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Abstract. In this paper the dynamic problem of inextensible chains is addressed. Chains and cables
are employed as mooring devices as well as in other structural applications. The dynamic response of
structural elements (e.g. floating platforms) joined to the chains/cables are influenced by the strong non-
linearity which is of the geometric rather than any material type. The nonlinear Differential-Algebraic
Equations (DAE) are derived by direct dynamic equilibrium. The chain may be subjected to general
loads. It is also considered that both ends can undergo arbitrary dynamic displacements. The ordinary
DAE are tackled by means of temporal power series. It is worthwhile to mention that the explicit ex-
pansion in the time variable leads to a linear algebraic system in the series coefficients for each power
of t, despite the strong nonlinearity of the system. The consequent advantage is the availability of an
analytical solution that allows the validation of other numerical solutions. The algorithm is illustrated
by numerical examples in which the chain is subjected to self-weight with one end fixed and the other in
prescribed motion. The different trajectories of the chain dynamic response are presented. Any number
of links may be considered and taking a large number of links gives place to an inextensible cable model.

Eqr{tkijv"B"4229"Cuqekcekôp"Ctigpvkpc"fg"Ogeâpkec"Eqorwvcekqpcn"
jvvr<11yyy0coecqpnkpg0qti0ct

Ogeâpkec"Eqorwvcekqpcn"Xqn"ZZXK."rr02479-2495
Ugtikq"C0"Gncumct."Gnxkq"C0"Rknqvvc."Igtoâp"C0"Vqttgu"*Gfu0+

Eôtfqdc."Ctigpvkpc."Qevwdtg"4229

2479



1 INTRODUCTION

Slack cables and chains are used as mooring devices as well as for other structural applica-
tions and they act coupled with elements constituting dynamic systems that undergo nonlinear
motions. The main source of the nonlinearity from the cables and chains is the inherent geo-
metric nonlinearity (Esmailzadeh and Goodarzi, 2001; Rosales and Filipich, 2006). Interesting
and detailed work on cables and chains is included in two theses (Tibert, 1999; Gobat, 2000) in
which different approaches are dealt with including analytical and experimental studies. From
the many works published in this subjects some may be cited as related to the present study
(Huang, 1994; Liu and Bergdahl, 1997; Sannasiraj et al., 1998; Pascoal et al., 2005). The au-
thors have worked in dynamics of cables using a quasi-static model for the cables (Rosales
et al., 2003; Escalante et al., 2005; Rosales and Filipich, 2006) with different complexities.
In this work the strongly nonlinear motion in a plane of a chain of an arbitrary numberN of
links is addressed. The chain is assumed inextensible and the governing equations result in an
differential-algebraic system of equations (DAE’s) which is derived by direct dynamic equilib-
rium. The chain may be subjected to general loads and it is also considered that both ends can
undergo arbitrary dynamic displacements. The ordinary DAE are tackled by means of temporal
power series. It is worthwhile to mention that the explicit expansion in the time variable leads
to a linear algebraic system in the series coefficients for each power of t, despite the strong
nonlinearity of the system. The consequent advantage is the availability of an analytical so-
lution that allows the validation of other numerical solutions. Previous works by the authors
applied this approach to diverse strongly nonlinear problems ((Filipich et al., 2004; Rosales and
Filipich, 2006)). A distinctive feature of the application of this approach to the dynamics of a
chain is that only(M + 1) linear systems in4N unknowns, whereM is the number of terms
of the power series, yield. That is, a(4N · 4N) linear system is to be solved for each power of
time. After the statement and solution some illustrative examples of the chain dynamics with
prescribed displacements at the end are shown and compared with a finite element solution. Fi-
nally, the automatization of a classical tool as the integer power series lead to a simple solution
to a problem that is basically complex. Additionally, taking a large number of links gives place
to an inextensible cable model.

2 PROBLEM STATEMENT

Figure 1 shows an scheme of a chain made ofN inextensible links each of lengtha and
uniform sectionΩ, i.e. the chain total length isL = Na. There will be(N + 1) hinged
nodes andN links. In general, the chain will be subjected, besides its self-weight, to arbitrary
conservative forces. The motion will give place to inertial forces and reactions at each node. As
mentioned before, the focus will be on dynamic problems with prescribed end displacements,
i.e. x1(t), y1(t), xN+1(t) andyN+1(t) are input. A free body diagram of a generic portionk
(a link) is sketched in Figure 2 in which the coordinates and both active and passive forces and
their directions are depicted. As may be observed geometric continuity is accepted at coincident
nodes of consecutive links. It may be also observed that, during the motion, the instantaneous
resulting force is null. This is due that it is implicitly assumed that no forces are applied at each
node. However, this effect may be eventually introduced without difficulty. At the same time,
the forcesH1, V1, HN+1 andVN+1 will arise from the prescribed displacements. The length
element of the linkds = dX which is constant in time since the inextensibility assumption
holds. If we denoteρ as the uniform density for all links. Then the mass elementdm is

dm = ρΩds = ρΩdX (1)
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Figure 1:Coordinates of a chain of five links.

andγ = ρg is the unit weight andg is the gravity acceleration. The orthogonal cartesian axes
XY are adopted as the inertial reference. The active forces per unit length, variables in general
with the link length, have the cartesian componentsp∗k andqk; the vertical component writes

p∗k = γΩ + pk (2)

The resulting forces are

Qk =

∫ a

0

qkds (3a)

P ∗
k = P + Pk with P ≡

∫ a

0

γΩds = γΩa and Pk ≡
∫ a

0

pkds (3b)

In order to calculate the inertial resulting forces let us first write the coordinates of a generic
point in motion,

x = (xk+1 − xk)

(
X − Xk

a

)
+ xk (4a)

y = (yk+1 − yk)

(
X − Xk

a

)
+ yk (4b)

If we denote the time derivatives with dots the accelerations of the generic point are

ẍ = (ẍk+1 − ẍk)

(
X − Xk

a

)
+ ẍk (5a)

ÿ = (ÿk+1 − ÿk)

(
X − Xk

a

)
+ ÿk (5b)
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Figure 2:Free forces diagram of a generic link

If the inertial resultantsFX andFY are defined as

FkX =

∫ a

0

ẍdm FkY =

∫ a

0

ÿdm (6)

andR ≡ P/g = ρΩa is introduced, the inertial forces result

FkX =
R

2
(ẍk+1 + ẍk) FkY =

R

2
(ÿk+1 + ÿk) (7)

It is also necessary to calculate the moment of the forces with respect to nodek (or any other
arbitrary point of the XY plane). Then the inertial moments (see Fig.2

M i
k = −

∫ a

0

[ẍ (y − yk) − ÿ (x − xk)] dm (8)

or after integration and making use of Eqs. (4-5),

M i
k =

R

6
[(2ÿk+1 + ÿk) (xk+1 − xk) − (2ẍk+1 + ẍk) (yk+1 − yk)] (9)

The moment ofqk andp∗k with respect to nodek will be denoted byM∗
k and writes

M∗
k =

∫ a

0

[qk (y − yk) − p∗k (x − xk)]ds =
P

2
(xk+1 − xk) + Mk (10a)

where Mk =

∫ a

0

[qk (y − yk) − pk (x − xk)] ds (10b)

Finally the moments due toHk+1 andVk+1 with respect to nodek obviously write:

MHV
k = Hk+1 (yk+1 − yk) − Vk+1 (xk+1 − xk) (11)
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2.1 Equations of motion

After accepting that the motion develops in planeXY , the three equations that should si-
multaneously verify are the Newton’s equations for a rigid body, in this case the rigid link

Hk+1 − Hk − FkX + QX = 0 (12a)

Vk+1 − Vk − FkY − Pk − P = 0 (12b)

MHV
k + M∗

k + M i
k = 0 (12c)

which after introducing Eqs (7,9,10aand11), may be re-written as follows

Hk+1 − Hk −
R

2
(ẍk+1 + ẍk) = −Qk (13a)

Vk+1 − Vk −
R

2
(ÿk+1 + ÿk) = P + Pk (13b)

[
Hk+1 −

R

6
(2ẍk+1 + ẍk)

]
(yk+1 − yk) −

[
Vk+1 −

R

6
(2ÿk+1 + ÿk)

]
(xk+1 − xk) = −P

2
(xk+1 − xk) −Mk (13c)

(k = 1, 2, · · · , N)

The governing system is composed of3N equations of motion but as functions of4N functions
of time: xk, yk (k = 2, 3, · · · , N) andHk, Vk (k = 1, 2, · · · , N + 1). Yet otherN equations
are needed to have a determined system. They arise from the inextensibility condition stated for
each link,

(xk+1 − xk)
2 + (yk+1 − yk)

2 = a2 (14)

(k = 1, 2, · · · , N)

Equations (13) and (14) constitute a non-linear differential-algebraicsystem of equations (DAE’s)
of 4N equations with4N unknowns that governs the dynamics of a chain ofN links pinned
among them and with prescribed end motions.

2.2 Initial conditions (IC)

The IC must be imposed to the coordinates involved in the DAE’s; in our casexk(t), yk(t)
(k = 1, 2, · · · , N + 1) govern the instant configuration. That is,xk(0), yk(0), ẋk(0), ẏk(0)
(k = 1, 2, · · · , N + 1) must be known or imposed. Let us introduced the notationxk0 ≡ xk(0),
yk0 ≡ yk(0), ẋk0 ≡ ẋk(0), ẏk0 ≡ ẏk(0). As mentioned before,x10, y10, y10 andy(N+1)0 are
given data. Conditions (14) should verify att = 0, i.e.

(
x(k+1)0 − xk0

)2
+

(
y(k+1)0 − yk0

)2
= a2 (15)

(k = 1, 2, · · · , N)
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It is easy to deduce that thequasi-arbitrary selection among the(N−2) xk0 and/oryk0 with (k =
2 or 3 or 4, · · · , or (N − 1)) will suffice. In effect, e.g. choosingxN0, x(N−1)0, x(N−2)0,· · · , x30

of equations (15) andyN0, y(N−1)0, y(N−2)0,· · · , y30 are deduced respectively. A2 x 2 nonlinear
system results (fork = 1 andk = 2 in equations (15) stated in terms ofx20 andy20. After
solved, the initial configuration adapted to nodes1 and (N + 1) and which verifies theN
equations (15), yields. Evidently the selection may be combined forxk0 andyk0 given they sum
(N − 2) values. Other possibility, and the one herein chosen for the sake of illustration, is to
take as initial configuration the static solution of the same chain hanging from (x1(0), y1(0)) and
(x(N+1)(0), y(N+1)(0)) under its self-weight. Let us now discuss the initial velocities (ẋk0, ẏk0).
To obtain them Eqs. (14) are derived once with respect to time. For instantt = 0 the following
condition should verify

(
x(k+1)0 − xk0

) (
ẋ(k+1)0 − ẋk0

)
+

(
y(k+1)0 − yk0

) (
ẏ(k+1)0 − ẏk0

)
= 0 (16)

(k = 1, 2, · · · , N)

Recall that, at first,̇x10, ẏ10, ẋ(N+1)0 andẏ(N+1)0 are known. Analogously to the initial config-
uration,(N − 2) values of velocitieṡxk0, ẏk0 or combinations of them for differentk’s may be
chosen with quite freedom. From the fulfillment of Eq. (16) the velocities at other points may
be obtained. Finally we now have a linear system in, for instance,ẋ20, ẏ20 that are obtained from
the first two equations. In order to conclude with this issue let us say that thequasi-arbitrariness
above-mentioned to impose the initial(N −2) coordinates and(N −2) velocities, and since we
are dealing with a nonlinear problem, is conditioned by two concepts: one is that each addend
of condition (15) can not be larger thana2 and the other is the following. As is known, the con-
vergence ratio of the series to be employed are IC dependent (unlike linear problems). That is,
when the solution is needed for times beyond the convergence ratio —analytical continuation—
the IC influence will be determinant and, a strong difficulty to correctly determine the forced
vibration problem.

3 POWER SERIES. SYSTEMATIZATION

3.1 Statement of the series

As mentioned in the previous subsection2.1, the4N unknowns of the above proposition are
the following temporal functions:

xk(t), yk(t) (k = 2, 3, · · · , N) (17a)

Hk(t), Vk(t) (k = 1, 2, · · · , N + 1) (17b)

and clearly, the DAE’s require of the solution of the non linear system given by the4N Eqs.
(13-14). As is foreseen that analytical continuation will be needed to obtain the response in
sufficiently long periods of time, the time is divided in temporal intervals of interest. Let the
interval of interest be∆t = tf − ti (there is no loss of generality if we assumeti = 0). It will be
in turn, divided inNp intervals. In this work they are assumed equal which would lead to a loss
of numerical precision, though helping to fix ideas and computational simplicity. Eventually
each subinterval might be different depending on the convergence ratio in each interval when
the solution is continued (adaptive interval). IfT is the duration of each subinterval, and with
ti = 0

T =
∆t

Np
=

tf

Np
(18)
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Let us define the unitary temporal variableτp for each subinterval as

t = T (τp + p − 1) (19)

(p = 1, 2, · · · , Np)

where the following verifies
(p − 1)T ≤ t ≤ pT (20a)

0 ≤ τp ≤ 1 (20b)

(p = 1, 2, · · · , Np)

In what follows, as long as no confusion arises, the subscriptp from τp is omitted, i.e.τ ≡ τp.
Let f = f̂(t) be some function of time, then

f = f(t) = f [T (τ + p − 1)] = fp(τ ) (21)

In each subinterval of durationT our unknowns (see Eq. (17)) are functions of the unitary vari-
ableτ . Accepting the existence of the DAE’s solution, the following expansions are proposed:

xpk(τ ) =
∞∑

j=0

Apkjτ
j (22a)

ypk(τ ) =
∞∑

j=0

Bpkjτ
j (22b)

Hpk(τ ) =
∞∑

j=0

Cpkjτ
j (22c)

Vpk(τ ) =
∞∑

j=0

Dpkjτ
j (22d)

(k = 1, 2, · · · , N + 1)(p = 1, 2, · · · , Np)

which in turn we assume convergent. By hypothesis the following coefficients

Ap1j, Bp1j, Ap(N+1)j, Bp(N+1)j (23)

(p = 1, 2, · · · , Np)(j = 0, 1, 2, · · · )

are known given the prescribed motion at the extreme nodes of the chain. Since the IC are also
data, the next coefficients are also known:

A1k0, A1k1, B1k0, B1k1 (24)

(k = 2, 3, · · · , N)

After introducing the notation(·)′ ≡ d(·)/dτ ; (·)′′ ≡ d2(·)/dτ 2 it is true that ˙(·) =

(·)′/T ; (̈·) = (·)′′/T 2. In Eqs. (13) we admit thatP,Qk, Pk andMk are also analytical,
that is the following series are known too

Pp(τ ) = P
∞∑

j=0

δj0τ
j (25a)
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Qpk(τ ) =
∞∑

j=0

Qpkjτ
j (25b)

Ppk(τ ) =

∞∑

j=0

Ppkjτ
j (25c)

Mpk(τ ) =
∞∑

j=0

Mpkjτ
j (25d)

(k = 1, 2, · · · , N)(p = 1, 2, · · · , Np)

where theδj0 is the Kronecker delta.

3.2 Systematization of the series

In order to fix ideas, letF = F (τ ) andG = G(τ ) two analytical functions ofτ which
expansions are

F =

∞∑

j=0

fjτ
j (26a)

G =
∞∑

j=0

gjτ
j (26b)

3.2.1 Derivation of the series

After introducing the matrix

ϕmi ≡ (i + 1)(i + 2) · · · (i + m) =
(m + i)!

i!
(27)

the following statement derives

dnF

dτn
= F (n) =

∞∑

j=0

ϕnjf(j+n)τ
n (n ≥ 1) (28)

Forn = 1 andn = 2, F (1) ≡ F ′ andF (2) ≡ F ′′, respectively.

3.2.2 Product of the series

Let E = E(τ ) be an analytical function such that

E =

∞∑

j=0

ejτ
j (29)

If E is in turn, the product of two functionsF andG, see Eqs. (26)

E = F (τ )G(τ ) (30)

the following relationship holds

ej =

j∑

r=0

frgj−r =

j∑

r=0

grfj−r (j = 0, 1, 1, · · · ) (31)

Expressions (31) are frequently namedCauchy products.
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3.3 The DAE’s for each subinterval

Equations (13-14) that constitute the DAE’s are now re-written for eachpth subinterval
having into account definition (21) and derivative notations,

T 2(Hp(k+1) − Hpk) −
R

2
(x′′

p(k+1) + x′′
pk) = −T 2Qpk (32a)

T 2(Vp(k+1) − Vpk) −
R

2
(y′′

p(k+1) + y′′
pk) = T 2(Pp + Ppk) (32b)

[T 2Hp(k+1) −
R

6
(2x′′

p(k+1) + x′′
pk)](yp(k+1) − ypk) −

−[T 2Vp(k+1) −
R

6
(2y′′

p(k+1) + y′′
pk)](xp(k+1) − xpk)

= −T 2

[
Pp

2
(xp(k+1) − xpk) + Mpk

]
(32c)

(k = 1, 2, · · · , N)(p = 1, 2, · · · , Np)

(xp(k+1) − xpk)
2 + (yp(k+1) − ypk)

2 = a2 (32d)

4 SOLUTION BY MEANS OF POWER SERIES

In order to address the solution of this strongly nonlinear problem and observing the Eqs.
(32), the following new series are introduced(k = 1, 2, · · · , N)(p = 1, 2, · · · , Np)

Hp(k+1)(yp(k+1) − ypk) =

∞∑

j=0

σpkjτ
j (33a)

Vp(k+1)(xp(k+1) − xpk) =
∞∑

j=0

γpkjτ
j (33b)

(2x′′
p(k+1) + x′′

pk)(yp(k+1) − ypk) =
∞∑

j=0

µpkjτ
j (33c)

(2y′′
p(k+1) + y′′

pk)(xp(k+1) − xpk) =
∞∑

j=0

νpkjτ
j (33d)

(xp(k+1) − xpk)
2 =

∞∑

j=0

αpkjτ
j (33e)

(yp(k+1) − ypk)
2 =

∞∑

j=0

βpkjτ
j (33f)

a2 = a2
∞∑

j=0

δj0τ
j (33g)
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where the coefficients are

σpkj =

j∑

r=0

Cp(k+1)r[Bp(k+1)(j−r) − Bpk(j−r)] (34a)

γpkj =

j∑

r=0

Dp(k+1)r[Ap(k+1)(j−r) − Apk(j−r)] (34b)

µpkj =

j∑

r=0

ϕ2r[2Ap(k+1)(r+2) + Apk(r+2)][Bp(k+1)(j−r) − Bpk(j−r)] (34c)

νpkj =

j∑

r=0

ϕ2r[2Bp(k+1)(r+2) + Bpk(r+2)][Ap(k+1)(j−r) −Apk(j−r)] (34d)

αpkj =

j∑

r=0

[Ap(k+1)r − Apkr][Ap(k+1)(j−r) − Apk(j−r)] (34e)

βpkj =

j∑

r=0

[Bp(k+1)r − Bpkr][Bp(k+1)(j−r) −Bpk(j−r)] (34f)

(k = 1, 2, · · · , N)(p = 1, 2, · · · , Np)(j = 2, 3, · · · )

Once the power series are introduced in the DAE’s (32) and given the linear independence of
each powerτ j(j = 0, 1, · · · ) the next equations should verify

T 2(Cp(k+1)j − Cpkj) −
R

2
ϕ2j(Ap(k+1)(j+2) + Apk(j+2)) = −T 2Qpkj (35a)

T 2(Dp(k+1)j − Dpkj) −
R

2
ϕ2j(Bp(k+1)(j+2) + Bpk(j+2)) = T 2(Pδj0 + Ppkj) (35b)

(T 2σpkj −
R

6
µpkj) − (T 2γpkj −

R

6
νpkj) = −T 2[P (Ap(k+1)j −Apkj) + Mpkj ] (35c)

αpkj + βpkj = a2δj0 (35d)

(k = 1, 2, · · · , N)(p = 1, 2, · · · , Np)(j = 2, 3, · · · )

Equations (35) give placeprima facieto the solution of the dynamic of the chain ofN links.
However two issues have to be tackled. One is the fact that since the IC are known and the
motion prescribed at the ends, not all the coefficients in these equations are unknowns. The
other issue is that, when using this systematization of the power series a linear system of order
4N has to be solved for eachj. An increment in the value ofj, leads to a change in the matrix of
the4N unknowns and the4N independent terms are also modified as function of the unknowns
already solved forj less than the one fixed.

Finally, the unknowns to be solved for(j = 0, 1, 2, · · · , N + 1) are

Apk(j+2), Bpk(j+2) (36a)
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Table 1: Coordinates of initial geometry of the chain (static solution under self-weight)

Coordinate NODE
1 2 3 4 5 6 7 8 9 10 11

x0 0 4.45 9.13 13.72 18.02 21.82 25.14 28.08 30.66 32.95 35
y0 0 -1.52 -1.87 -0.98 0.98 3.74 7.05 10.73 14.67 18.77 23

(k = 2, 3, · · · , N)

Cpkj,Dpkj (36b)

(k = 1, 2, · · · , N + 1)

On the other hand, Eqs. (35ato 35c) always involve the unknownsApk(j+2), Bpk(j+2), (j ≥
0), while Eq. (35d) deals withApkj, Bpkj, (j ≥ 0). This means that the indexj in Eq. Eq. (35d)
should be shifted as follows

αpk(j+2) + βpk(j+2) = 0 (37)

(k = 1, 2, · · · , N)(p = 1, 2, · · · , Np)

Let us say that Eqs. (35d) for j = 0, 1 are verified by IC and prescribed motions at the ends.

5 NUMERICAL ILLUSTRATION

The dynamic response of a chain of inextensible links was analyzed by means of the above-
proposed power series approach. The total length of the chain isL = 47 m. The magnitudes
Aq = 30 m andAh = 20 m. The linear density was assumedγΩ = 50 N/m. The chain
was supposed fixed at the left end with its right end subjected to prescribed motions with the
following cosine functions

x11(t) = Aq + q0 cos ωqt y11(t) = Ah + h0 cos ωht (38)

Different values of the initial valuesq0 and h0, as well as the frequenciesωq = rqω and
ωh = rhω of the prescribed displacements were used. However in all the cases, the initial
condition IC of the chain was adopted to be the static solution of the chain subjected to self-
weight (also solved by the authors with a power series approach, though not shown here for
brevity). Also a comparison was performed using the finite element commercial code ALGOR.
The first illustration deals with a chain of ten links (N = 10), and each link of length ofa = 4.7
m, ω = 0.25 rad/s,rq = 2, rh = 5, q0 = 5 m, h0 = 3 m, M = 5. The initial geometry given by
the catenary of the static solution under self-weight, is depicted in Table1 and in Figure 3 (All
coordinates are in meters)

The motion trajectory of the right end of the chain is shown in Figure 4 for 10 s. Figure
5 graphics the motion of the chain by superposing different positions, for a total time of 10 s.
Colors vary from blue at start time to orange an the end of the interval. Also the right-end node
is shown with small blue circles (see Fig.4). In this caseNp = 800 and∆t = 0.0125 s.

As mentioned above, one of the aims of this work is to find the forces at the right-end as
functions of the motionsq andh so as to couple this with another body and study the dynamics
of the whole system. Here, a prescribed motion at the right-end is given in order to valid the
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Figure 3:Illustration examples 1 and 2. Initial configuration for the chain (Nodes coordinates depicted in Table1)

Figure 4:Illustration example 1. Trajectory of right-end node (Prescribed motion).
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Figure 5: Illustration example 1. Chain motion at different times. Total time 10 s. (As time increases, color
changes from blue to orange). Small circles indicate the right-end motion.

algorithm and the left end is kept fixed. The resulting forces for the present example were
also found for the interval under study and their variation is shown in Fig. 6 (All forces are in
Newtons).

Finally a second example was made for the case ofω = 0.25 rad/s,rq = 1, rh = 9, q0 = 5
m, h0 = 3 m, Np = 400 and∆t = 0.005 s. The total interval of time is 2 s. The other data were
assumed as in illustration example 1. The illustration example 2 was solved with the present
power series algorithm (results are shown in Figs. 7 and 8) and with a finite element commercial
code. Figure 7 depicts the horizontal and vertical motions at node four. The resulting forces at
the right-end of the chain is plotted in Fig. 8.

For comparison a truss model was solved with ALGOR, a commercial finite element code.
Each link was modeled as a truss element. The left-end was assumed fixed and the motion
at the right-end was given throughprescribed displacementswith the curves shown in Figure
9 that show the variation of the multiplier of the horizontal and vertical displacements which
in turn were set with modulusq0 = 5 m, h0 = 3 m, respectively. The time-displacement
curves corresponding to the fourth node are included in Fig. 10. A reasonable agreement can
be observed from the comparison with values found with the power series algorithm (Fig. 7).
Additionally the axial forces at node four, found with the finite element code are depicted in
Fig. 11.

6 FINAL COMMENTS

The dynamics of a slack inextensible chain subjected to conservative loads was stated and
solved through a power series approach. The strongly nonlinear behavior is governed by a
differential-algebraic system of equations (DAE’s). If the chain is made ofN links, the sys-
tematization of the power series allows to the statement of only(M + 1) linear systems in4N
unknowns, whereM is the number of terms of the power series, yield. That is, a(4N · 4N)
linear system is to be solved for each power of time. Two examples were presented, in both
cases with prescribed motions at the right end. The displacement at each node, the axial forces
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Figure 6:Illustration example 1. Horizontal and vertical forces at right-end of chain.

Figure 7: Illustration example 2. Horizontal and vertical displacement at the fourth node. Results found with
power series algorithm (present work).
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Figure 8:Illustration example 2. Horizontal and vertical forces at right-end node. Results found with power series
algorithm (present work).

Figure 9:Illustration example 2. Multiplier curves for the prescribed displacements at right end (FEM solution).
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Figure 10:Illustration example 2. Horizontal and vertical displacement at the fourth node.(FEM solution).

Figure 11:Illustration example 2. Axial forces at the fourth node.(FEM solution).
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and in particular the end forces may be calculated as function of time. A comparison with a
similar model analyzed with a finite element code shows acceptable agreement.
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