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Abstract. This study focus on the 3D character of flow and the loss of symmetry that produces some unsteadiness 
and perturbs the shape and the dopant distribution in configurations interesting directional solidification. Only 
hydrodynamic in the melt is analyzed. The critical stability limited for the onset of the natural convection under 2D 
assumption is extended to a preliminary 3D investigation. It is found that the initial steady symmetric flow becomes 
asymmetric for lower Ra number in comparison to the 2D approach. The loss of symmetry occurs first in the 
transversal plan. For relative low Ra  it is observed that the heat transfer increases on the bottom active wall and 
decreases on the vertical acting walls without significant intensification in the global transfer. The classical spiral 
characterizing the 3D effect of the surface limiting the domain is also observed. 
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INTRODUCTION 

Natural convection has been subject of an intensive research due to its importance in various engineering, 
biological and geophysical systems. For instance, food product drying processes, solute intrusion in sediments in 
coastal environments, nuclear waste disposals, contaminant transport in ground water, chemical processes are few 
examples to mention. Double diffusive natural convection takes place also in solidification and melting of metal 
alloys. The mushy zone existing during the solidification of alloys consists of a fine mesh of dendrite growing from 
solid-liquid interface. The composition of the resulting solid is generally different than that of the melt. Hence, heat 
and mass transfer occur simultaneously in the mushy zone, which may be modeled as a double diffusion process in a 
saturated porous medium. In such process the thermal and concentration buoyancy forces either aids or opposes each 
other, depending on the type of alloy and process of heating [1].  

In this study we focus on thermal natural convection. A vertical cavity corresponding to available 2D results 
under a destabilizing thermal gradient is considered [2, 3].  Flow bifurcation is expected and flow may become three-
dimensional. Two dimensional flow patterns may be justified for a certain range of controlling parameters. It is 
found also that the flow structure may become unsteady. 

 
MODEL AND NUMERICAL METHOD 

The problem under consideration, as shown in figure 1, is cartesian configuration domain filled with liquid metal (Pr 
=0.01) and heated from below and cooled on the top [2, 3]. The left and right walls are heated on ¾ of the hight and 
adiabatic on the upper quarter. The front and the rear walls are supposed adiabatic. In the present work we will 
present only the steady state results. 

Governing equations  

A Direct Numerical Simulation, (DNS) is considered in the present study in 3D configuration. All properties are 
assumed constant except the density variations verifying Boussinesq approximation. The dimensionless governing 
equations based on the above assumptions are as follows:  
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Figure 1: Schematic diagram of physical configuration 
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LZ is used as a reference length for reducing the problem uT= / LZ a reference for the velocity and (uT)2 a 
reference for the pressure, respectively. The dimensionless temperature is defined as = (T-TC)/(TH-TC). The non-
dimensional parameters in the above equations are Prandtl number Pr= / and Rayleigh number 

, where , , and  are the coefficient of volumetric expansion, kinematics 
viscosity, and thermal diffusivity, respectively. 

)/( LT   
3

ZTgRa

Velocity is assumed to be in the entire contour of the domain and the temperature boundary conditions are :  
 

(X,Y,0) =1 
Y, Z =  LX/LZ,Y, Z =1 for 0<Z 3/4   
X  Y, Z X LX/LZ, Y, Z = 0 for 3/4<Z<1   

(X,Y,1) =0     
 

Method of solution  

Equations (l)-(5) are approximated by using a staggered, nonuniform control volumes grid, a third order 
accurate QUICK scheme [5] for the advection terms. ULTRA-SHARP [9, 10] flux limiter is used to remedy to 
non-physical oscillations. The SIMPLE algorithm is used to couple momentum and continuity equations. The 
momentum equations are solved by the implicit procedure (SIP) [12], which is extended here to handle 3D 
problems. The discretization of the pressure correction equation results a symmetric coefficient matrix that is 
solved by the conjugate gradient (CG) method [13]. On the other hand, the coefficient matrix of the set of 
equations resulting from the discretization of the energy equation is non-symmetric and solved iteratively by the 
BI-CGSTAB method [14]. SSOR preconditioning [13] is used for accelerating the convergence rates of both the 
CG and the BI-CGSTAB methods. To reduce the high computer times inherent in the solution of 3D natural 
convection problems, a full approximation storage (FAS) full multigrid (FMG) method [14] is applied to the 
problem. The equations are solved by a four level fixed V-cycle procedure starting at the coarsest grid and 
progressing to the finer grid level. For prolongation operations tri-linear interpolation is used for all variables. For 
restriction, the area weighted average procedure is used for all quantities defined on the control-volume surface 
such as velocities. The volume weighted average procedure is adopted for all quantities defined at the control-
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volume center such as pressure and temperature. For time dependant problems, second order accurate Euler 
scheme is used.  

In this work 82 82 82 (and 102 102 102) irregular grids are used on the finest level. The non-uniform grids 
have denser clustering near the surface boundaries. The code was validated with the numerical results of 
Mukutmoni and Yang [13] for more details see [14]. 
 
RESULTS AND DISCUSSIONS 

The effect of Rayleigh number on heat transfer on the bottom and on the top of the cavity is  presented in 
table 1. The transfer is not symmetric between the top and the bottom because of the heating on the lateral walls. 
For the lower Ra the obtained Nu is conductive not equal to 1 because we still use the 1D diffusive transfer as heat 
reference. We can see that the average heat transfer on the lower surface increases with Ra because of the 
intensification of the flow-taking place inside the cavity. As we have two contra rotating main cells inside the 
cavity (figure 2-a), this bring cold fluid from top plate to the bottom one through the bulk (figure 2-b). This is the 
reason of the increases of the transfer on the bottom and decrease on the sidewalls. For higher Rayleigh numbers 
the global transfer increases. 

 
Ra Nulower Nuupper

100 0.258 2.10 

101 0.258 2.10 

102 0.260 2.10 

3x102 0.265 2.10 

103 0.281 2.10 

2x103 0.305 2.11 

 
Table 1: Nusselt value estimation for upper and lower walls 
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Figure 3: The vertical velocity component in the horizontal center median plan (X-Y)  

for different Ra (Pr = 0.01, cubical cavity) 
 

For 2D case we have a symmetrical solution until Ra = 5000 and well asymmetrical for  
Ra 7000. It becomes unsteady for Ra >30000 and periodical for Ra> 40000 [2, 3]. 

In 3D case the non-symmetrical and unsteady case appear for lower Ra in comparaison to the 2D approach. On 
figure 4 the local heat transfer on the bottom surface is represented for different Ra. For low Ra a diffusive solution 
is obtained were the maximum gradient is in the middle due to the imposed thermal boundary conditions. The 
increase in Ra number illustrates the effect of the lateral walls on the flow were the viscous effect affects the flow 
and the maximum transfer is in the core of the surface. For Ra =3 103 we have a loose of symmetry in the 
transversal direction. The loose of symmetry appears earlier than the 2D approach and it is in the perpendicular plan 
than the obtained in 2D case. 

 
CONCLUSION 

In this work we present a simplified phase change problem in a cavity similar to fluid part of vertical Bridgman 
configuration heated from bottom is used. The effect of the Ra number on the flow structure and heat transfer 
distribution is analysed. First comparison with available 2D results is done and the main result concerns the 
symmetry breaking appearance for lower Ra and in the transversal plan. The flow becomes 3D for relative low Ra 
and the preliminary results illustrate the effect of the deep of the cavity on the global flow. This work follows on 
providing 3D characterisation for dynamic transitions on configuration very useful for directional solidification. 
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Figure 3: The local Nusselt number value on the hot (lower) surface for different Rayleigh number values 
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