Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXVI, pp.334-352 Sergio A. Elaskar, Elvio A. Pilotta, Germán A. Torres (Eds.) Córdoba, Argentina, Octubre 2007

COMPORTAMIENTO DINÁMICO DE VIGAS DE SECCIÓN VARIABLE CON MASAS ADOSADAS

Carlos A. Rossit^{a,c}, Santiago Maiz^{a,c} y Valeria Y. González^{b,c}

 ^a Departamento de Ingeniería, Instituto de Mecánica Aplicada, Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB), Bahía Blanca, Argentina.
 ^b Departamento de Matemática, Universidad Nacional del Sur.
 ^c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Keywords: Vibraciones Naturales, Vigas, Masas, Inercia Rotatoria, Análisis Funcional.

Abstract: Como es sabido, es habitual que vigas y placas soporten máquinas o motores que ejercen esfuerzos dinámicos a frecuencias, en principio, conocidas.

En esas circunstancias el ingeniero de diseño necesita conocer, imperiosamente, los parámetros esenciales que definen el comportamiento dinámico de la estructura.

A los efectos de prevenir peligrosas condiciones de resonancia mediante un proyecto adecuado el diseñador se encuentra con que la información que tratados y manuales presentan sobre elementos estructurales con masas adosadas es muy escasa. Además generalmente está limitada a masas puntuales de las que se tiene en cuenta sólo su inercia traslatoria y en el caso de vigas, mayormente se consideran de sección constante.

Pero en muchas situaciones es necesario variar la sección transversal de las vigas de manera de optimizar su rigidez estructural.

Por otro lado, si bien en general las dimensiones del elemento adosado son pequeñas frente a la estructura, y la aproximación de considerarla puntual es razonable, no puede decirse lo mismo en cuanto al efecto de la inercia rotacional del sistema electromecánico en operación, la que puede ser considerable y afectar las frecuencias naturales y modos normales de vibración del sistema.

En el presente trabajo se analizan vigas cuya sección varía según distintas leyes y soportan masas rígidamente adosadas, de las que se tiene en cuenta no solo su inercia traslatoria, sino también su inercia rotatoria.

Se plantea en el presente trabajo un análisis variacional, aproximando la solución con distintas expresiones alternativas cuya convergencia se estudia.

La metodología propuesta, compara con excelente precisión, con casos particulares más sencillos, disponibles en la literatura.

1. INTRODUCCIÓN

El estudio de la vibración de vigas que soportan masas concentradas en posiciones arbitrarias y complejidades adicionales ha sido extensamente reflejado en la literatura técnicacientífica. En su tratamiento se han seguido diversas metodologías.

Y. Chen (1963), resolvió analíticamente el problema de una viga simplemente apoyada que vibra con una masa concentrada en su centro, introduciendo la masa a través de la función delta de Dirac; P. A. A. Laura et al (1974) y P. A. A. Laura et al (1975) estudiaron la viga cantilever con una masa puntual en su extremo: Introduciendo la masa en las condiciones de borde obtuvieron una solución analítica del problema.

Posteriormente E. H. Dowell (1979), en un profundo trabajo, utilizando una formulación lagrangiana, estudió las propiedades generales de vigas que soportan resortes y masas concentradas, realizando importantes observaciones en el tema.

Laura et al (1983) utilizaron el método de Rayleigh-Ritz para analizar vigas continuas con masas concentradas y sometidas a la acción de una fuerza axial.

Deben tenerse en cuenta los trabajos de M. Gürgöze (1984) y (1985) en que utiliza la técnica de sumar modos normales para determinar la frecuencia fundamental de vigas cantilever que soportan masas y resortes.

Liu et al (1988) recurrieron a la transformada de Laplace para formular la ecuación de frecuencias para vigas con masas concentradas intermedias.

Hamdan y Latif (1994) estudiaron el problema planteando la solución analítica exacta y comparando sus resultados con los obtenidos mediante procedimientos aproximados (Galerkin, Rayleigh-Ritz y M.E.F.)

En las referencias A. H. Register (1994), S. Kukla et al (1994), De Rosa et al (1995), M. Gürgöze (1996), Rossit y Laura (2001), Rossit y Laura (2001), S. Naguleswaran (2002), De Rosa et al (2003) se presentan otros estudios sobre la influencia de masas y resortes en vigas esbeltas vibrantes.

En la mayoría de los trabajos mencionados previamente no ha sido tenida en cuenta la inercia rotatoria de la masa adosada y considera a la viga de sección uniforme.

Con respecto a la inercia rotatoria de las masas, puede mencionarse el trabajo de Laura et al. (1987), obteniendo frecuencias fundamentales de sistemas acoplados por medio de los métodos de Rayleigh-Ritz y Dunkerley.

En cuanto al tratamiento de vigas de sección no uniforme, se consigna el trabajo en que Auciello y Maurizi (1997) analizan una viga donde la altura de la sección transversal varía linealmente. Obtienen la solución analítica de la ecuación diferencial que se expresa en funciones de Bessel y una solución aproximada mediante el método de Rayleigh-Ritz comparando sus resultados.

En el presente trabajo se estudia el comportamiento dinámico de vigas que soportan masas y cuya sección transversal varía según distintas leyes, recurriendo al análisis funcional, camino que fuera seguido por Grossi y colaboradores? al estudiar el comportamiento dinámico de una viga cuya sección transversal varía linealmente.

2. MÉTODO GENERAL

La ecuación diferencial gobernante del problema de vibración de vigas con masas puntuales adosadas, puede escribirse de la siguiente forma:

$$\frac{\partial^{2}}{\partial x^{2}} \left(E I(x) \frac{\partial^{2} v(x,t)}{\partial x^{2}} \right) + \left(\rho A(x) + m \delta(x - x_{m}) \right) \frac{\partial^{2} v(x,t)}{\partial t^{2}} - m r^{2} \frac{\partial}{\partial x} \left(\delta(x - x_{m}) \frac{\partial^{3} v(x,t)}{\partial x \partial t^{2}} \right) = 0$$

$$(1)$$

donde *E* es el módulo de Young, *I* es el momento de inercia de la sección transversal de la viga con respecto al eje de flexión, *A* es la sección transversal de la viga, ρ es la densidad de masa del material, *m* es la masa adosada, *r* es el radio de giro de la masa adosada y δ es la función delta de Dirac.

Cuando el sistema efectúa uno de sus modos normales de vibración, podemos expresar la solución de la ecuación (1) de la siguiente forma:

$$v(x,t) = V(x)e^{i\omega t}$$
⁽²⁾

siendo $i = \sqrt{-1}$.

Reemplazando la expresión (2) en la ecuación (1) aplicando previamente la siguiente adimensionalización:

$$\eta = \frac{x}{L} \qquad \eta \in [0, 1] \tag{3}$$

se llega a:

$$\frac{d^{2}}{d\eta^{2}}\left(f(\eta)\frac{d^{2}V(\eta)}{d\eta^{2}}\right) - \Omega^{2}g(\eta)V(\eta) - \Omega^{2}M\,\delta(\eta - \eta_{m})V(\eta) + \Omega^{2}Mc^{2}\frac{d}{d\eta}\left(\delta(\eta - \eta_{m})\frac{dV(\eta)}{d\eta}\right) = 0$$

$$(4)$$

ya independizada del tiempo, con:

$$\Omega^{2} = \frac{\omega^{2} \rho A_{0} L^{4}}{E I_{0}}, \quad M = \frac{m}{\rho A_{0} L}, \quad c = \frac{r}{L}$$

$$A(\eta) = A_{0} g(\eta), \quad I(\eta) = I_{0} f(\eta)$$
(5)

donde $A_0 = A(0)$ e $I_0 = I(0)$, $g(\eta)$ y $f(\eta)$ representan las variaciones de la sección transversal de la viga y de su momento de inercia respectivamente.

La componente espacial del problema deberá verificar además las condiciones de borde que los vínculos extremos impongan sobre la viga vibrante:

Extremo empotrado:

Desplazamiento nulo:
$$V = 0$$
 (6a)
Giro nulo: $V' = 0$ (6b)

Extremo apoyado:

Desplazamiento nulo:
$$V = 0$$
 (6c)

Momento flector nulo:
$$E I V'' = 0$$
 (6d)

Extremo libre:

Momento flector nulo:
$$EIV'' = 0$$
 (6e)

Corte nulo:
$$EIV''' = 0$$
 (6f)

Como es sabido, de las condiciones precedentes aquellas de orden menor a (n-2), donde n es el orden de la Ecuación diferencial (4), se clasifican matemáticamente como estables.

Desde el punto de vista ingenieril, esas condiciones son denominadas como esenciales o geométricas e imponen condicionamientos de origen cinemático a la deformada (corrimiento o giro nulo).

Las otras condiciones, denominadas naturales o estáticas imponen condicionamientos sobre derivadas de la curva de deflexión en virtud de exigencias del equilibrio de fuerzas (momento flector o esfuerzo de corte nulo).

Multiplicando la ecuación diferencial (4) por una función de prueba $W \in \mathbf{W}$ (el espacio \mathbf{W} es el espacio de funciones $\mathbf{W} = \{F : [0,1] \rightarrow \mathbb{R}, F \in C^2[0,1] \text{ que verifican las condiciones estables (6)}\}\)$ e integrando en [0,1], se tiene:

$$\int_{0}^{1} \frac{d^{2}}{d\eta^{2}} \left(f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \right) W(\eta) d\eta =$$

$$= \Omega^{2} \left[\int_{0}^{1} g(\eta) V(\eta) W(\eta) d\eta + M V(\eta_{m}) W(\eta_{m}) + Mc^{2}V'(\eta_{m}) W'(\eta_{m}) \right]$$
(7)

Aplicando el teorema de Green a la integral del miembro izquierdo de la expresión (7), obtenemos:

$$\int_{0}^{1} \frac{d^{2}}{d\eta^{2}} \left(f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \right) W(\eta) d\eta =$$

$$= \frac{d}{d\eta} \left(f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \right) W(\eta) \Big|_{0}^{1} - f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \frac{dW(\eta)}{d\eta} \Big|_{0}^{1} + \int_{0}^{1} f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \frac{d^{2}W(\eta)}{d\eta^{2}} d\eta$$

Donde la última igualdad queda reducida a la expresión:

$$\int_{0}^{1} \frac{d^{2}}{d\eta^{2}} \left(f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \right) W(\eta) d\eta = \int_{0}^{1} f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \frac{d^{2}W(\eta)}{d\eta^{2}} d\eta$$
(8)

debido a cualquier combinación de las condiciones de borde (Ecuaciones (6)) que necesariamente han de aplicarse en los extremos de la viga.

Quedando la expresión (8) como sigue:

$$\int_{0}^{1} f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \frac{d^{2}W(\eta)}{d\eta^{2}} d\eta =$$

$$= \Omega^{2} \left[\int_{0}^{1} g(\eta) V(\eta) W(\eta) d\eta + M V(\eta_{m}) W(\eta_{m}) + Mc^{2}V'(\eta_{m}) W'(\eta_{m}) \right]$$
(9)

El primer término de la ecuación precedente (9) es la forma bilineal:

$$B(V,W) = \int_{0}^{1} f(\eta) \frac{d^{2}V(\eta)}{d\eta^{2}} \frac{d^{2}W(\eta)}{d\eta^{2}} d\eta$$
(10)

que como es sabido (Grossi et al (1998)) es simétrica, continua y W-elíptica.

Indicando al producto del corchete del segundo término de (9) como:

$$\langle V, W \rangle = \int_{0}^{1} g(\eta) V(\eta) W(\eta) d\eta + M V(\eta_m) W(\eta_m) + Mc^2 V'(\eta_m) W'(\eta_m)$$
(11)

la ecuación diferencial (4) se transforma en la expresión:

$$B(V,W) = \Omega^2 \cdot \langle V,W \rangle \qquad V,W \in \mathbf{W}$$
(12)

donde Ω^2 son los autovalores del problema, asociados con las frecuencias naturales de vibración.

En consecuencia podemos aplicar el método de Ritz para obtener dichos autovalores.

Sea $\{\varphi_i(\eta)\}_{i=1}^N$ una base del subespacio $\mathbf{W}^N \subset \mathbf{W}$. Escribiendo V_N en esta base, tenemos la expresión siguiente:

$$V_{N}(\eta) = \sum_{i=1}^{N} a_{i} \varphi_{i}(\eta)$$
(13)

Sustituyendo (13) en (12) obtenemos:

$$\sum_{i=1}^{N} a_{i} \Big[B \big(\varphi_{i} \big(\eta \big), W \big) - \Omega^{2} \big\langle \varphi_{i} \big(\eta \big), W \big\rangle \Big] = 0 \quad \forall \ W \in \mathbf{W}$$
(14)

Luego, tomando $W(\eta) = \varphi_j(\eta)$ j = 1...N en (14), obtenemos el sistema homogéneo de ecuaciones:

$$B(\varphi_i(\eta),\varphi_j(\eta)) - \Omega^2 \langle \varphi_i(\eta),\varphi_j(\eta) \rangle = 0 \quad j = 1...N$$
(15)

Hallando la solución de (15), se obtiene una aproximación de los autovalores.

3. VIGA EN VOLADIZO

En primer lugar vamos a elegir las funciones coordenadas φ_j a utilizar. Estas deben satisfacer al menos las condiciones de borde esenciales, por lo tanto, podemos tomar la siguiente base:

$$\{\varphi_j\}_{j=1}^N = \{\eta^{j+1}\}_{j=1}^N$$
(16)

que cumple con las condiciones $\varphi(0) = \varphi'(0) = 0$

Observemos que se obtendrá una mejor aproximación si la función de prueba elegida cumple además con las condiciones de borde naturales $\varphi''(1) = 0$ y $\varphi'''(1) = 0$.

Entre todas ellas, las más utilizadas son las funciones viga, en este caso la función de la viga en voladizo:

$$\left\{\varphi_{j}\right\}_{j=1}^{N} = \left\{\cos\left(\lambda_{j}\eta\right) - \cosh\left(\lambda_{j}\eta\right) - p_{j}\left(\sin\left(\lambda_{j}\eta\right) - \sinh\left(\lambda_{j}\eta\right)\right)\right\}_{j=1}^{N}$$
(17)

donde $p_j = \frac{\cosh \lambda_j + \cos \lambda_j}{\sinh \lambda_i + \sin \lambda_j}$ y λ_j resulta de la ecuación característica $\cos \lambda \cosh \lambda = -1$, que

resulta ser la ecuación de frecuencias de la viga uniforme en voladizo, cuyas raíces son:

 $\lambda_1 = 1.87510406871196, \lambda_2 = 4.69409113297417, \lambda_3 = 7.85475743823761,$ $\lambda_4 = 10.9955407348755, \lambda_5 = 14.1371683910465, \dots$

También son muy utilizados los polinomios:

$$\left\{\varphi_{j}\right\}_{j=1}^{N} = \left\{\left(\eta^{4} - 4\eta^{3} + 6\eta^{2}\right)\eta^{j-1}\right\}_{j=1}^{N}$$
(18)

A continuación se indican los casos de vigas en voladizo que se estudiarán:

Figura 1: Viga uniforme

Figura 2: Viga escalonada

Figura 3: Viga con variación lineal

Figura 4: Viga con variación parabólica

Los casos de la Figura 1 y de la Figura 2 se resuelven analíticamente con la teoría de vigas de Bernoulli-Euler (S. Maiz 2007), y se utilizan como test de convergencia del método para las distintas funciones coordenadas propuestas.

Resulta oportuno aclarar que para los casos propuestos, las aproximaciones (17) y (18) no verifican las condiciones naturales en $\eta = 1$, es más, imponen la nulidad de éstas ya que corresponden a un extremo libre. Podrían utilizarse en caso de que la masa estuviese adosada en una posición intermedia de la viga.

Se obtendrán mejores resultados aproximando la deflexión con (16) ya que no impone la nulidad de esfuerzos en el extremo libre.

En esta situación, plantear una función que cumpla con las condiciones de borde naturales, conlleva a incluir autovalores en las funciones coordenadas, lo que dificultaría el análisis (P. A. A. Laura et al. 1995).

Por simplicidad se analizarán las vigas de sección rectangular y se mantendrá la base constante $b = b_0$. Con esta simplificación y con (5) se tiene $f(\eta) = (g(\eta))^3$.

3.1 Viga Uniforme:

$g(\eta) = 1$

En este caso (Figura 1) se calculan los primeros cinco autovalores utilizando las funciones de base (16) y se realiza un análisis de convergencia, volcando los resultados en la Tabla 1. Este análisis de convergencia nos da una pauta de la cantidad de términos necesarios para calcular los autovalores de los posteriores ejemplos, en los cuales no se dispone de los autovalores exactos.

M = 1	Metodología	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
<i>c</i> = 0	5 térm.	1.55730	16.2504	51.3743	109.719	366.239
	10 térm.	1.55730	16.2501	50.8958	105.199	179.250
	15 térm.	1.55730	16.2501	50.8958	105.198	179.232
	Exacta.	1.55730	16.2501	50.8958	105.198	179.232
	5 térm.	1.55716	16.2175	51.0625	108.317	281.354
a = 0.01	10 térm.	1.55716	16.2171	50.6037	103.954	175.524
c = 0.01	15 térm.	1.55716	16.2171	50.6037	103.954	175.507
	Exacta.	1.55716	16.2171	50.6037	103.954	175.507
	5 térm.	1.55675	16.1186	50.1024	103.693	198.659
a = 0.02	10 térm.	1.55675	16.1183	49.7012	99.8223	162.314
c = 0.02	15 térm.	1.55675	16.1183	49.7012	99.8220	162.301
	Exacta	1.55675	16.1183	49.7012	99.8220	162.301
	5 térm.	1.55388	15.4310	43.3872	80.1468	139.466
a = 0.05	10 térm.	1.55388	15.4307	43.2558	78.0056	130.349
c = 0.03	15 térm.	1.55388	15.4307	43.2558	78.0056	130.346
	Exacta	1.55388	15.4307	43.2558	78.0056	130.346
	5 térm.	1.54368	13.2398	32.0803	68.4488	132.032
a = 0.1	10 térm.	1.54368	13.2396	32.0696	66.8287	124.419
c = 0.1	15 térm.	1.54368	13.2396	32.0696	66.8287	124.416
	Exacta	1.54368	13.2396	32.0696	66.8287	124.416

Tabla 1: Análisis de convergencia del método para una viga en voladizo de sección uniforme con una masa M = 1 en el extremo libre

En la Tabla 1 se comparan los resultados obtenidos con 5, 10 y 15 términos, donde se puede apreciar la convergencia del método. De aquí se deduce que resultaría conveniente tomar más de 15 términos de funciones coordenadas para los demás casos.

También se puede destacar que a medida que el valor de la inercia rotatoria de la masa aumenta, el método converge más rápidamente. Esto puede verse reflejado en el 5to coeficiente de frecuencia (Tabla 1) para el cálculo con 5 términos. A medida que aumenta el radio de giro de la masa, los valores de frecuencia son más cercanos al exacto.

3.2 Viga Escalonada:

Consideremos la forma de la viga dada por la siguiente función:

$$g(\eta) = \begin{cases} 1 & \text{para } 0 \le \eta \le \eta_1 \\ h_1 / h_0 & \text{para } \eta_1 \le \eta \le 1 \end{cases}$$

Tabla	2: Solución	exacta para	a viga en voladi	izo escalonada	en $x = \frac{3}{4}l \operatorname{con}$	una masa en el	extremo libre
М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
		0.4	4.56677	20.5203	43.1710	96.5715	152.685
0	0	0.6	4.12637	22.3294	52.7625	103.753	177.443
0	0	0.8	3.78615	22.3383	58.9212	112.907	188.788
		1	3.51602	en voladizo escalonada en $x = \frac{1}{4}l$ con una masa en el Ω_1 Ω_2 Ω_3 Ω_4 667720.520343.171096.5715263722.329452.7625103.753861522.338358.9212112.907160222.034561.6972120.902124811.226237.280585.8232764214.617342.252493.04271544416.221147.741699.1854163016.901451.7009106.05802309.9598026.117546.2805709613.666534.441963.07011502415.574341.697476.8273126716.407447.385788.170971057.3962419.250943.77311545311.193125.497455.00171376913.727531.435264.2570018414.994237.678571.4824888310.876537.165585.5991662114.057441.881192.7274699015.593447.096498.6212573016.250150.8958105.19880118.8127221.548744.1965613212.468029.512356.8944660414.508536.841268.1671538815.430743.255878.005653445.8077417.229443.116446649.1237522.373252.9756545211.730126.904361.0190<	120.902	199.860	
		0.4	2.01248	11.2262	37.2805	85.8232	129.778
	0	0.6	2.07642	14.6173	42.2524	93.0427	158.051
	0	0.8	2.05444	16.2211	47.7416	99.1854	170.939
		1	2.01630	16.9014	51.7009	106.058	180.123
		0.4	2.00230	9.95980	26.1175	46.2805	98.6735
0.5	0.05	0.6	2.07096	13.6665	34.4419	63.0701	108.879
0.5	0.05	0.8	2.05024	15.5743	41.6974	76.8273	124.390
		1	2.01267	16.4074	47.3857	88.1709	139.740
		0.4	1.97105	7.39624	19.2509	43.7731	97.9250
	0.1	0.6	2.05453	11.1931	25.4974	55.0017	106.072
	0.1	0.8	2.03769	13.7275	31.4352	64.2570	117.176
		1	2.00184	14.9942	37.6785	71.4824	127.634
		0.4	1.48883	10.8765	37.1655	85.5991	129.509
	0	0.6	1.56621	14.0574	41.8811	92.7274	157.572
	0	0.8	1.56990	15.5934	47.0964	98.6212	170.324
		1	1.55730	16.2501	50.8958	105.198	179.232
		0.4	1.48011	8.81272	21.5487	44.1965	97.9210
1	0.05	0.6	1.56132	12.4680	29.5123	56.8944	106.375
1	0.05	0.8	1.56604	14.5085	36.8412	68.1671	118.392
		1	1.55388	15.4307	43.2558	78.0056	130.346
		0.4	1.45344	5.80774	17.2294	43.1164	97.5500
	0.1	0.6	1.54664	9.12375	22.3732	52.9756	105.079
	0.1	0.8	1.55452	11.7301	26.9043	61.0190	115.052
		1	1.54368	13.2396	32.0696	66.8287	124.416

S. Maiz 2007) (Tabla 2).

En el caso de la viga escalonada se dispone de la solución exacta (D. H. Felix et al. 2006 y

En la Tabla 2, puede notarse que para la viga sin masa los coeficientes de frecuencias primero y segundo aumentan cuando la viga presenta un escalón. Para la frecuencia fundamental el máximo valor se halla para una relación $h_1/h_0 = 0.4$ y para el segundo coeficiente el máximo valor se encuentra para una relación $h_1/h_0 = 0.8$.

En algunas aplicaciones tecnológicas, se busca este efecto intencionalmente con el objeto de elevar las primeras frecuencias naturales en un proceso que se denomina "rigidización dinámica".

Para un valor de masa M = 0.5 sólo el primer coeficiente de frecuencia aumenta, registrándose los valores máximos para una relación $h_1/h_0 = 0.6$ y para M = 1 el valor máximo de dicho coeficiente corresponde a la relación $h_1/h_0 = 0.8$.

M	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		0.4	4.57629	21.7171	44.8458	96.7687	161.807
0	0	0.6	4.12829	22.5712	53.8784	104.108	178.160
		0.8	3.78642	22.3703	59.1532	113.148	188.808
		0.4	2.04354	11.8326	37.5450	87.5762	138.151
	0	0.6	2.08142	14.8523	42.6653	93.0770	160.233
		0.8	2.05502	16.2603	47.8838	99.2247	171.085
		0.4	2.03392	10.4066	26.2789	47.8621	98.7960
0.5	0.05	0.6	2.07605	13.8870	34.5133	63.7932	109.446
		0.8	2.05084	15.6143	41.7747	76.8742	124.697
	0.1	0.4	2.00434	7.59630	19.7425	45.0659	98.0738
		0.6	2.05987	11.3533	25.5106	55.8395	106.472
		0.8	2.03831	13.7657	31.4459	64.3924	117.427
		0.4	1.51454	11.4429	37.4129	87.3960	137.842
	0	0.6	1.57057	14.2823	42.2691	92.7652	159.787
		0.8	1.57042	15.6318	47.2315	98.6555	170.479
		0.4	1.50625	9.13353	21.8746	45.5159	98.0700
1	0.05	0.6	1.56576	12.6624	29.5188	57.6846	106.785
		0.8	1.56657	14.5472	36.8788	68.2666	118.648
		0.4	1.48082	5.91973	17.7944	44.2896	97.7175
	0.1	0.6	1.55130	9.23505	22.4222	53.7852	105.417
		0.8	1.55508	11.7624	26.9053	61.1707	115.276

Tabla 3: Solución aproximada con 20 términos para viga en voladizo escalonada en $x = \frac{3}{4}l$ (Figura 2)

Se utilizaron 20 términos en la aproximación de la solución (Tabla 3), obteniendo una muy buena convergencia, por lo que se tomará esta cantidad de términos para los demás ejemplos.

3.3 Viga con variación lineal de la altura:

$$g(\eta) = (1 - h_1 / h_0)(1 - \eta) + h_1 / h_0$$

En el caso de la Figura 3, basados en el análisis de convergencia realizado en los casos anteriores, se calculan los coeficientes de frecuencia (Tabla 4).

М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		0.4	3.9343	17.4879	44.0248	83.5541	136.2031
0	0	0.6	3.7371	19.1138	50.3537	96.9954	159.1732
		0.8	3.6083	20.6210	56.1923	109.3184	180.1631
		0.4	1.6304	12.1279	35.2109	71.4202	120.7590
	0	0.6	1.7969	13.8615	41.0942	83.8417	142.1235
		0.8	1.9201	15.4341	46.5364	95.2653	161.6928
		0.4	1.6241	11.0749	25.0923	45.9858	83.3267
0.5	0.05	0.6	1.7920	13.1369	34.0394	59.9495	101.6045
		0.8	1.9159	14.8564	41.2211	74.3946	120.3520
	0.1	0.4	1.6050	8.4314	18.3748	42.9372	81.9568
		0.6	1.7773	11.1235	24.7368	52.3270	97.8941
		0.8	1.9035	13.2154	31.2917	61.7901	112.9649
		0.4	1.2027	11.8548	34.9562	71.1791	120.5254
	0	0.6	1.3481	13.4568	40.6697	83.4193	141.7025
		0.8	1.4627	14.9028	45.9265	94.6346	161.0506
		0.4	1.1975	9.9656	20.8369	43.4597	81.9596
1	0.05	0.6	1.3439	12.1974	29.1360	54.2552	98.3229
		0.8	1.4589	13.9256	36.6556	65.8790	114.2747
		0.4	1.1818	6.6053	16.6847	42.0650	81.3081
	0.1	0.6	1.3311	9.2517	21.4799	50.4953	96.5929
		0.8	1.4477	11.4129	26.6750	58.6702	110.8036

Tabla 4: Solución aproximada con 20 términos para viga en voladizo de la Figura 3

3.4 Viga con variación parabólica de la altura:

$$g(\eta) = (1 - h_1 / h_0) (1 - \eta)^2 + h_1 / h_0$$

En el caso de la Figura 4, al igual que el caso anterior, se calculan los coeficientes de frecuencia con N = 20 (Tabla 5).

М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
		0.4	3.45196	14.6934	37.0071	70.3809	114.885
0	0	0.6	3.48084	17.3837	45.8766	88.4835	145.307
		0.8	3.50093	19.7972	54.0168	105.147	173.339
		0.4	1.28835	10.6990	30.4087	61.1085	102.890
	0	0.6	1.59839	12.8630	37.9288	77.0750	130.394
		0.8	1.83229	14.9182	44.9597	91.9104	155.881
		0.4	1.28249	9.63246	22.1234	40.8266	72.5079
0.5	0.05	0.6	1.59359	12.1418	31.5890	56.1792	94.4434
		0.8	1.82818	14.3438	39.8783	72.2758	116.754
	0.1	0.4	1.26499	7.21453	16.6735	37.9439	71.1018
		0.6	1.57928	10.2093	23.3179	48.9639	90.7032
		0.8	1.81590	12.7308	30.4510	60.0779	109.377
		0.4	0.94270	10.5240	30.2285	60.9265	102.706
	0	0.6	1.19269	12.5388	37.5744	76.7103	130.023
		0.8	1.39219	14.4320	44.3939	91.3172	155.272
		0.4	0.93802	8.61966	18.7064	38.5476	71.2119
1	0.05	0.6	1.18862	11.2773	27.2499	50.9070	91.2405
		0.8	1.38850	13.4567	35.5498	64.1157	110.756
		0.4	0.92407	5.63676	15.3023	37.1920	70.5398
	0.1	0.6	1.17647	8.48064	20.3983	47.2530	89.4840
		0.8	1.37748	10.9926	26.0469	57.0423	107.267

Tabla 5: Solución aproximada con 20 términos para viga en voladizo de la Figura 4

Para los casos de viga en voladizo con variación lineal y parabólica (Tablas 4 y 5), se observa una disminución en los coeficientes de frecuencia fundamental con respecto a la viga escalonada.

4 VIGA BIEMPOTRADA

Para el caso de vigas biempotradas la base de funciones coordenadas utilizadas es:

$$\left\{\varphi_{j}\right\}_{j=1}^{N} = \left\{\left(\eta - 1\right)^{2} \eta^{j+1}\right\}_{j=1}^{N}$$
(19)

que cumplen con las condiciones de borde esenciales del problema. Cabe aclarar que en este caso no se tienen condiciones de borde naturales o inestables.

En las Figuras 5 y 6 se muestran los casos de vigas analizados:

Figura 5: Viga biempotrada con variación lineal de la altura

Figura 6: Viga biempotrada con variación parabólica de la altura

4.1 Viga con variación lineal de la altura:

$$g(\eta) = 2\left(1 - \frac{h_1}{h_0}\right)\left|\frac{1}{2} - \eta\right| + \frac{h_1}{h_0}$$

En el caso de la Figura 5, y con el análisis de convergencia realizado en el ejemplo anterior, se considera la viga con variación lineal de la altura, con su mínimo valor en el centro de la viga, donde se encuentra adosada la masa. Se calcularon los cinco primeros autovalores para distintos valores de h_1/h_0 y de la masa y su radio de giro (Tabla 6).

М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		0.4	19.4315	46.2335	85.5862	138.838	204.359
0	0	0.6	20.2954	51.9620	98.0623	160.850	238.000
		h_1/h_0 Ω_1 Ω_2 Ω_3 0.419.431546.233585.5862130.620.295451.962098.0623160.821.307457.0304109.773180.49.5290146.233564.3264130.611.449751.962076.8223160.813.189257.030488.6899180.49.5290135.530464.3264830.611.449744.270076.8223100.813.189251.078488.6899130.611.449730.790476.8223850.813.189251.078488.6899130.611.449730.790476.8223850.813.189238.558188.6899100.47.1647746.233562.5431130.68.8082251.962074.1628160.810.350857.030485.2106180.47.1647728.989562.5431750.68.8082238.325874.1628940.810.350845.985385.2106110.47.1647716.345362.5431650.68.8082223.340274.1628810.810.350830.157785.210694	180.978	269.175			
		0.4	9.52901	46.2335	64.3264	138.838	171.477
	0	0.6	11.4497	51.9620	76.8223	160.850	202.110
		0.8	13.1892	57.0304	88.6899	180.978	231.452
		0.4	9.52901	35.5304	64.3264	83.9733	171.477
0.5	0.05	0.6	11.4497	44.2700	76.8223	108.316	202.110
		0.8	13.1892	51.0784	88.6899	133.338	231.452
	0.1	0.4	9.52901	22.1939	64.3264	71.4208	171.477
		0.6	11.4497	30.7904	76.8223	85.8244	202.110
		0.8	13.1892	38.5581	88.6899	101.560	231.452
		0.4	7.16477	46.2335	62.5431	138.838	169.780
	0	0.6	8.80822	51.9620	74.1628	160.850	199.239
		0.8	10.3508	57.0304	85.2106	180.978	227.332
		0.4	7.16477	28.9895	62.5431	75.7640	169.780
1	0.05	0.6	8.80822	38.3258	74.1628	94.3540	199.239
		0.8	10.3508	45.9853	85.2106	114.806	227.332
		0.4	7.16477	16.3453	62.5431	69.2802	169.780
	0.1	0.6	8.80822	23.3402	74.1628	81.3933	199.239
		0.8	10.3508	30.1577	85.2106	94.0559	227.332

Tabla 6: Solución aproximada con 20 términos para viga biempotrada de la Figura 5

4.2 Viga con variación parabólica de la altura:

$$g(\eta) = 4\left(1 - \frac{h_1}{h_0}\right)\left(\frac{1}{2} - \eta\right)^2 + \frac{h_1}{h_0}$$

En este ejemplo se toma la variación en forma parabólica. Los coeficientes de frecuencia se presentan en la Tabla 7 para distintos valores de h_1/h_0 y de la masa y su radio de giro.

М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		0.4	18.0051	41.3393	75.2985	120.159	176.028
0	0	0.6	19.4783	48.6740	91.7010	148.764	219.952
		0.8	20.9289	55.3784	106.736	175.045	260.363
		0.4	8.19636	41.3393	58.3991	120.159	149.364
	0	0.6	10.6554	48.6740	72.8307	148.764	188.016
		0.8	12.8174	55.3784	86.6513	175.045	224.503
		0.4	8.19636	29.9792	58.3991	72.5087	149.364
0.5	0.05	0.6	10.6554	40.7650	72.8307	100.016	188.016
		0.8	12.8174	49.3692	86.6513	128.931	224.503
	0.1	0.4	8.19636	18.0512	58.3991	63.4546	149.364
		0.6	10.6554	27.8089	72.8307	80.4259	188.016
		0.8	12.8174	37.0016	86.6513	98.7325	224.503
		0.4	6.10796	41.3393	57.1350	120.159	148.068
	0	0.6	8.15248	48.6740	70.5794	148.764	185.511
		0.8	10.0344	55.3784	83.3936	175.045	220.610
		0.4	6.10796	23.9197	57.1350	66.5391	148.068
1	0.05	0.6	8.15248	34.9265	70.5794	87.7710	185.511
		0.8	10.0344	44.2946	83.3936	111.265	220.610
		0.4	6.10796	13.1934	57.1350	61.9353	148.068
	0.1	0.6	8.15248	20.9658	70.5794	76.6256	185.511
		0.8	10.0344	28.8622	83.3936	91.6544	220.610

Tabla 7: Solución aproximada con 20 términos para viga biempotrada de la Figura 6

En las Tablas 6 y 7 se muestran los coeficientes de frecuencias para vigas biempotradas con variación lineal y parabólica de la altura, respectivamente. Tales valores son superiores cuando la altura varía linealmente.

5 VIGA SIMPLEMENTE APOYADA

En el caso de vigas simplemente apoyadas, se toman como funciones coordenadas:

$$\left\{\varphi_{j}\right\}_{j=1}^{N} = \left\{\left(\eta - 1\right)\eta^{j}\right\}_{j=1}^{N}$$
(20)

las cuales cumplen con las condiciones de borde esenciales del problema.

También se toma como base:

$$\left\{\varphi_{j}\right\}_{j=1}^{N} = \left\{\left(\eta^{3} - 2\eta^{2} + 1\right)\eta^{j}\right\}_{j=1}^{N}$$
(21)

que además cumple con las condiciones de borde naturales $\varphi''(0) = \varphi''(1) = 0$

Se calculan los coeficientes de frecuencias de los modelos presentados en las Figuras 7 y 8 y con ambas bases de funciones coordenadas.

Figura 7: Viga simplemente apoyada con variación lineal de la altura

Figura 8: Viga simplemente apoyada con variación parabólica de la altura

5.1 Viga con variación lineal de la altura:

$$g(\eta) = 2\left(1 - \frac{h_1}{h_0}\right)\left|\frac{1}{2} - \eta\right| + \frac{h_1}{h_0}$$

En la Tabla 8 se muestran los coeficientes de frecuencias de la viga simplemente apoyada, con una masa central, calculados con la base de funciones (20) y en la Tabla 9 con la base (21).

Tabla 8: Solución aproximada con 20 términos para viga simplemente apoyada de la Figura 7

М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		0.4	5.10914	25.8716	59.7439	106.477	165.621
0	0	0.6	6.86627	30.9185	69.7238	124.784	194.228
		0.8	8.43205	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	221.134		
		0.4	2.94004	25.8716	41.0892	106.477	135.776
	0	0.6	4.32758	30.9185	51.8028	124.784	162.109
		0.8	5.66957	35.3848	62.0189	141.782	187.659
		0.4	2.94004	22.7838	41.0892	65.6921	135.776
0.5	0.05	0.6	4.32758	28.4200	51.8028	88.1675	162.109
		0.8	5.66957	33.2476	62.0189	109.775	187.659
	0.1	0.4	2.94004	16.8137	41.0892	48.6578	135.776
		0.6	4.32758	22.7305	51.8028	63.2546	162.109
		0.8	5.66957	27.9794	62.0189	78.8882	187.659
		0.4	2.27427	25.8716	39.0454	106.477	134.029
	0	0.6	3.41557	30.9185	49.0709	124.784	159.248
		0.8	4.55326	35.3848	58.6624	141.782	183.640
		0.4	2.27427	20.2827	39.0454	55.3421	134.029
1	0.05	0.6	3.41557	26.2124	49.0709	73.9821	159.248
		0.8	4.55326	31.2894	58.6624	93.2969	183.640
		0.4	2.27427	13.0486	39.0454	45.0176	134.029
	0.1	0.6	3.41557	18.3421	49.0709	56.7766	159.248
		0.8	4.55326	23.3401	58.6624	69.2021	183.640

М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
		0.4	5.10875	25.8713	59.7398	106.472	165.592
0	0	0.6	6.86620	30.9185	69.7231	124.783	194.223
		0.8	8.43204	35.3848	79.4168	141.782	221.134
		0.4	2.93968	25.8713	41.0730	106.472	135.663
	0	0.6	4.32749	30.9185	51.7968	124.783	162.057
		0.8	5.66956	35.3848	62.0164	141.782	187.633
		0.4	2.93968	22.7787	41.0730	65.5267	135.663
0.5	0.05	0.6	4.32749	28.4184	51.7968	88.0592	162.057
		0.8	5.66956	33.2470	62.0164	109.705	187.633
	0.1	0.4	2.93968	16.7981	41.0730	48.5207	135.663
		0.6	4.32749	22.7223	51.7968	63.1347	162.057
		0.8	5.66956	27.9748	62.0164	78.7812	187.633
		0.4	2.27397	25.8713	39.0288	106.472	133.912
	0	0.6	3.41549	30.9185	49.0643	124.783	159.193
		0.8	4.55324	35.3848	58.6594	141.782	183.610
		0.4	2.27397	20.2725	39.0288	55.1833	133.912
1	0.05	0.6	3.41549	26.2084	49.0643	73.8555	159.193
		0.8	4.55324	31.2875	58.6594	93.1964	183.610
		0.4	2.27397	13.0312	39.0288	44.8998	133.912
	0.1	0.6	3.41549	18.3306	49.0643	56.6716	159.193
		0.8	4.55324	23.3321	58.6594	69.1041	183.610

Tabla 9: Solución aproximada con 20 términos para viga simplemente apoyada de la Figura 7

En este caso, se utilizaron dos bases de funciones coordenadas, (20) y (21), cuyos resultados fueron volcados en las Tablas 8 y 9. En ellas puede comprobarse que cuando las funciones coordenadas cumplen con las condiciones de borde esenciales y naturales se consigue una mejor aproximación.

5.2 Viga con variación parabólica de la altura:

$$g(\eta) = 4\left(1 - \frac{h_1}{h_0}\right)\left(\frac{1}{2} - \eta\right)^2 + \frac{h_1}{h_0}$$

En la Tabla 10 se muestran los coeficientes de frecuencias de la viga calculados con la base de funciones (21), que como se mostró en el ejemplo anterior, brinda una mejor aproximación para igual número de términos.

М	С	h_{1} / h_{0}	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
		0.4	4.3950	20.6641	49.5172	88.9709	139.3563
0	0	0.6	6.3108	27.4599	63.3476	113.2783	177.3413
		0.8	8.1252	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	212.8291		
		0.4	2.4077	20.6641	34.3001	88.9709	115.2025
	0	0.6	3.8922	27.4599	47.3209	113.2783	148.7954
		0.8	5.4207	33.6622	59.7728	136.0794	181.0254
		0.4	2.4077	17.9018	34.3001	52.9935	115.2025
0.5	0.05	0.6	3.8922	25.0989	47.3209	79.3142	148.7954
		0.8	5.4207	31.5729	59.7728	105.1461	181.0254
	0.1	0.4	2.4077	12.9359	34.3001	39.6454	115.2025
		0.6	3.8922	19.8891	47.3209	57.1055	148.7954
		0.8	5.4207	26.4796	59.7728	75.6424	181.0254
		0.4	1.8455	20.6641	32.7932	88.9709	113.8740
	0	0.6	3.0560	27.4599	44.9793	113.2783	146.3033
		0.8	4.3437	33.6622	56.6204	136.0794	177.2296
		0.4	1.8455	15.7689	32.7932	44.7961	113.8740
1	0.05	0.6	3.0560	23.0520	44.9793	66.5938	146.3033
		0.8	4.3437	29.6706	56.6204	89.3655	177.2296
		0.4	1.8455	9.9682	32.7932	36.8663	113.8740
	0.1	0.6	3.0560	15.9844	44.9793	51.4081	146.3033
		0.8	4.3437	22.0475	56.6204	66.4450	177.2296

Tabla 10: Solución aproximada con 20 términos para viga simplemente apoyada de la Figura 8

De las dos configuraciones de la viga simplemente apoyada, se observa que las frecuencias más altas corresponden al caso en que la altura varía linealmente.

6 EFICIENCIA DE RIGIDIZACIÓN

Las tablas vistas anteriormente se complementan con el gráfico del factor de eficiencia de rigidización ε que se expresa como sigue:

$$\varepsilon = \frac{\Omega_1 / \Omega_{01}}{\Delta M} \tag{22}$$

donde Ω_1 representa el primer coeficiente de frecuencia de la viga rigidizada, Ω_{01} el coeficiente de frecuencia de la viga uniforme y ΔM la variación de la masa de la viga rigidizada con respecto a la viga uniforme, y se calcula de la siguiente manera:

$$\Delta M = \frac{\int_0^l \rho A(x) dx}{\rho A_0 l} \tag{23}$$

A modo demostrativo se calcularon los gráficos de eficiencia para la viga en voladizo con una masa en el extremo libre, comparando los cuatro modelos analizados anteriormente.

La Figura 9 corresponde al caso de la viga con una masa adimensional M = 0.5 y radio de giro adimensional de la masa de c = 0.05. Puede notarse que a partir de una relación de alturas $h_1/h_0 > 0.3$, todos los modelos planteados son más eficientes que la viga uniforme. Por otro lado, en el intervalo $0.1 < h_1/h_0 < 0.4$ la mayor eficiencia corresponde a la viga con variación lineal de la altura y para relaciones $h_1/h_0 > 0.4$ predomina la viga escalonada en x=3/4 l.

Un análisis similar puede deducirse de la Figura 10, que corresponde a la viga en voladizo

con una masa adimensional en su extremo M = 1 y radio de giro adimensional c = 0.05.

Figura 9: Grafico de eficiencia de rigidización para una viga en voladizo con una masa en el extremo libre de M = 0.5 y c = 0.05

Figura 10: Grafico de eficiencia de rigidización para una viga en voladizo con una masa en el extremo libre de M = 1 y c = 0.05

7 CONCLUSIONES

Se ha utilizado el método de Ritz, a través de un planteo variacional, para presentar soluciones aproximadas en el problema de vibración de vigas de sección variable con masas adosadas.

Fue comprobada la convergencia del método en el caso de resultados conocidos de situaciones particulares del modelo en análisis o, cuando fue posible, comparando con la solución analítica exacta del sistema de ecuaciones gobernantes.

Se presenta, en resumen, un procedimiento eficaz y de sencilla implementación para obtener resultados satisfactorios de un problema analíticamente complejo, acompañando de tablas de valores de frecuencia para casos donde la información es escasa.

8 AGRADECIMIENTOS

El presente trabajo fue auspiciado por la Secretaría de Ciencia y Tecnología de la Universidad Nacional del Sur, por la Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) y por el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

9 REFERENCIAS

- N. M. Auciello and M. J. Maurizi, On the natural vibrations of tapered beams with attached inertia elements, *Journal of Sound and Vibration* 199(3) (1997) 522-530.
- Y. Chen, On the vibration of beams or rods carrying a concentrated mass, *Journal of Applied Mechanics* 30 (1963) 310-311.
- M. A. De Rosa, C. Franciosi, M. J. Maurizi, On the dynamics behaviour of slender beams with elastic ends carrying a concentrated mass, *Computers and Structures* 58(6) (1995) 1145-1159.
- M. A. De Rosa, N. M. Auciello, M. J. Maurizi, The use of Mathematica in the dynamics analysis of a beam with a concentrated mass and dashpot, *Journal of Sound and Vibration* 263 (2003) 219-226.
- E. H. Dowell. On some general properties of combined dynamical systems. *Transactions of the ASME* 46 (1979) 206-209.
- D. H. Felix, C. A. Rossit, S. Maiz y P. A. A. Laura, "Experimentos numéricos en rigidización dinámica de elementos estructurales, mediante el método de Cuadratura Diferencial Generalizada. *ENIEF 2006*, XV Congreso sobre métodos numéricos y sus aplicaciones, Santa Fe, Argentina. pp 1675-1696
- R. O. Grossi, R. Scotto and E. Canterle, On the existence of weak solutions in the study of beams, *Journal of Sound and Vibration* 212(3) (1998) 559-563.
- M. Gürgöze, A note on the vibrations of restrained beams and rods with point masses, *Journal of Sound and Vibration* 96(4) (1984) 461-468.
- M. Gürgöze, On the vibration of restrained beams and rods with heavy masses, *Journal of Sound and Vibration* 100(4) (1985) 588-589.
- M. Gürgöze, On the eigenfrequencies of cantilevered beams carrying tip mass and a spring mass in span, *International Journal of Mechanical Engineering Sciences* 38(12) (1996) 1295-1306.
- M. N. Hamdan y L. Andel Latif, On the numerical convergence of discretization method for the free vibrations of beams with attached inertia elements, *Journal of Sound and Vibration* 169(4) (1994) 527-545.
- S. Kukla, B. Posiadala, Free vibrations of beams with elastically mounted masses, Journal of

Sound and Vibration 175(4) (1994) 557-564.

- P. A. A. Laura, J. L. Pombo, E. L. Susemihl, A note on the vibration of a clamped-free beam with a mass at the free end, *Journal of Sound and Vibration* 37 (1974) 161-168.
- P. A. A. Laura, L. Ercoli y R. Gutierrez, *Optimized Rayleigh-Ritz Method*, Departamento de Ingeniería, Universidad Nacional del Sur, Instituto de Mecánica Aplicada. Publicación Nº 95-34, (1995).
- P. A. A. Laura, M. J. Maurizi, J. L. Pombo, A note on the dynamics analysis of an elastically restrained-free beam with a mass at the free end, *Journal of Sound and Vibration* 41 (1975) 397-405.
- P. A. A. Laura, P. L. Verniere de Irassar, G. M. Ficcadenti, A note of transverse vibration of continuous beams subjected to an axial force and carrying concentrated masses, *Journal of Sound and Vibration* 86(2) (1983) 279-284.
- P. A. A. Laura, C. P. Filipich, V. H. Cortínez, Vibrations of beams and plates carrying concentrated masses, *Journal of Sound and Vibration* 117(3) (1987) 459-465.
- W. H. Liu, J. R. Wu, C. C. Huang, Free vibrations of beams with elastically restrained edges and intermediate concentrated masses, *Journal of Sound and Vibration* 122(2) (1988) 193-207.
- S. Maiz, Influencia de la Inercia Rotacional de Una Masa Sobre las Vibraciones Transversales Libres de Elementos Estructurales Tesis de Magíster en Ingeniería, Universidad Nacional del Sur, Bahía Blanca, (2007).
- S. Nagulesguaran, Transverse vibrations of an Euler-Bernoulli uniform beam carrying several particles, *International Journal of Mechanical Science* 44 (2002) 2463-2478.
- A. H. Register, A note on the vibration of generally restrained end loaded beams, *Journal of Sound and Vibration* 172(4) (1994) 561-571.
- C. A. Rossit, P. A. A. Laura, Transverse vibrations of a cantilever beam with a spring mass system attached on the free end, *Ocean Engineering* 28 (2001) 933-939.
- C. A. Rossit, P. A. A. Laura, Transverse normal modes of vibration of a cantilever Timoshenko beam with a mass elastically mounted at the free end, *Journal of the Acoustical Society of America* 110(6) (2001) 2837-2840.