unattainable superior limit to the stiffness, i. e., no microstructure 
could be built with this stiffness and density. By the other hand, n=2 is an attainable superior 
limit for the stiffness. 

2.2 Common problems associated to topology optimization 
Nowadays, there are commercial programs to solve only simple topology optimization 

problem. When developing a new computer code, many computational and theoretical issues 
appear. The most common are the following: 

a) checkerboard patterns; 
b) mesh dependency; 
c) local minima; and 
d) singular topologies (for stress constrained problems). 

Checkerboard pattern is one of the most common problems related to topology 
optimization. Figure 6 shows a typical example of this phenomenon, i. e., solid and void 
elements alternating themselves. 
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Figure 6: Example of checkerboard pattern 

This phenomenon is a convergence problem caused by the incorrect evaluation of the 
strain energy by the finite element mesh. For example: if one is solving the problem of 
minimum compliance with volume constraint, the topology shown on figure 6 is really the 
minimum solution of the finite element problem, but not the continuum problem.  

Therefore, this is not a desirable solution. To overcome this problem, we can use high 
order finite elements, perimeter constraints or filtering techniques. The first solution leads to a 
more expensive computer problem and, sometimes, can not even solve the problem if SIMP 
exponent higher than 3, for example (Jog and Haber21 (1996) ). Perimeter constraint is a good 
solution, because we are not only solving the checkerboard pattern but also the mesh 
dependency problem. Thus, constraining the perimeter, we can avoid the formation of several 
small holes (voids between two solid elements in a checkerboard pattern, for example). 

Two drawbacks can be noted in this formulation. The first and more direct is that we are 
adding a new constraint in the optimization problem, and manage with many constraints 
usually is not an easy task. The second one is that, a priori, we have no idea about which 
amount of perimeter we have to constraint. This can lead to different final topologies. 

In this work we have used the filtering strategy, by controlling the upper and lower moving 
limits gradients, according to the following equation: 

  (5) 1 1 2 3i i ix w x w x w x 1i

where wj is the filter weight and xk is the upper or lower density bound (calculated through 
the moving limits) in the direction X1 or X2. A good setting for these weights is 0.02-0.96-
0.02, i. e., to compute the density in the element i, 2% of the density from its neighbors is 
taken account, and “only” 96% from its density is considered. 

Other two common related problems, according to Sigmund and Petersson22 are the mesh 
dependency and local minima. Figure 7 illustrates these drawbacks: 
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Figure 7: (A) Mesh dependency and; (B) local minimum 

The mesh dependency problem comes from the fact that when the original discrete 
problem is relaxed (using finite elements, for example), each new mesh refinement leads to a 
new solution. There are several ways to overcome this problem. In fact, the same techniques 
used to avoid checkerboard can be used to control the mesh dependency.  

Local minima can take place due to the non-convexity of the involved functions, as the 
case of penalized constitutive or objective function parameterization or stress constraints. A 
local minimum design is often impossible to avoid, unless constraints and objective function 
are both convex. In most practical cases, we do not know exactly the topology of design set. 
Thus, when a solution is found, we cannot guarantee that this solution is the global optimum. 
There are two very expensive possible solutions: the first one is starting the problem from 
several different initial designs, comparing the final value of the objective function. This 
means one have to solve several optimization problems. Another solution is using globally 
convergent algorithms, such as genetic or simulated annealing algorithms. Due to their 
combinatorial nature, using these algorithms can be prohibitive for practical designs. 

The last problem, called stress singularity happens only when stress constraints are 
considered. As described by Cheng and Jiang23, the cause of this problem is that the stress 
function is non-continuous when one element reaches the minimum value for cross section 
area (or density). A typical stress constraint is formulated as follows: 

 ( ) 0  (6) 

where  is an equivalent stress measurement (such as Von Mises stress). 
When this density tends toward zero, stress value tends to infinitum. Thus, one algorithm 

based on Karush-Kuhn-Tucker (KKT) optimality conditions (such as SLP) can not reach the 
actual optimum. Figure 8 shows a simple example where stress singularity happens (this 
example was taken from Hoback24): 
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Figure 8: Qualitative effect of singular topologies phenomenon 

The global optimum is located in a sub-domain whose dimension is smaller than the 
dimension of the whole space. In the above truss, this means to remove the bar whose cross 
section area is A1 (point C). When solving this in a computer, we can not only remove that 
bar (or 2D finite element), because it makes the stiffness matrix loses its definite positiveness. 
One could make the cross sectional area of bar 1 goes toward one minimum value. But, from 
the picture we can see this leads to a different result, a local minimum (at point B). The proof 
can be found in Cheng and Guo16 (1997). 

In this same paper is proposed a solution for this problem, called epsilon-relaxation. The 
constraint showed in equation (6) is then modified: 

 ( )  (7) 

This parameter  is basically a perturbation, where we change the design space by applying 
a large epsilon value (typically 10-1). Gradually, we decrease this value towards zero, 
returning to the original problem. When  is enough small, it can be proven that the final 
design is the correct optimum (point C, on figure 8). 

3 FORMULATION AND SOLUTION STRATEGIES 
In this paper, we have solved two types of problems: minimum volume considering 

compliance or stress constraints. In both, SIMP method without penalization (n=1) is used. 
Using this approach, the density has the same physical meaning of the membrane thickness 
problem. In order to diminishes checkerboard effects, we have made use of objective function 
(structural volume) penalization. The effects on the topology is very similar to the SIMP 
method, in spite its physical meaning is not. Considering the objective function is stated 
according to equation (8), figure 9 illustrates the effects of volume penalization (using FEM 
notation): 
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  (8) 
1

1
ne

p
i i i

i
V iV

where p and  are parameters that set the level of penalization and Vi is the volume of 
element i. 

 
Figure 9: Different penalizations for equation (8): (A) varying p ( =0) and; (B) fixed p (=1/8) and different 

values for  

As one can see, differently from SIMP method, where the stiffness is penalized, the 
objective function is related to the cost, such that intermediary densities have a very high cost. 
Then, the optimization algorithm leads these densities to the maximum or minimum values. If 
p=1 and =0, the objective function is the structural volume. 

In order to avoid convergence problems, we commonly start without penalization. So, 
using a “continuation method” (Cardoso25 (1999) ), we continuously decrease the value of p 
(usually up to 1/8), obtaining a more and more cleaner final topology. If it is necessary, a 
stronger penalty function is used, by fixing p and varying  (figure 9 (B)). 

Sequential Linear Programming (SLP), one type of mathematical programming algorithm 
was used to decide the new set of design variables in each new iteration. If the objective 
function and/or constraints are not linear, we still can use SLP by applying Taylor Series 
Expansion. A serious drawback of this algorithm is its strong dependency to the moving 
limits. Moving limits are parameters used to respect the linearization in an iteration. The 
adopted approach in this work is to start with a big value for the moving limits, reducing them 
next to the convergence. 
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3.1 Minimum volume with compliance constraints 

  (9) 
1

lim

min

min      1

s. t.:     ( )
            0< 1

ne
p

i i i
i

k

V V

W W

i

Tu

where V is the objective function, Wk is the compliance value for load case k and Wlim is a 
given compliance limit. W can be calculated as follows: 

  (10) 
from discretized
equilibrium
equation: 

T

Ku f

W u K u f

where u is the nodal displacement vector and f is the nodal external loads vector. These 
vectors are linked through the discretized equilibrium equation: 

  (11) Ku f

In order to adapt to the standard form of linear programming, the above constraint is 
linearized by Taylor Series expansion: 

 lim 0 0 0( ) ( )
k k

k
i

i i

W W W W  (12) 

3.2 Minimum volume with Von Mises equivalent stress 

 

1

2
min

min      1

s. t.:     1

           1

ne
p

i i i
i

k
i

vm

V Vi

 (13) 

where i
k is the equivalent stress in the element i for load case k, vm is the limit stress and  

is the parameter that defines the epsilon-relaxation perturbation. Epsilon-relaxation and 
equivalent stress formulation have already been applied to the constraint as shown in (13). 
The relationship with the density comes from the fact that each component from the stress 
tensor is inversely proportional to the density, when using SIMP method. Thus: 

    or    ij vm
ij vmm m  (14) 

Von Mises equivalent stress can be calculated as follows, using a displacement notation: 
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 T
vm u Mu  (15) 

where u is the nodal displacement vector, , T  and TM T VT 0n

SIMP

E B

1
2

1
2

1 0
1 0

0 0 3
V . 

Again, applying Taylor Series expansion to stress constraint, we obtain (remember that i 
is the Von Mises stress in element i): 

 0 0( )
k k
i i

j vm i vm
j j j

 (16) 

3.3 Sensitivity analysis 
Sensitivity analysis is a very important stage when solving an optimization problem. This 

informs the directions the solver must follow during the search for the optimum. Physically, 
this represents how changes one given function when one changes the design variable. If a 
first order algorithm (such as SLP) is used, only first order derivatives are required. There are 
several methods to compute these sensitivities: finite differences method, adjoint method, 
semi-analytical method or analytical method. In this work we have chosen the last one, due to 
its simplicity to derive. 

Thus, in this case, calculating the derivative of objective function is very easy. 
Differentiating equation (8) with respect to the design variable, we obtain: 

 1 1 2p
i

i

V p i iV  (17) 

Calculating the compliance sensitivities is also easy. Differentiating equation (10) with 
respect to i, we obtain: 

 
Tkk kTk

i i

fW uf k

i

u  (18) 

Using the discretized equilibrium equation (equation (11)), the orthogonality of the 
stiffness matrix and considering no existence of body loads exerting on the structure, we 
obtain: 

 
k Tk

i i

W u kK u  (19) 

The derivative of global stiffness matrix with respect to the design variables is simple to be 
computed. In fact, it corresponds to the local stiffness matrix for element i. 

To computing the stress sensitivity, Duysinx and Bendsøe15 (1998) approach was used. 
Firstly, one have to remember that stress is a global constraint. Thus, we want to know what 
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is happening with stress in a element i when we change the density in one element j. 
Therefore, differentiating equation (15) with respect to design variables ( j), making use of 
the definition for stresses in porous environments (equation (14)), and again using the 
discretized equilibrium equation (equation (11)), we have (again, body forces are not 
considered): 

 0 1
0

1

j

Ti
i

j vm j

u

Ku M K u  (20) 

4 RESULTS 

4.1 Compliance constraint 
As a first example, we have simulated the famous MBB beam. This represents a semi-long 

isostatic beam under bending loads. Geometry and boundary conditions are shown in figure 
10: 

 
Figure 10: MBB beam under flexion (SI units) 

This structure was discretized using 3330 Taylor elements. The used material has E=1 
N/m2 and =0.3. Compliance limit was set to Wlim=300.8 Nm (50% higher than initial 
design). Thus, solving the problem and applying necessary penalizations, we obtain: 
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Figure 11: (A) Solution without penalization; (B) p=1/8, =0 and; (C) p=1/8, =0.3 

Although the expected result is a symmetric structure, due to the symmetry of boundary 
conditions, not completely symmetrical structures can be obtained when solving topology 
optimization problems using linear programming. 

We have solved this problem again, making some minor changes to the geometry and 
boundary conditions (the structure is not isostatic anymore): 

 
Figure 12: Another problem using MBB beam under flexion (SI units) 

For this problem, we have 2400 finite elements, Wlim=147.7 Nm, E=2.1 x 1011 N/m2 and 
=0.3. Applying all the possible filtering and penalizations, the obtained structure can be seen 

in the next picture: 
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Figure 13: Final topology 

Although problems shown in pictures 10 and 12 are very similar, final topology in both 
problems is very different. The main reason for these discrepant results is the applied 
boundary conditions. While left support of first example is only constraining X2 
displacement, the second example has all directions constrained. Thus, in this last case, 
additional “bars” are not necessary in the supports region. 

4.2 Von Mises equivalent stress constraint 
For stress constrained problems, epsilon-relaxation must be applied for a correct 

convergence. Similarly to the continuation methods, we start with a big value for  (0.1, for 
example), and solve this problem. When it converges,  value is successively reduced by a 
factor of 10, up to the final convergence, when  is small (typically 10-6 to 10-8). 

The first solved example is shown on figure 14: 

 
Figure 14: Geometry and boundary conditions 

Since this a large scale problem, we have discretized this structure using 675 finite 
elements. This means we have 675 constraints and 675 design variables. Material has 
E=1N/m2, =0.3 and lim=35 N/m2. After filtering, penalizing and applying -relaxation 
technique, we obtain the following result: 
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Figure 15: Final results for =10-7; (A) p=1, =0; (B) p=1/8, =0; and (C) p=1/8, =0.3 

The stress field is represented on next picture, where can be seen that the stress limit is 
been respected: 

 
Figure 16: Stress field for the optimized problem. max=35 N/m2 

Removing elements with minimum density and reanalyzing, we obtain a maximum stress 
of 49.6 N/m2. This means although we have solve the mathematical problem, this structure 
could not be manufactured, since it is not respecting the stress limit. 

This method can be improved by adding more elements in the mesh, for a better 
representation of the stress field. But this is out of scope for this work. 

Even though, we have analyzed another structure, whose geometry and boundary 
conditions is represented in picture 17: 
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Figure 17: Geometry and boundary conditions for the L-shape beam 

This problem has 576 design variables and constraints. Material properties are E=1 
N/m2, =0.3 and vm=50 N/m2. Performing the same procedures described in the previous 
examples, we obtain the following: 

 
Figure 18: (A) Final topology for =10-8, p=1/8 and =0.3; (B) stress field, max=50.5 N/m2; and (C) Similar 

final topology obtained by Duysinx and Bendsøe15 (1998) with 9-node quadrilateral elements 

Again, we had the same problem, because only the mathematical problem was solved. 
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When removing low density elements, maximal stress was increased to 133.1 N/m2. 

5 CONCLUSIONS 
All the developed algorithms not only solved satisfactorily the proposed problems but also 

obtained results according to the literature. 
Sequential linear programming algorithm can solve different types of constraints, but it is 

very sensitive to the initial parameters, such as moving limits. 
All problems demand an extra post-processing in order to eliminate the jagged boundaries. 

Shape optimization after topology optimization is essential to obtain better results. 
Problems considering stress constraints require a more refined finite element mesh to 

obtain better solutions for engineering problems. 
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