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Abstract: This paper focuses on the application of fatigue life prediction to paper suction rolls. The 
procedure was developed to perform failure analysis requested by a local paper manufacturer.  
A numerical method must be employed to determine stresses, due to both the complex loading and the 
stress concentrators induced by perforations on the shell. The finite element method was used. A two-
model approach was chosen. A global model of the roll was constructed using shell elements and 
taking into account the orthotropic behaviour induced by the perforations. A detailed plane stress 
model was used to compute the stress concentrators around perforations. Fatigue analysis was 
performed. Multi-axial stress concentration factors were determined from stress results. The high 
perforated area on the shell made it necessary to introduce an area reduction factor usually not 
accounted for in fatigue analysis. Reliability of the roll was determined taking into account the high 
number of notches. 
The convergence of the stress solution was investigated, via successive refinement of the mesh. 
Automatic refinement tools are not suitable to this problem given the amount of stress concentrators. 
Results from analysis indicate that the two mayor factors affecting the predicted life of the roll are the 
stress concentrators around the perforations and the loss of reliability due to the amount of these 
notches. Hence, the accuracy of stress results from the finite element models is particularly important 
in this problem. 
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1 INTRODUCTION 

This paper focuses on the application of the finite element method to a particular fatigue 
problem with complex geometry and loading.  

Suction rolls are used in the paper industry to dry and compress the paper. Two rolls are 
pressed against each other, making contact in the n ip area. In order to dry the paper, suction 
rolls are perforated and vacuum is generated on the inside. These perforations generate stress 
concentrations. 

Contact pressure on the nip area generates high circumferential stresses, which must be 
evaluated via a numerical method. This is also necessary for the perforations stress 
concentrations. The finite element method was applied. 

Since rolls rotate, the nip area changes in time and therefore loads are cyclic. Suction rolls 
are particularly prone to fatigue cracking because the multiple perforations imply multiple 
possible crack initiation sites. This characteristic justifies a stochastic life prediction approach, 
taking into account the variability of the fatigue life for each notch. 

2 TWO-MODEL FINITE ELEMENT STRESS ANALYSIS 

Suction rolls have a perforated surface in the range of 20-40 %. This translates into 
thousands of stress concentrators. Thus, meshing the actual geometry is impractical given 
current computational resources. Instead, a two-model approach was chosen. The roll was 
modelled with shell elements assuming a continuum mechanics behaviour. Stress concentrators 
on the perforations were evaluated via a plane stress model, using results from the shell model 
of the roll as boundary conditions. 

Care was taken to account for the change in the elastic moduli introduced by the 
perforations array. The perforated shell becomes slightly anisotropic. Equivalent elastic moduli 
in the longitudinal and circumferential directions were determined.  

 

2.1 Equivalent elastic moduli for bending and traction 

 
Results from previous suction rolls analysis indicate that the cylinder material is mainly 

subject to stresses from longitudinal and circumferential bending. Therefore, the equivalent 
elastic modulus for the longitudinal axis was determined by evaluating the displacements on a 
perforated coupon subject to axial traction. The modulus for the circumferential axis was by 
determined evaluating the displacements on a coupon subject to bending loads (see Fig. 1 (a) 
and 1(b)). The results indicate a 48% decrease in the elastic modulus for the longitudinal axis 
and a 51% decrease in the elastic modulus for the circumferential axis, compared to the 
modulus of the base material. 
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(a) Longitudinal axis, traction load  

 

(b) Circumferential axis, bending load 

Figure 1: Finite element models used to determine equivalent elastic moduli 

 

2.2 Finite element model of roll shell 

 
A finite element model of the roll was constructed. The roll cylinder was modelled using 

4432 second order shell elements. Orthotropic behaviour was specified, using the previously 
determined equivalent elastic moduli for the longitudinal and circumferential local axes. The 
end supports were modelled using 3344 second order tetrahedral elements. The finite element 
mesh for the roll assembly is shown in Fig. 2. 

 
 

 
Figure 2: Finite element mesh for roll assembly 

 
Although in reality the roll rotates and therefore the loads on a given point on the cylinder surface 

vary in time, it is possible to perform the fatigue analysis with just one static loadcase given the low 
rotation speed (30 rpm).  

The applied loads are summarised in table 1 and shown in Fig.3. Since the length of the roll 
cylinder is 5.35 m, the load on Nip1 alone is more than twice the weight of the roll assemb ly. 
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Table 1: Applied loads for roll cylinder 

Load Value 
Nip 1 90 kN/m 
Nip 2 70 kN/m 
Seal 1 0.5 bar 
Seal 2 0.5 bar 
Vacuum 1 0.7 bar 
Vacuum 2 0.4 bar 
Weight 225 kN 

 
The deformed shape of the roll cylinder mid-section is shown in Fig.3. The highest 

deformation takes place in the nip 1 area, resulting in high circumferential stresses, as shown in 
Fig. 4 (a). Due to the bending direction, the highest traction stresses are on the inside surface 
or the roll.  Also, the stresses are maximum at the longitud inal mid-section of the roll. The 
stress state in this area was assessed through the computation of the maximum principal 
stresses and its directions, shown in Fig. 6 (b). The fact that the principal directions match the 
circumferential and longitudinal di rections determines a rather simple load case to be applied to 
the detailed plane stress finite element model, in order to determine the stress concentrations.  

 
 

 
Fig. 3. Deformed shape of roll cylinder mid-section 

 

nip 1 

seal 1 

seal 2 
vacuum 1 

vacuum 2 

nip 2 
seal 3 
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(a) Maximum principal stress contours 

 

(b) Maximum principal stresses  

Fig. 4. Results of the finite element model of the roll assembly 

2.3 Plane stress finite element model to determine stress concentrations 

 
The abovementioned simplifications, namely plane stress conditions on the inside of the roll 

and a simple static load case, allow the computation of the stress state around the array of 
perforations via a model shown in Fig. 5. The input distributed loads S θ and Sz are imported 
from the results of the finite elements model of the roll.  

 
 

 
Fig. 5. Finite elements model for computing stress concentrations 

Sz 

Sθ 
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3 FATIGUE ANALYSIS 

3.1 Multi-axial fatigue analysis 

Stress results from the shell finite elements model of the roll indicate a bi-axial stress state in 
the critical area. Thus, multi -axial stress analysis was considered. Goodman’s relation may be 
written [1] in terms of an equivalent cyclic stress amplitude em,σ  and an equivalent mean stress 

em,σ , as follows. 
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The equivalent cyclic stress amplitude, computed using von Mises correlation for a bi-axial 
stress state, equals 

( )[ ]2
2

2
1

2
21, 2

1
aaaaea σσσσσ ++−=  

The equivalent mean stress using von Mises correlation yields 
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Equation 3 disregards the fact that a mean tension stress decreases fatigue life whereas a 
mean compressive stress extends it. This phenomenon was included in Sines’ empirical 
equation [2], which was later simplified by Fuchs and Stephens [3] as follows 

21, mmem σσσ +=  

 
To consider stress concentrators factors, each stress component must be multiplied by a 

respective concentrator factor, as proposed by Zahavi[1]. The equivalent cyclic stress 
amplitude taking into account stress notch factors in a general form is  

( )[ ]2222
, 6

2
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The theoretical stress concentrators are given by 

specimennotchedinstressnalnomi
specimennotchedinstresspeakltheoretica

Kt =  

The computation of the theoretical stress concentration factors via the plane stress finite 
element model appears to be straightforward. Nevertheless, the high perforated area (30%) 
requires to separate the effects of the decrease in resisting area and the stress concentrator due 
to notches. Regularly both effects are accounted for in the stress concentrator factor, since the 
actual decrease in area introduced by most single notches is negligible. The stress factor due to 
area reduction is 

(1) 

(2) 

(3) 

(4) 

(5) 



����

#� �#����������
�����&��-$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

 

0

0

A

AA
K p

a

−
=  

and the theoretical stress concentrator due to the notch is  

a

fem
t K

K
K =  

The area reduction and notch stress factors must to be determined individually because they 
affect fatigue life in a different manner. The area reduction factor must be applied to all stress 
results from the (not perforated) shell finite element model of the roll, in order t o obtain true 
nominal stresses. Therefore, the area reduction factor affects both the mean and cyclic terms of 
equation 1. The theoretical stress concentrator due to the notch is used to compute the 
equivalent fatigue notch factor using Neubert’s formula [ 4].  
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where r is the notch radius and a is a material property constant. In this particular case r=2 
mm and according to data from Grover [5] a=0.2 mm for a steel with 680 MPa ultimate 
strength.  

Equation [7] estimates the sensitivity of the fatigue life to a certain notch stress 
concentrator for a given material and notch radius. A higher stress gradient (higher tnK , ) 

results in a lower fatigue life sensitivity, thus equation 7 yields a lower fK , as would have 

been the case if a single stress concentrator factor had been used.  
 
Equations 1 through 7 define the fatigue analysis problem for a bi-axial stress state and may 

be applied to the paper roll problem. In spite of that, care must be tak en in the computation of 
the stress concentration for equation 5. The simplest approach is a conservative one. It consists 
in determining the stress concentration factors independently, as the ratio of the peak stress in 
the notched specimen to the applied remote stress, for each component. Since the principal 
stress directions match the reference axes of the model, there is no need for ztK θ  in this 

particular case. This approach is conservative because it takes into account the point of highest 
stress for each component, although this point may change for each case. Results for the roll 
perforations array, shown in figure 8, illustrate the abovementioned effect. The direct approach 
yields =θtK 3.20 and =tzK 3.02, for different locations as shown in figure 6(a) and 6(b). 

These stress concentration factors are most conservative when the actual stress state is the one 
shown in figure 6(c).  

 

(8) 

(6) 

(7) 
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(a) Traction along circumferential 
axis. 

0,1 == zSS  θ  

=θtK 3.20 

(b) Traction along longitudinal 
axis. 

1,0 == zSS  θ  

=tzK 3.02 

(c) Bi-axial traction 

1,1 == zSS  θ  

71.1

69.1

=
=

tz

t

K

K θ
 

Figure 6: Theoretical concentration factors for perforated roll. Maximum principal stresses.  

 
Instead of the conservative approach, stress concentrators were computed at the most unfavourable 

location from the results of the finite elements model, with the actual extremes in the load cycle as 
boundary conditions. These extremes were found by examining the results from the shell finite elements 
model of the roll, taking into consideration that traction stresses along the circumferential axis and 
compressive stresses along the longitudinal axis produce traction stresses at the most unfavourable 
location. The two extreme conditions are indicated in table 2. The results of the plane stress finite 
elements model are shown in figure 7. 

 
Table 2: Extreme conditions, results from shell finite elements model of roll. 

 Condition 1 Condition 2 

fem,θσ  MPa 16.9 -13.1 

femz ,σ  MPa -1.60 -11.1 

femeq,σ  MPa 17.75 12.22 

 
The stress concentrators were computed as follows 
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From equation 7, the theoretical stress concentrators are  
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The area reduction factor, Ka, was applied to the results for the extreme conditions to 
obtain true nominal stresses. These were used to compute the mean stress and cyclic nominal 
stress amplitude for both the circumferential and longitudinal directions. The resulting data is 
summarized in table 3. 

 

 

(a) Condition 1. Maximum principal stresses  

 

(b) Condition 2. Minimum principal stresses  

Fig. 7. Results of plane stress finite elements model 

 
 

Table 3: Fatigue stress data for extreme conditions 

 θσ  MPa zσ  Mpa a,θσ  MPa m,θσ  MPa az ,σ  

MPa 
mz ,σ  MPa 

Condition 1 24.17 -2.29 
Condition 2 -18.73 -15.83 

21.45 2.72 -6.79 -9.08 

 

The results of the shell finite elements model indicate that 1σσθ =  and 2σσ =z , with 

0=zθτ . Thus, equations (2) and (4) can be used to find ea ,σ  and em,σ . Note that the 

directions of the principal stresses actually change as the roll rotates but they are assumed fixed 
and equal to those corresponding to condition 1. 

MPa8.791 =σ  MPa1.362 −=σ  

(10) 
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 From equation 5, the theoretical stress concentration factor is  
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Equation 8 yields the fatigue notch factor 
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The fatigue limit of the roll shell, fσ , is expressed by the following empirical correlation 

'fcbaf kkk σσ =  

where 'fσ  is the fatigue limit on the standard specimen and ak , bk  and ck are modification 

factors defined as follows: ak -loading mode factor; bk -size effect factor; and ck -surface 

roughness factor. 
Loading mode factor: 
For bending 1=ak  

Size effect factor: 
For equivalent diameters larger than 50mm [1] 85.0=bk  

Surface roughness: 
For a 680 MPa tensile strength steel machined surface [1] 80.0=ck  

 
Hence,  the modified fatigue limit is 

MPaf 4.122=σ  

 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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3.2 Fatigue strength reliability 

 
The fatigue strength for the shell material 3RE60 SRG is 180Mpa. This is based on 10 7 

load-cycles and a 50% percent probability of failure. As proposed by Mischke[6], a normal 
distribution is considered for the fatigue limit, with a standard deviation σ  equal to 8 percent 
of the standard fatigue limit (180 MPa). Figure 8 shows the probability of failure of the roll 
shell material. 

The multiple perforations on the perforated shell raise questions about the reliability of the 
fatigue limit of the part. A simple safety factor on equation 1 may not be able to take into 
account the variability of the fatigue strength. Since the fatigue limit varies among several 
fatigue tests, the same variation is expected on the time to the appearance of visible cracks on 
the perforations.  

The amount of possible crack initiation sites in this problem is substantial. From the stress 
results shown in Fig. 4, it was determined that a 1m long segment of the shell is subject to 
stresses within a 0.5% of the mid-section values. This segment contains 58,065 perforations.  

The reliability of a machine part is defined as 
PF −= 1  

where P is the probability of failure. For a part with N notches, each having a P’ probability 
of failure, the global reliability is 

( )N
p PF '1−=  
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Figure 8: Cumulative frequency plot. Probability P versus stress S, 107 cycles. 

MPa
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=
=
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µ

(17) 

(18) 
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A 90 percent reliability is specified for the roll. From equation 18, the required probability 

of failure for each perforation is  
681.1' −=P  

From Fig.8, the cyclic stress amplitude that yields the requested P’ is  
MPaf 4.113'' =σ  

The reliability factor dk  is defined as 

'

''

f

f
dk

σ
σ

=  

It follows that for the specific case of the roll shell 
63.0=dk  

Hence, the fatigue limit of equation 17, modified by dk  to obtain a 90 percent reliability 

with 58,065 notches is 
MParf 1.77, =σ  

 

3.3 Fatigue life safety factor 

 
The fatigue life safety factor, for infinite life, is obtained from equation1. 

44.1
1.77

52.25
13.2

680

34.61

=

+−=

N
N  

4 UNCERTAINTY ESTIMATION 

 
The calculated fatigue life safety factor, equation 24, is subject to uncertainties from applied loads, 

stress values, material properties and modification factors. Since loads are controlled in the paper 
production process, they are assumed constant. The variability of the material properties is accounted 
for in the reliability analysis. Correction factors are indeed a potential source of error, since they extend 
test results performed to specimens in load conditions quite different to those of the real part. A 5% 
uncertainty is assumed for ak , bk and ck . 

Assuming that the individual variables, Xi, are uncorrelated and randomi, the uncertainty in the 
calculated quantity, Y, can be determined[7] as 

∑ 





∂
∂=

i
X

i
r i

U
X

Y
U 2

2

 

                                                        
i This may not actually be the case for different components of the stress tensor at a given location. Although, 
regarding them as uncorrelated takes into account the fact that the error may differ among components.  

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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where U are the represents the uncertainty of the variable.  
Partial derivatives for equation 24 were computed from equations 9 through 24, yielding the 

following results 
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A maximum uncertainty of 10% for the fatigue life safety factor, N, was specified. In order to solve 

equation 24 for the maximum allowable uncertainties on the stress result s, additional constraints must 
be introduced. Allowing the same relative uncertainty in all five stress results yields the following 
results 

MPaMPa

MPaMPa

MPaMPaN

z

z

67.01.1179.01.13

09.06.101.19.16

17.21.3679.48.79144.0437.1

22

11

min,2max,1

±−=±−=
±−=±=

±−=±=±=

σσ
σσ

σσ

θ

θ  

 
Thus, a maximum 6 percent relative uncertainty is allowable on all finite element stress results to 

ensure a maximum 10 percent uncertainty on the computed fatigue life safety factor. This condition was 
met via successive refinement of the finite element meshes. 

 

4.1 Shell finite element model  

 
An initial mesh with 2264 second order shell element s was used. Then, a second mesh was 

constructed with higher element density in the nip area, where the stresses are highest. The results 
differed in less than 0.1% between these two meshes. Also, averaged and non-averaged results differed 
less than 0.01% with the final mesh shown in figure 2. These results and the fact that stress gradients 
where low lead to the conclusion that the solution has converged well within the required 6 percent 
error. 

 

4.2 Plane stress finite element model 

 
Accurately computing stress concentrators around holes requires a certain degree of 

refinement on the mesh. There are methods to estimate the global and local error on a finite 
element solution and to perform automatic refinement [3] based on these results. Those 
methods are not suitable to this problem, because automatic refinement tools would refine the 
mesh around all perforations, resulting in an unnecessarily computer -intensive problem. 
Instead, local refinement around one perforation was specified, and successive refinement steps 

(26) 

(27) 
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were used to ensure the convergence of the solution. 
The refinement scheme is shown in Fig. 11. 60 elements where specified surrounding the 

central perforation, half that amount (30) on the surrounding perforations and a 2.5mm 
element length was specified elsewhere. Several meshes were constructed with first and second 
order finite elements. The general element length was kept constant, varying only the number 
of elements on the central perforation (from 20 to 200) and surrounding perforations. Results 
for the non-averaged maximum principal stress at the most unfavourable location are shown in 
Fig. 10. It is clear that the solution converges to a value of 79.9Mpa. By assuming this value as 
the real stress, the 6 percent uncertainty limit (dashed line in Fig. 12) is 75.1 MPa. Therefore, 
stress results obtained with the initial mesh (60 elements on perforation edge) are well within 
the required uncertainty limit.  

 

 
Figure 9: Refinement scheme around perforations 
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Figure 10: Finite element model solution convergence. Maximum principal stress at critical location.  
 

 

5 CONCLUSIONS 

 
The presented procedure is an example of engineering analysis with finite element modelling 

as a valuable tool. The following considerations are noteworthy: 
A two-model approach was chosen 
The rotating roll was modelled with a static load-case instead of defining complex time-

varying load functions on the shell surface 
Fatigue stress concentrators were carefully computed. An area reduction factor had to be 

introduced in order to quantify the stress gradient near perforations  
Judicious mesh refining saves computing time 
The mayor factors affecting the predicted fatigue life are stress concentrators on the roll 

shell and the loss of reliability due to the high amount of notches. 
The uncertainty analysis yields interesting conclusions. The infinite fatigue life safety factor 

is not as sensitive to stress results as expected. Although the precision of finite element results 
is an important issue, the required acc uracy for this problem was met with ease. 

 

Initial mesh
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