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Abstract. In the early seventies Babushka 3 set up the bases of a general approximation
theory of linear variational problems. Over ten years later, Dupire 6 refined this theory in
his doctoral thesis defended at PUC-Rio, the Catholic University of Rio de Janeiro. This
together with classical estimates of the polynomial interpolation error in Sobolev norms,
has since been widely used as the basic tool to establish the convergence of finite element
solutions of partial differential equations. The purpose of this work is two-fold: First
we endeavour to recall the main results of Dupire6, while pointing out some of its yet
unexploited aspects; Then we show through a simple example, how both ingredients allow
a straightforward convergence analysis of the finite volume method as well.
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1 INTRODUCTION

The approximation analysis of finite element methods are viewed nowadays as a
well-established mathematical theory. This is mainly due to the work of several authors
in the late sixties and in the early seventies. Among the outstanding studies in this di-
rection, the contributions of Aubin 1, Aziz & Babushka 2, Bramble & Zlámal 4, Ciarlet &
Raviart 5, Strang 11, should be quoted.

These early studies primarily focused elliptic problems, in which the coerciveness of the
underlying continuous bilinear form, allows one to derive error estimates, in the absence of
the so-called variational crimes 12, by simply considering the interpolation error measured
in the natural Sobolev norms.

Before addressing the main purpose of this work, we briefly recall such mechanisms,
by considering the following abstract problem setting:

Let

• Y be a real Hilbert space with the norm ‖ · ‖Y ;

• L be a real continuous linear functional Y (i.e. L ∈ Y ′, the topological dual space
of Y );

• a : Y × Y −→ IR be a continuous bilinear form.

For the sake of brevity, we shall use henceforth the following notation:

Definition 1.1 Let X and Y be two normed vector spaces, wth respective norms denoted
by ‖ · ‖X and ‖ · ‖Y . L2c(X × Y ) is defined to be the space of continuous bilinear forms
a : X × Y −→ IR.

We recal that a ∈ L2c(X × Y ) if and only if there exists a constant M such that

a(x, y) ≤M ‖ x ‖X‖ y ‖Y , ∀x ∈ X, y ∈ Y. (1)

In this case the norm of a, is the infimum of the constants M that verify the above
inequality, that is:

‖ a ‖ = sup{
(x, y) ∈ X × Y
(x, y) �= 
0

a(x, y)

‖ x ‖X‖ y ‖Y

.
(2)
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Now we consider the linear variational problem:

(PY )

{
Find x ∈ Y such that
a(x, y) = L(y) ∀y ∈ Y. (3)

The classical Lax-Milgram Theorem asserts that if a is Y -elliptic, or equivalently, if a is
coercive over Y × Y , that is:

∃α > 0 such that a(y, y) ≥ α‖ y ‖Y
2, ∀y ∈ Y. (4)

then (PY ) has a unique solution for every L. Moreover, in this case, if we approximate
(PY ) by (PZ), a problem derived from (PY ) by replacing Y with subspace Z (typically a
finite-dimensional subspace of Y ), and the solution x ∈ Y with its approximation w ∈ Z,
then the distance between x and w measured in the norm of Y , may be estimated using
the following error bound, known as Céa’s Lemma:

‖ x− w ‖Y ≤
‖ a ‖
α

dY (x, Z), (5)

where dY (y, Z) denotes the distance of an element y ∈ Y from subspace Z, measured in
the norm of Y , defined to be:

dY (y, Z) = inf
z ∈ Z

‖ y − z ‖Y . (6)

In the aim of studying some particular classes of problems not characterized by the
property of Y -ellipticity, such as saddle-point problems, in the early seventies an exten-
sion of the Lax-Milgram Theorem was considered by Babushka 3. More specifically the
following problem more general than (PY ) was studied, in which the solution may be
searched for in another Hilbert space X equipped with the norm ‖ · ‖X :

(PX,Y )

{
Find x ∈ X such that
a(x, y) = L(y) ∀y ∈ Y. (7)

Naturally enough, it is assumed here that a : X × Y −→ IR is bilinear and continuous,
in the sense of definition (1). In so doing the following result known as the Generalized
Lax-Milgram Theorem applies:

Theorem 1.1 Under the assumptions that a ∈ L2c(X × Y ) and L ∈ Y ′, if a fulfills both
conditions below:
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∃α1 > 0 such that ∀x ∈ X sup{
y ∈ Y
y �= 
0

a(x, y)

‖ y ‖Y
≥ α1 ‖ x ‖X ; (8)

∃α2 > 0 such that ∀y ∈ Y sup{
x ∈ X
x �= 
0

a(x, y)

‖ x ‖X
≥ α2 ‖ y ‖Y , (9)

then problem (PX,Y ) has a unique solution for any L ∈ Y ′.

Definition 1.2 A bilinear form a is said to be weakly coercive, if it satisfies both condi-
tions (8) and (9).

Notice that in the case where X = Y , if a is coercive it is also a weakly coercive, and
one may take α1 = α2 = α, where α is the constant of inequality (4). Moreover, according
to the results due to Dupire 6, whenever a is weakly coercive, one may take α2 = α1 = α in
condition (9), where α is the greatest constant for which both conditions hold. This fact
actually suggests that the concepts of coeciveness and weak coerciveness are closely re-
lated to each other, in the sense that the latter can be viewed as a natural extension of the
former. As a matter of fact, such analogy between both concepts can be seen from several
other points of view. In order to illustrate this assertion, we recall hereafter an analysis
given in 6, according to which an inequality entirely analogous to the one of Céa’s Lemma
also holds in the case where a is weakly coercive, with a constant depending on a, derived
by simply replacing in (5) the constant α that characterizes coerciveness, by the (hence-
forth unified) constant that expresses the weak coerciveness of a, related to the subspaces
of X and Y chosen to define the approximation of (PX,Y ). In the next section we will
examine this assertion in detail, since such analogy cannot be seen from the works more
generally referred to in this connection, such as the already quoted one due to Babushka 3.

Before addressing this point, we give below some further notations and we recall some
useful facts and concepts:

• The inner product of a Hilbert space Y normed by ‖ · ‖Y , is denoted by (·, ·)Y ,;

• Let V and Z be two closed subspaces of Y such that Y = V ⊕Z (this direct sum is
not necessarily orthogonal). We define the projection operator onto V parallelly to Z
(resp. the projection operator onto Z parallelly to V ), denoted by P = πV//Z (resp.
by Q = πZ//V = I − P ) in the following way : Given y ∈ Y , (Py, v)Y = (y, v)Y
∀v ∈ V (resp. (Qy, z)Y = (y, z)Y ∀z ∈ Z);



����

����&�������	�����-
���������������������������������������������������������������������

• For two Hilbert spaces X and Y and a ∈ L2c(X × Y ), we define the operator
A ∈ L(X, Y ) that represents a on the left, by (A(x), y)Y = a(x, y);

• The standard norm of the above defined operator A in the space L(X, Y ) denoted
by ‖ A ‖, is ‖ a ‖;

• The co-norm of the operador A ∈ L(X, Y ) that represents a ∈ L2c(X × Y ) on the
left, denoted by conorm(A) is defined by:

conorm(A) = inf
x ∈ X
x �= 
0

‖ A(x) ‖Y

‖ x ‖X
.

Notice that conorm(A) > 0 if and only if condition (8) holds, and that in this case
conorm(A) ≥ α1). On the other hand, according to Dupire

6 both conditions (8) and (9)
are also necessary for problem (PX,Y ) to be well-posed for every L ∈ Y ′. Therefore the
Riesz Representation Theorem readily leads to the conclusion that they are equivalent to
A being one-to-one and onto.

Finally we note that both operators P and Q defined above belong to L(X, Y ).

2 LINEAR VARIATIONAL PROBLEMS ON SUBSPACES

Henceforth we consider that in order to solve the linear variational problem (PX,Y ), we
select two closed subspaces W and Z of X and Y respectively. This leads to an approx-
imate problem (PW,Z) defined in the same way as (PX,Y ), by simply replacing X with
W and Y with Z, and denoting its solution by w ∈W , in fact an approximation of x ∈ X.

Now we define the restrictions aW,Z of a to W × Z, and LZ of L to Z by

aW,Z ∈ L2c(W × Z) : ∀(w, z) ∈W × Z, aW,Z(w, z) = a(w, z) (10)

LZ ∈ Z ′ : ∀z ∈ Z LZ(z) = L(z) (11)

We know that there exist AW,Z ∈ L(W,Z) and fZ ∈ Z such that

∀(w, z) ∈W × Z, aW,Z(w, z) = (AW,Z(w), z)Y (12)

and
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∀z ∈ Z LZ(z) = (fZ , z)Y . (13)

Let us express AW,Z and fZ in terms of A and f in the following way:

Let πZ be the orthogonal projection operator onto Z. We have ∀(w, z) ∈ W × Z
(A(w) − AW,Z(w), z)Y = 0 ∀w ∈ W and ∀z ∈ Z. Thus (A − AW,Z)(w) ∈ Z⊥, that is,
AW,Z(w) = πZA(w) for every w ∈W . Therefore,

AW,Z = πZA|W (14)

which means that AW,Z is the combination of the orthogonal projection operator onto
Z with the restriction of A to W . Furthermore, from the Generalized Lax-Milgram
Theorem, problem (PW,Z) is well-posed for every L in Y

′
if and only if aW,Z is weakly

coercive. Indeed, as one may easily check, the restrictions to Z of all the functionals
L ∈ Y ′

sweep the whole topological dual space Z
′
.

Remark 2.1 At this point it is important to stress the fact that differently from coercive-
ness, the weak coerciveness does not automatically apply to subspaces. Otherwise stated,
for every pair of subspaces W and Z we choose, in order to define the approximate prob-
lem (PW,Z), we must make sure that the latter is well-posed. In other terms, we must
check that the bilinear form a (i.e. its restriction) is weakly coercive over W × Z, or
equivalently, that the operator AW,Z = πZA|W is one-to-one and onto from W onto Z. In
this case we say that AW,Z is weakly coercive over W × Z.

Also in the aim of simplifying expressions and notations, we further give the following
definitions:

Definition 2.1 Let A ∈ L(X, Y ) and W ⊂ X and Z ⊂ Y be two closed subspaces. A is
said to be (W,Z) w.c. if πZA|W is weakly coercive, that is, if it belongs to Isomc(W,Z).
Moreover, in this case the co-norm of πZ A|W is denoted by αW,Z

Those definitions trivially extend to a ∈ L2c(X × Y ). We immediately apply them in
the context of Problem PX,Y (cf. 6):

Proposition 2.1 If a ∈ L2c(X × Y ) is (W,Z) w.c. then W ⊕ Ker(πZA) = X, where
A ∈ L(X, Y ) represents a on the left.

Proof.
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Let w ∈ W ∩Ker(πZA), that is AW,Zw = πZA|Ww = 0. Thus W ∩Ker(πZA) = {0},
since AW,Z is one-to-one and onto.

Let now x ∈ X. Recalling that A is (W,Z) w.c., let xW ∈ W be the unique solution of
the following variational problem: Find xW ∈ W such that, ∀z ∈ Z, a(xW , z) = a(w, z).

Notice that x− xW ∈ Ker(πZA). Indeed, ∀z ∈ Z, (A(x− xW ), z)Y = a(x− xW , z) = 0.

Hence by splitting x into the sum x = xW + (x − xW ) it is readily seen that W ⊕
Ker(πZA) = X

The following lemma due to Dupire 6 (cf. Proposition II-3.3) is a fundamental result
to derive the rather fine and simple estimate of ‖ x − xW ‖X in terms of dX(x,W ) =
‖ x− πWx ‖X , in the Proposition 2.2 given hereafter.

Lemma 2.1 Let A ∈ L(X, Y ), W ⊂ X and Z ⊂ Y , W and Z being closed subspaces.
Let also A1 = πZA|W ∈ Lc(W,Z) and A2 = πZA|W⊥. Then if A1 is onto we have :

[conorm(A1)]
2+ ‖ A2 ‖2 ≤ ‖ πWA ‖2 ≤‖ A ‖2 . (15)

Now we are ready to prove,

Proposition 2.2 Let a ∈ L2c(X × Y ) be such that a is (W,Z)w.c., where W and Z are
closed subspaces of X and Y . Then, for every x ∈ X:

a) ∃!xW ∈W such that ∀z ∈ Z a(xW , z) = a(x, z);

b) ‖ x− xW ‖X≤
‖ a ‖
αV,Z

dX(x,W ),

where αV,Z = conorm(πZA|V ) and dX(x,W ) is given by the expression (6)

Proof.

a) This result is a direct consequence of the Generalized Lax-Milgram Theorem.

b) For every z ∈ Z, (A(x− xW ), z)Y = a(x− xW , z) = 0. Hence πZA(x− xW ) = 0,
and if v = πW (x − xW ) and w = πW⊥(x − xW ) = πW⊥x then πZA(v) = −πZA(w). It
follows that :

αV,Z ‖ v ‖X≤‖ πZA|V ⊥ ‖‖ w ‖X . (16)

Moreover, from the Pythagorean Theorem we obtain:
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α2
V,Z‖ x− xW ‖X

2 ≤ ‖ πZA|W⊥ ‖2 ‖ w ‖X
2 + α2

V,Z‖ w ‖X
2 (17)

On the other hand, the operator πZA|W ∈ L(W,Z) is onto since it is (W,Z) w.c.. Thus,
according to Lemma 2.1, ‖ πZA|W⊥ ‖2 + α2

W,Z ≤ ‖ πZA ‖2. This implies that

‖ x− xW ‖X≤
‖ πZA ‖
αW,Z

‖ w ‖X≤
‖ A ‖
αW,Z

‖ w ‖X . (18)

The proof is thus complete, taking into account that w = πW⊥x = x − πWx, ‖ w ‖X=
dX(x,W ), and ‖ πZA ‖≤‖ A ‖=‖ a ‖.

3 ABSTRACT APPROXIMATION

Let us apply the results of the previous Section to the approximation of the abstract linear
variational problems.

In order to do so, we first note that whenever we search for the solution x of a variational
problem defined upon a pair of Hilbert spaces (X, Y ), the natural steps to take are the
following:

1. Check if (PX,Y ) is well-posed;

2. Construct or select two finite-dimensional subspaces Xh and Yh to approximate X
and Y ;

3. Check if (PXh,Yh
) is well-posed;

4. Determine the solution xh ∈ Xh of (PXh,Yh
);

5. Establish suitable upper bounds or estimates for the error ‖ x− xh ‖X .

Steps 1. and 3. simply follow from the weak-coerciveness of a over X × Y and over
Xh × Yh. As far as step 2. is concerned, a particularly handy choice is provided by the
so-called Ritz method; in this way step 4. is managed by the application of suitable algo-
rithms for solving linear systems of equations.
In this Section we address step 5.. More specifically, we establish estimates aimed at
evaluating not only the approximation error with respect to the original (continuous)
problem , but also the distance between two approximate solutions obtained with two
different pairs of subspaces. Such estimates are referred to as abstract approximation
results, since they are derived in a general hilbertian framework, expressed in terms of
dX(x,Xh), without attempting to evaluate this quantity more precisely. Notice that in the
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case of differential equations, for example, this is usually achieved thanks to the standard
results of the theory of interpolation in Sobolev spaces 12.

Keeping this in view, we first apply Proposition 2.2 to establish:

Theorem 3.1 Let W and Z be closed subspaces of two Hilbert spaces X and Y respec-
tively, and a ∈ L2c(X × Y ) be (X, Y )w.c. and (W,Z) f.c.. Then:

a) For every L ∈ Y ′
, there exists a unique (x, xW ) ∈ X × Z such that

∀y ∈ Y, a(x, y) = L(y) and ∀z ∈ Z, a(xW , z) = L(z) (19)

b) The following error upper bound holds:

‖ x− xW ‖X≤
‖ a ‖
αW,Z

dX(x,W ), (20)

where x and xW are defined in a).

Proof.

a) Is a direct consequence of Theorem 1.1.

b) First we note that ∀ z ∈ Z, a(xW , z) = a(x, z). Hence applying Proposition 2.2
we immediately derive (20).

The above result is simply a corollary of Proposition 2.2. We give it in the form of
a theorem because, as already stressed in Section 1, it is a strict generalization of the
classical estimate (5) for problems in which a is coercive (with X = Y and W = Z), that
is:

‖ x− xW ‖Y ≤
‖ a ‖
α
dY (x, Z), (21)

where α denotes the coerciveness constant (i.e., a constant that satisfies the relation
establishing that a is coercive over Y × Y ). Indeed,

1. We do not require the coerciveness of a, but only the (X, Y ) weak coerciveness and
the (W,Z) weak coerciveness of a.



���


#� �#����������
�����&��,$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

2. Even in the case where a is coercive, estimate (20) is finer than (21), since the
constant characterizing the weak coerciveness is always greater than the coerciveness
constant. Furthermore for a given subspace, the former is always greater than the
one related to the whole working space, (even if this fact is not easy to exploit in
practical situations).

Remark 3.1 Notice however that the weak coerciveness does not allow any improvement
in the following error estimate, applying to the case where a is both coercive and symmetric
(cf. 8):

‖ x− xW ‖Y ≤ (
‖ a ‖
α

)
1
2dY (xW , Z). (22)

In more practical tems, let us consider the application of the classical finite element
method to solve a linear boundary value problem. Assume that X = Y , and that we
are given a family of finite-dimensional subspaces {Yh}h, where h is a parameter charac-
terizing the degree of refinement of a mesh covering the bounded domain in which the
problem is posed. We associate with every value of h a finite-dimensional space Yh to
approximate Y as h goes to 0, assuming that a is weakly coercive over each one of them.
Now we observe that if a is not coercive, establishing the weak coerciveness of a over
every member of the family {Yh}h, h > 0 may be a delicate problem.

In this case, denoting by xh the solution of the variational problem corresponding to a
given subspace Yh, the error estimate (20) writes:

‖ x− xh ‖Y ≤
‖ a ‖
αh

dY (x, Yh), (23)

where αh is the co-norm of Ah = πYh
A|Yh

. Hence, if αh is independent of h, the issue of
estimating the quality of the approximation of x by xh may be confined to evaluating how
good is the approximation of Y by Yh. This is a well-established subject in the litterature
on the finite element method.

4 APPLICATION TO THE ERROR ANALYSIS OF THE FINITE VOL-
UME METHOD

In order to illustrate the great generality of the theory treated in this paper, we show
in this Section, how it may be used as efficiently in the error analysis of the finite volume
method.
Consider the following problem:
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Given f ∈ L2(0, 1), find a function u ∈ H1(0, 1) such that,

{
u′ + u = f
u(0) = 0

(24)

Problem (24) may be recast in the following variational form:

(P)
{

Find u ∈ U such that
a(u, v) = L(v) ∀v ∈ V. (25)

where

a(u, v) =

∫ 1

0

u′vdx+
∫ 1

0

uvdx, (26)

V = L2(0, L) equipped with the norm ‖ · ‖0,2

and

U = {v/ v ∈ H1(0, L), v(0) = 0} is equipped with the norm ‖ · ‖1,2,

where by definition,

‖ · ‖0,2 = [

∫ 1

0

(·)2dx]1/2] (27)

and

‖ · ‖1,2= [‖ · ‖2
0,2 + ‖ (·)′ ‖2

0,2]
1/2. (28)

Since both V and U are Hilbert spaces, respectively for the above defined norms (cf.
e.g. 9), we may procede as follows to demonstrate that (P) has a unique solution for every
f ∈ L2(0, 1):

First of all, given u ∈ U we choose v = u
′ ∈ V . Clearly a(u, v) =‖ u′ ‖2

0,2 +
∫ 1

0
uu′dx, that

is:

a(u, v) =‖ u′ ‖2
0,2 +u

2(1)/2 ≥ (1 + C2
P )

−1 ‖ u ‖2
1,2 . (29)
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where CP is a constant for which the Friedrichs-Poincaré inequality holds for the space U
(cf. e.g. 9).

On the other hand we trivially have,

‖ v ‖0,2≤‖ u ‖1,2 . (30)

The inequalities (29) and (30) imply that condition (8) is fulfilled with α = (1 + C2
P )

−1.

In order to establish that condition (9) holds, let v ∈ V , v �= 0 be given. Now de-
fine u ∈ U by u(x) =

∫ x

0
v(t)dt, x ∈ [0, 1]. Since u′ = v �= 0 by construction, we have

a(u, v) =‖ u′ ‖2
0,2 +

∫ 1

0
uu′dx ≥‖ v ‖2

0,2 and ‖ u ‖1,2≤ (C2
P + 1)

1/2 ‖ v ‖0,2. This yields the

desired result, with a constant equal to α1/2

Let us now consider the approximation of (P) by the vertex-centered finite volume method
described as below:

First construct a partition Th of the domain (0, 1) into control volumes Ii com i =
1, 2, ..., N having equal lengths h = L/N , for a given n ∈ IN∗, Ii = ([i− 1]h, ih). Next we
approximate (P) by:

(Ph)

{
Find uh ∈ Uh such that
a(uh, v) = L(v) ∀v ∈ Vh.

(31)

where

Uh = {v/ v ∈ C0[0, L], v(0) = 0, v/Ii
∈ P1 ∀i, i = 1, 2, ..., N} (32)

and

Vh = {v/ v/Ii
∈ P0 ∀i, i = 1, 2, ..., N}. (33)

Pk being the space of polynomials of degree less than or equal to k.

Problem (Ph) reduces to the integration of the differential (24) in each control volume,
followed by the substitution of u through its approximation uh ∈ Uh. Notice that the
method defined in this manner may also be interpreted as a usual conforming finite ele-
ment method of the piecewise linear type, since Uh ⊂ U and Vh ⊂ V .
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As one may easily demonstrate, approximate problem (Ph) fulfills both conditions (8)
and (9), known to be necessary and sufficient for it to have a unique solution ∀f ∈ L2(0, L).
In order to prove this assertion, we may employ the very same arguments as we did above
for the continuous problem (P). Indeed, the derivative of a function in Uh belongs to Vh,
and conversely the integral from 0 to x of a function in Vh necessarily yields a function
of Uh. In so doing, we readily conclude that in the case of the approximate problem too,
condition (8) is fulfilled with αh = α.

Now if in (P) we consider the case where f ∈ H1(0, L), we may easily check that
u ∈ H2(0, L) (that is u

′′ ∈ L2(0, 1)). As a consequence, using the classical results that
apply to the piecewise polynomial approximation (cf. 12), we may assert that there exists
a constant C independent of h, such that :

dU(u, Uh) ≤ Ch ‖ u
′′ ‖0,2 . (34)

Taking into account (20), it immediately follows that,

‖ u− uh ‖1,2≤
C
√
2

α
h ‖ u′′ ‖0,2 . (35)

The error analysis applied in this Section, typically employed in the litterature in the
study of finite element methods, extend to other finite volume schemes, even in higher
dimension space, eventhough it may involve rather complex technicalities. As an illus-
tration of this assertion we refer to another authors’ work to appear shortly 10. Actually
they deeply believe that works in this direction like the one by Idelsohn and Oñate 7 can
only contribute to dismystify a little more the yet widespread belief that both methods
obey fundamentally different principles.
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