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Abstract. Atmospheric wind close to the ground surface may usually be modelled as a
Gaussian stationary random process. The expected value and the power spectral density
function are used to characterize this process. In previous works, has been developed a
scheme of structural analysis that incorporates the wind action for a Monte Carlo simulation
procedure of a Gaussian stationary random process, correlated in vertical sense. A numerical
integration method is used in the frequency domain. As structure model a general formulation
of beams is adopted with constitutive law general linear viscoelastic. Besides, the fast Fourier
transform (FFT) algorithm is used to work in the frequency domain. The focus is particularly
appropriate for the determination of the dynamic response of towers and chimneys to the
longitudinal wind action, having been employed with excellent results to obtain the response
of structures excited by the atmospheric turbulence, for which experimental evidence exists in
the specialized literature. In this paper the model is extended for the determination of field
matrix in the state space formulation, considering the linearized equations of motion for the
effect of fluid-structure interaction.
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1. INTRODUCTION

Fluid flow around a flexible structure may cause changes in its basic dynamic properties,
such as natural frequencies or damping. On the other hand, the dynamic pressures due to the
fluid flow are altered by the motion of the structure. Therefore there is a flow of energy from
the fluid toward the structure and vice versa, in a process commonly known as aeroelastic
effect or fluid-structure interaction. The response of the structure under these conditions can
be significantly different from that foreseeable from its initial properties.

This phenomenon has wide implications in engineering, from the design of intermediate
and long span bridges, to pipe bundles in heat exchangers or vibrations of iced conductors,
not to mention some of the most important problems of Aeronautical Engineering. In spite of
the importance of this problem, there is yet no comprehensive theory or global model
available. The so-called pseudo-static theory, as presented and used by Brito and Riera'*?, is
a global approach to the problem, at least for two-dimensional situations. In those
contributions, the authors suggested a general procedure to obtain the interaction forces,
which depend primarily on displacements and velocities of the body, for a cylindrical or
prismatic body subjected to non-uniform flow. The resulting equations are applicable to many
well-known problems in Wind Engineering, from simple galloping to more complex problems
of flutter.

The aeroelastic effect has been subject of numerous studies, especially after the collapse of
the first Tacoma Narrows Bridge in 1940. In this context, the state of the art analysis of
bridges subjected to wind loading presented by Hudson ef al* and Scanlan and Jones’, as well
as the most recent contributions of Cooper et al’, Larsen’ and Chen et al® may be mentioned.

With the purpose of analysing line-like structures under random dynamic loading,
Ambrosini et al’ developed a scheme that accounts for turbulent wind action using Monte
Carlo simulation for a two-dimensional Gaussian stationary random excitation process,
correlated in the vertical direction. Numerical integration is used in the frequency domain to
solve the equations of motion in state space. The structural model is based on a general
formulation for open section, thin-walled beams of a general linear viscoelastic material. The
method is particularly appropriate for the determination of the dynamic response of structures
to along- and accross-wind action.

In this paper the model is extended to the determination of the linearized field matrix in the
state space formulation, considering the effect of fluid-structure interaction as previously
proposed by Brito and Riera'*".

2. MODEL OF THE STRUCTURE

The model of the structure, schematically shown in Fig.1, is based on Vlasov's theory of
thin-walled, open-section beams. The theory was modified to include the effects of shear
flexibility, variable cross-sectional properties and rotatory inertia by Ambrosini ez al'®!', who
derived the equations of motion in the state space, as described in the following.
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Figure 1: Model of the structure

The constitutive law for a general linear viscoelastic material is adopted, which allows the
consideration of arbitrary linear damping in the structure. After transforming the equilibrium
equations and the expressions that relate the bending and torsional moments, as well as the
shear stress resultants, with the displacement variables into the frequency domain, a system in
state variables with twelve coupled first-order differential equations is obtained. Adopting as
state variables the displacements according to the x and y axes, & and 7, the bending rotations
with respect to those axes, ¢ and ¢,; the normal shear stress resultants O, and Q,; the bending
moments M, and M,; the rotation of the cross-section around its shear centre and its spatial
derivative #and @', the total torsional moment M7 and the bimoment B; the state vector v is:

izw)=ln, ¢, O, M. & 4. 0. M, 6, 0, M, Bf )
The resulting system may be written in the form:

oV

AV +§ 2
o q @)

In which 4 denotes the system matrix and ¢ the external load vector:
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g(z0)=0, 0, =q,, 0, 0, 0. —q., 0, 0, 0, —m,, Of 3)

g. and g, are externally applied loads per unit length and m, is the external torsional moment
per unit length. Note that, for simplicity, the same notation will be used for the state variables
as well as for their transforms, since the domain can be adequately identified by indication of
the function arguments. For example, 7(z,¢) and 7(z, @) denote the y-displacement in the time
domain and to its Fourier transform, respectively.

In the following, the equations of motion, as well as all functions, including the
viscoelastic constitutive law, are divided in its real and imaginary parts. The system consists
thus of 24 equations and 24 unknowns. The final matrix is presented in Appendix A.

Obviously, in numerical applications a fast Fourier transform algorithm (FFT) must be
employed. Thus, for each frequency @, the problem defined by equations (2) must be solved
using standards numerical integration methods, jointly with techniques for transforming the
boundary value problem in an initial value problem (Pestel and Leckien). If this procedure is
repeated for all frequencies @ in the range of interest, the FFT of all components of the state
vector can be obtained. Finally, the solution in the time domain of all variables of interest can
be determined by calculateting the inverse FFT of the corresponding variables in the
frequency domain.

3. CONSIDERATION OF FLUID-STRUCTURE INTERACTION

Brito and Riera'?? developed linearized equations to represent the aerodynamic forces
acting on flexible bodies, taking into consideration the motion of the body as well as the
characteristics of the flow. According to the so-called quasi-static theory:

F, = % pV2bhC . (0,6) (42)
1 .

F, = 3 pV2bC,(a.6) (4b)

M:%erzbsz(x,é) (4¢)

In which F, and F, denote the forces exerted by the fluid, per unit length of body, in the x
e y directions, respectively; M is the torsional moment around the body axis, ¥, the incident
wind velocity, as shown in Fig. 2. Additionally, p is the specific mass of the fluid, b is a
characteristic cross-sectional dimension, usually a body dimension normal to the flow, while
C,, Cy and Cy, are non-dimensional aerodynamic coefficients that depend on the shape of the
cross-section, the angle of incidence o and the angular velocity of the body (shown in Fig. 2).
Developing equations (4) as power series and neglecting higher-order terms, the following set
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of equations may be obtained (Brito and Riera'):

y

Figure 2: Definition of incident velocity vector

E | Cp | “o u
p=1F, :prVOZ c, +prV02A v +5pr0213 v (%)
M C, 0 0

in which V) is the wind velocity in the free field, Cp is the drag coefficient in the wind
direction, Cy is the lift coefficient and Cr is the torsion coefficient (Figure 3).

c,=(p2+42)c, (6a)
C, =(p2+47), (6b)
C, =blg? +¢7)c, (60)

Figure 3: Aerodynamic forces

2217



MECOM 2002 — First South-American Congress on Computational Mechanics

The aerodynamic forces depend on coefficients that characterize the flow at the body
location (¢, ¢, @.x, etc.) and other factors that depend on the cross-sectional shape of the
body (Cy, Cia C,, etc.). Both groups of values can be determined by independents
experiments in wind tunnel and, in the same way, it is possible to combine numerical
evaluations of flow functions with coefficients experimentally determined. These coefficients
are shown in the matrices A and B, whose components are:

4,=2C,(0,8,. + 6,6, )-6.C.al1+3 )0, ~a..) (7a)
Ay =2C, (bt +6,0,,)-0.Co 1+ Vb, ~@np.,) (7b)
A5=C (8. +8,7) (7c)

Ay =2C, (B + 0,8, )-0.C, (143 b, @) (7d)
A5, =2C, (¢x¢x,y +4.9,, )_ $.C,q (] +a; X¢y,y - Py, ) (7e)
A =C, (8 +4,) (79)

A3 = bl2CM (¢x¢x,x +4,0, . )— $.Ch o (] + &02 X¢y,x — Uy, )J (7g)
A5, =b2C,, 0.8, + 6,6,,)-6.C 1427 )0, -0, ) (7h)
Ay =bCy (4. +9,°) (7i)

B, =|-2c.4.-C. 6, +0.2 /7, i)

B, =|-2¢.9,+C o.l1+a )V, (7K)

B;=C ;(¢° +4,°) (7

By =|-2¢,0.-C,.lp, + 0.3 |/, (7m)

B, =|-2¢,9, +C, 0. (1+a /v, (7n)

By =C,;(4.°+9,") (70)

By =bl-2Cy 8, ~Co (0, + 6.3 |/ Vo (79)

B, :bl_ 2CM¢y +CM,a¢x(1+a()2)J/V() (79)

By =bCy5(8.° +9,7) (7r)

4. THE STATE VARIABLES METHOD

The equations presented by Brito and Riera'” must first be transformed into the frequency
domain. With such purpose in mind, the following vectors are defined:
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1
0y = PbV; (82)
Cp
Do =1C, (8b)
Cr

Applying now the complex Fourier transform to the wind load vector, it results:

u u
p= Q()ﬁo + QA v+ (—iw)OyB'{v (9a)
o 0
Up +il; Ug +iu;
P=0,py + QA vy +iv,  —iwQ,B'{ vy +iv; (9b)
Op +16, O +16,
Up Up Uy Uy
P=0yPg +OQpA' Vg p —iwQyB' v ¢+ @QyB' v, r +i0yA' v, (9¢)
Or Or 0, 0,

In which 4’ and B’ denote the transforms of matrices 4 and B to the frequency domain.
Considering the aerodynamic forces as external loads, equations (2) become:

a—v:C17+570 (10)
oz
In which:
C=A+(A+B )0, (11a)
Go =4 +QyDy (11b)

The real and imaginary parts of vector (11b) may be shown to be:

ZiR (Z, a)) = {0, 0, —qu —Q()CL N 0, 0, 0, -4xr —Q()CD N 0, 0, 0, -MAR —Q()CT, O}T (123)
G1(z@) ={0,0,-g,-0Cr, 0, 0, 0, -gur - QoCp, 0, 0, 0, -m;-OCr, 0}" (12b)
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Up uy Up uy
(A+B'0)0, =0y A' vy ( +@QyB' v, r— 00, B'vg ¢+ + 0y A' v,
‘ (12¢)
Flw) O 0, O 0,
Real Part Imaginary Part
Up u,
O, A\ vy v+ Q,0B' v,
. F 0 0
F — —R — R 1
(@) { } “ “, (12d)
—Q,0B' v, ¢ +0,A' v,
Oy 0,

In the preceding sections, the notations employed by Ambrosini et al >'' and Riera &
Brito'? were used for the sake of convenience and to facilitate examination of the underlying
theories. At this point it must be noted, however, that:

u=¢ (13a)
v=r1 (13b)
Equations (12d) may then be written in the form:
I Oy 4y, Op 4, 04,3 OywB;, QB Q()a)BB_ R
Oy, OpAy; OpA;; OywB;, QywB;; QywB,; || &
ﬁ(a)) _ Fp _ Op4;; Op4;, Oy 4s; OpwB;,  QywB;;  QywBs; || 6k (14)
F —QywB,, —QywB,, —QywBy;  Oydy,  Opdyy  Opdos |1y
—QywB;, —QywB;; —0QywB;; Oy, Opdy  Qpdys ||&
|~ OQywBs, —QywB;, —QuwBy;  Opds,  Opd; Opdss |16,

The system matrix matrix A, resulting from the introduction of the aerodynamic forces
(14) in equation (2), is presented in Appendix A.

5. EXAMPLES

By way of illustration, two numerical applications are presented, for which other solutions,
due to Riera and Britoz, and Denardin, Nascimento and Riera”, respectively, are already
available. In the first case, a bi-dimensional radial flow in direction of a source of intensity Q,
schematically shown in Figure 4, is considered.
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\ ' /— Source

O———» X, U

Structure

Figure 4: Structure in radial flow

The non-dimensional functions that describe this flow are well known in Hydrodynamics:

O(a-x)
_ (152)
& (x—a) +y’
-0y
[ % (15b)
¢} (x—a)2+y2

The critical velocity determined on the basis of analytical considerations by Riera and
Brito” for a pipe or tube parallel to the z-axis, i..e. normal to the plane of the flow defined by
eqgs. (15), located at x=y=0, is given by:

2.3
moga

mea (16)
pbC,0°

VOcri =

In the following a reinforced concrete tower 25m high with external diameter equal to
2.5m is assumed located at the origin of the coordinate system in such a flow. The mass per
unit length is 400kg/m and the fundamental frequency 2.7Hz.The remaining parameters are a
=10m, Q = 100m, Cp = 0.9 and p = 1.226kg/m’. The critical velocity given by equation (16)
is thus 64.6m/s.

The critical velocity of the model for the complete structure described above was
determined numerically by calculating its fundamental frequency for increasing values of the
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flow velocity. The frequency decreases as the flow velocity increases, until it becomes zero,
characterizing an unstable state in which the structure is instable. The corresponding critical
velocity resulted equal to 63.8m/s, differing about 1% from the analitical value indicated
above.

Next, a case of aeroelastic instability induced in an aluminum straight tube will be
investigated. The tube of rectangular cross-section and hinged at both ends is assumed
subjected to uniform smooth wind flow parallel to the x-axis. The dimensions are indicated in
Figure 5, while the structural properties are given below:

- Area of the cross-section: 1.984E-3m’

- Moment of inertia in relation to the x axis: 1.427E-5m*
- Moment of inertia in relation to the y axis: 2.641E-5m*
- Aluminum specific mass: 2700kg/m’

- Air specific mass: 1.226kg/m3

- Young's modulus: 7.2E10N/m?

- Fundamental frequency in x-direction: 10.72Hz

- Fundamental frequency in y-direction: 14.49Hz

i v

t=2mm

30cm
8m y

g

Figure 5: Tube

In this case, the nondimensional functions are ¢, =/ and ¢, = 0. The critical velocity for

instability in the first mode, corresponding to so-called structural galloping, according to
Denardin, Nascimento and Riera'® is 30.5m/s.

In case of oscillatory aerodynamic structural instability of this type, the structural damping
in one or more modes of vibration decreases due to flow-structure interaction, until the total
damping term becomes negative, i.e. the structure receives energy from the flow, becoming
unstable. The procedure to determine the critical wind velocity is now as follows: the
determinant of the system of equations that defines the unknown boundary conditions in the
transformation of the initial value problem (2) to a two-point boundary value problem (See
Ref. 12) is determined, beginning with ®w= 0 for increasing values of the frequency ® until a
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minmum value is detected. Let m,, denote the value of the frequency corresponding to the
minimum value of the determinant. It may be shown that the natural frequency of vibration
for the mode under consideration is equal to ®n , while damping is given by [det(®m)]">.
Plotting this latter value in terms of the flow velocity leads to the graph in Fig. 6 which
presents a minimum at a flow velocity is 30.8m/s, practically coinciding with the critical
value obtained in Ref.13.

2500
|
<
£
2
S
[
=]
2
£
£
g
=
2
0.0 10.0 20.0 30.0 40.0 50.0
Flow Velocity [m/s]

Figure 6: Determination of the critical velocity

6. CONCLUSIONS

In this paper, the field matrix in the state space formulation for the dynamic response of
thin-walled, open section beams has been extended to enable the consideration of aeroelastic
forces in flow-structure interaction problems. The solution is obtained in the frequency
domain and presupposes linear viscoelastic behavior of the structure.

The approach is especially appropriate for assessing dynamic instability of structures
subjected to wind load, from simple galloping phenomena to more complex problems
involving flutter and permits as well the numerical evaluation of coupled longitudinal,
transversal and torsional structural response considering the effect of fluid-structure
interaction. Two simple examples are presente, illustrating the application of the method to
the determination of critical flow velocities.
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APPENDIX A

Matrix A of equation (2)
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