Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXVI, pp.278-297 Sergio A. Elaskar, Elvio A. Pilotta, Germán A. Torres (Eds.) Córdoba, Argentina, Octubre 2007

CONSIDERACIÓN DE DISTINTAS TEORÍAS EN LA VIBRACIÓN DE VIGAS CON MASAS ADOSADAS

Santiago Maiz^{a,c}, Carlos A. Rossit^{a,c}, y Diana V. Bambill^{a, c}

^a Departamento de Ingeniería, Instituto de Mecánica Aplicada, Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB), Bahía Blanca, Argentina. ^c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Keywords: Vibraciones Naturales, Vigas, Masas, Inercia Rotatoria, Efecto de Corte.

Abstract. En el análisis dinámico de vigas que sostienen masas rígidamente adosadas, es habitual considerar para la viga el modelo simplificado Bernoulli-Euler y tener en cuenta solamente el comportamiento traslacional de la masa adosada.

En un trabajo reciente (S. Maiz et al., *Journal of Sound and Vibration* 303 (3-5):895–908, (2007)) los autores consideraron adicionalmente la inercia rotatoria de masas adosadas sobre una viga Bernoulli-Euler.

En el presente trabajo, continuación del antedicho, se adoptan teorías más exactas de vigas, incorporando la inercia rotatoria de la propia viga vibrante (Vigas "Rayleigh") y agregando además la deformación por corte (Vigas "Timoshenko").

Se establecen condiciones generales de borde en sus extremos a través de vínculos elásticamente restringidos a rotación y traslación.

Se extraen conclusiones acerca de la consideración de hipótesis más refinadas para las vigas sobre los parámetros dinámicos del sistema acoplado viga-masa.

El modelo estudiado es de aplicación en el análisis de vigas que soportan máquinas o motores que ejercen esfuerzos dinámicos actuando a frecuencias conocidas.

1 INTRODUCCIÓN

El estudio de vigas que soportan masas adosadas ha merecido en las últimas tres décadas un amplio tratamiento en la literatura técnico – científica en virtud de sus múltiples aplicaciones tecnológicas.

En cuanto al estudio de las vibraciones transversales de vigas se destacan tres teorías: Bernoulli-Euler, Rayleigh y Timoshenko (Han et el. 1999). La diferencia entre ellas radica en la consideración la inercia rotatoria de la viga y la deformación por corte. La primera teoría mencionada no tiene en cuenta ninguno de estos efectos, la segunda considera sólo la inercia rotacional de las secciones transversales de la viga y la tercera contempla los dos efectos.

En general, los trabajos consideran para la viga el modelo simplificado de Bernoulli-Euler y sólo tienen en cuenta la inercia traslatoria de la masa adosada.

Un limitado número tienen en cuenta la inercia rotacional de la masa adosada.

Entre ellos se consignan el trabajo de Laura y colaboradores en 1987, los de Wu y Hsu (2006), (2007) y el mencionado en el resumen (S. Maiz et al. 2007) donde se analiza la influencia de masas adosadas en una viga con condiciones de borde generales.

Resulta aún más limitado el número de trabajos que tienen en cuenta teorías más exactas para estudiar la vinculación de la propia viga, mencionando entre ellos los publicados por Chang (2000) que analiza una viga Rayleigh simplemente apoyada con una masa centrada adosada y por Bruch, J.N. y Mitchell (1987) y Rossit y Laura (2001) referidos a vigas Timoshenko cantilever.

En el presente trabajo se analiza el caso de una viga de un tramo sobre la que actúan dos masas adosadas en posiciones genéricas.

La viga se modela vinculada elásticamente a traslación y a rotación en sus extremos, lo que permite obtener como casos particulares cualquier combinación de vínculos en esos extremos.

Se consideran las tres teorías más difundidas para el estudio de las vibraciones transversales de vigas, comparando sus resultados.

2 DESARROLLO ANALÍTICO

Consideremos la viga de la Figura 1 de longitud *l*, homogénea, constituida por un material isótropo de densidad ρ , modulo de Poisson *v* y módulo de Young *E*, y cuya sección transversal tiene área *A* y momento de inercia *I* con respecto a su eje centroidal. con dos masas puntuales m_1 y m_2 , cuyos momentos de inercia son $J_1 = m_1 r_{g1}^2$ y $J_2 = m_2 r_{g2}^2$, adosadas en las posiciones x_1 y x_2 respectivamente. Dicha viga se encuentra vinculada elásticamente en sus extremos, tanto a la traslación como a la rotación.

Los símbolos k_1 y k_2 representan las constantes de rigidez traslacional mientras que k_3 y k_4 representan los coeficientes de rigidez rotacional.

Figura 1: Viga elásticamente restringida en los extremos con dos masas adosadas

Cuando la viga vibra libremente:

$$v(x,t) = V(x)e^{i\omega t}$$
⁽¹⁾

Donde v(x,t) es la deflexión transversal, V(x) es la amplitud de v(x,t) y ω es la frecuencia natural circular del sistema.

Para resolver el problema se introduce la siguiente variable adimensional:

$$\eta = \frac{x}{l}$$
 por lo tanto $\eta_1 = \frac{x_1}{l}$ y $\eta_2 = \frac{x_2}{l}$, $\eta \in [0,1]$ (2)

La solución exacta del problema se consigue mediante la división del dominio espacial de la viga [0,1] en tres subdominios [0, η_1], (η_1 , η_2] y (η_2 , 1] en los cuales la ecuación gobernante es la de la viga desnuda, dependiendo de la teoría que se emplee.

De esta manera la solución se expresa como:

$$v(\eta, t) = \begin{cases} V_1(\eta) e^{i\omega t} & 0 \le \eta \le \eta_1 \\ V_2(\eta) e^{i\omega t} & \eta_1 < \eta \le \eta_2 \\ V_3(\eta) e^{i\omega t} & \eta_2 \le \eta \le 1 \end{cases}$$
(3)

la que deberá cumplir las condiciones de continuidad en los puntos η_i .

2.1 Ecuaciones de continuidad

Las condiciones de continuidad que deben satisfacerse en los puntos η_i donde se encuentran adosadas las masas, según la orientación de ejes tomada en la Figura 2, son:

Figura 2: Condiciones de continuidad

donde θ es el giro de la sección transversal de la viga, M_I y Q_I son el momento y el corte a izquierda de η_i y M_D y Q_D son el momento y el corte a la derecha.

Continuidad en la deflexión:

$$V_i(\eta_i) = V_{i+1}(\eta_i)$$
 para *i*=1,2 (4)

Continuidad en el giro de la sección transversal:

$$\theta_i(\eta_i, t) = \theta_{i+1}(\eta_i, t) \text{ para } i=1,2$$
(5)

Equilibrio de fuerzas:

$$-Q_{I}(\eta_{i}) + Q_{D}(\eta_{i}) = m_{i} \ddot{v}(\eta_{i}, t) \text{ para } i=1,2$$
(6)

Equilibrio de momento:

$$M_{I}(\eta_{i}) - M_{D}(\eta_{i}) = J_{i} \ddot{\theta} \text{ para } i=1,2$$

$$\tag{7}$$

2.2 Condiciones de borde

Los extremos de la viga se encuentran vinculados elásticamente, esto nos brinda una mayor generalidad en el estudio del sistema.

Las condiciones de borde en $\eta = 0$ son:

$$Q(0) = k_1 V(0) \tag{8}$$

$$M(0) = -k_3\theta(0) \tag{9}$$

y en $\eta = 1$:

$$Q(1) = -k_2 V(1)$$
(10)

$$M(1) = k_4 \theta(1) \tag{11}$$

2.3 Teoría de Bernoulli-Euler

La ecuación para vibraciones de vigas delgadas fue desarrollada por Daniel Bernoulli en 1734 y las primeras soluciones para vigas con extremos simplemente apoyados, empotrados y libres fueron halladas y publicadas por Euler en 1744. Se consideran vigas delgadas aquellas donde la relación L/h es mayor que 10, siendo L la longitud de la onda del modo de vibración en análisis y h es la altura de la sección transversal de la viga.

Hipótesis:

- a) Deformaciones pequeñas.
- b) Las secciones transversales permanecen planas y perpendiculares al eje neutro durante el movimiento, despreciando la deformación por corte.
- c) Las fibras longitudinales no se comprimen mutuamente.
- d) La inercia rotacional es despreciada.

La ecuación de Bernoulli-Euler para vibraciones transversales de vigas, ya independizada del tiempo es:

$$\frac{d^4V}{d\eta^4} - \left(\beta l\right)^4 V = 0 \tag{12}$$

donde $\beta^4 = \frac{A\rho}{EI}\omega^2$.

La solución general de la ecuación diferencial (12) para el sistema mostrado en la Figura 1 y aplicada a cada tramo será:

$$V_{1}(\eta) = C_{1} \cosh(\beta l\eta) + C_{2} \operatorname{senh}(\beta l\eta) + C_{3} \cos(\beta l\eta) + C_{4} \operatorname{sen}(\beta l\eta) \qquad 0 \le \eta \le \eta_{1}$$

$$V_{2}(\eta) = C_{5} \cosh(\beta l\eta) + C_{6} \operatorname{senh}(\beta l\eta) + C_{7} \cos(\beta l\eta) + C_{8} \operatorname{sen}(\beta l\eta) \qquad \eta_{1} < \eta \le \eta_{2} \qquad (13)$$

$$V_{3}(\eta) = C_{9} \cosh(\beta l\eta) + C_{10} \operatorname{senh}(\beta l\eta) + C_{11} \cos(\beta l\eta) + C_{12} \operatorname{sen}(\beta l\eta) \qquad \eta_{2} < \eta \le 1$$

donde las C_i 's son constantes a ser determinadas por las condiciones de borde en $\eta = 0$ y en $\eta = 1$ y de continuidad en η_1 y η_2 .

En el desarrollo de la teoría de Bernoulli-Euler se define a:

$$\theta(x) = \frac{dV}{dx}, \ M(x) = -EI\frac{d^2V}{dx^2}, \ Q(x) = -EI\frac{d^3V}{dx^3}$$
(14)

Aplicando (14) a las condiciones de continuidad -Ecs. (3-6)- y de borde -Ecs. (7-10)- nos queda:

En $\eta = \eta_1$:

$$V_1(\eta_1) = V_2(\eta_1)$$
(15)

$$\frac{d^{3}V_{1}(\eta)}{d\eta^{3}}\bigg|_{\eta=\eta_{1}} - \frac{d^{3}V_{2}(\eta)}{d\eta^{3}}\bigg|_{\eta=\eta_{1}} = -M_{1}(\beta l)^{4}V_{1}(\eta_{1})$$
(17)

$$-\frac{d^{2}V_{1}(\eta)}{d\eta^{2}}\bigg|_{\eta=\eta_{1}}+\frac{d^{2}V_{2}(\eta)}{d\eta^{2}}\bigg|_{\eta=\eta_{1}}=-M_{1}c_{1}^{2}\left(\beta l\right)^{4}\frac{dV_{1}(\eta)}{d\eta}\bigg|_{\eta=\eta_{1}}$$
(18)

En $\eta = \eta_2$:

$$V_{2}(\eta_{2}) = V_{3}(\eta_{2})$$
(19)

$$\frac{V_{2}(\eta_{2}) = V_{3}(\eta_{2})}{\left.\frac{dV_{2}(\eta)}{d\eta}\right|_{\eta = \eta_{2}}} = \frac{dV_{3}(\eta)}{d\eta}\Big|_{\eta = \eta_{2}}$$
(19)
(20)

$$\frac{d^{3}V_{2}(\eta)}{d\eta^{3}}\bigg|_{\eta=\eta_{2}} - \frac{d^{3}V_{3}(\eta)}{d\eta^{3}}\bigg|_{\eta=\eta_{2}} = -M_{2}(\beta l)^{4}V_{2}(\eta_{2})$$
(21)

$$-\frac{d^{2}V_{2}(\eta)}{d\eta^{2}}\Big|_{\eta=\eta_{2}} + \frac{d^{2}V_{3}(\eta)}{d\eta^{2}}\Big|_{\eta=\eta_{2}} = -M_{2}c_{2}^{2}(\beta l)^{4}\frac{dV_{2}(\eta)}{d\eta}\Big|_{\eta=\eta_{2}}$$
(22)

En $\eta = 0$:

$$\frac{d^{3}V_{1}(\eta)}{d\eta^{3}}\Big|_{\eta=0} = -K_{1}V_{1}(0)$$
(23)

$$\frac{d^2 V_1(\eta)}{d\eta^2}\Big|_{\eta=0} = K_3 \frac{dV_1(\eta)}{d\eta}\Big|_{\eta=0}$$
(24)

En $\eta = 1$:

$$\frac{d^{3}V_{3}(\eta)}{d\eta^{3}}\Big|_{\eta=1} = K_{2}V_{3}(1)$$
(25)

$$\frac{d^{2}V_{3}(\eta)}{d\eta^{2}}\bigg|_{\eta=1} = K_{4} \frac{dV_{3}(\eta)}{d\eta}\bigg|_{\eta=1}$$
(26)

donde:

$$K_{1} = \frac{k_{1}l^{3}}{EI}, \quad K_{2} = \frac{k_{2}l^{3}}{EI}, \quad K_{3} = \frac{k_{3}l}{EI}, \quad K_{4} = \frac{k_{4}l}{EI}, \quad M_{i} = \frac{m_{i}}{\rho Al} \quad y \quad c_{i} = \frac{r_{gi}}{l}.$$
(27)

Luego reemplazando las expresiones (13) en las ecuaciones (15) a (26), se obtiene un sistema lineal homogéneo en las constantes C_i 's:

$$\begin{vmatrix} a_{1-1} & a_{1-2} & \dots & a_{1-12} \\ a_{2-1} & a_{2-2} & \dots & a_{2-12} \\ \ddots & \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots & \ddots \\ a_{12-1} & a_{12-2} & \dots & a_{12-12} \end{vmatrix} \begin{vmatrix} C_1 \\ C_2 \\ \vdots \\ \vdots \\ C_1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ C_1 \end{vmatrix} = (0)$$
(28)

cuya condición de no trivialidad, define la ecuación de frecuencias:

$$\det(\mathbf{A}) = 0 \tag{29}$$

donde A es la matriz de los coeficientes a_{i-j} del sistema y las raíces ($\beta_n l$) son los autovalores del problema.

La ecuación (29) es una función muy compleja de los autovalores $\beta_n l$. Una técnica numérica como el algoritmo de Newton-Raphson puede ser utilizada para encontrar las raíces.

2.4 Teoría de Rayleigh

La teoría de Rayleigh, desarrollada por Lord Rayleigh (1877), como se expresó anteriormente, tiene en cuenta el efecto de la inercia rotatoria de las secciones rectas de la viga.

Hipótesis:

- a) Deformaciones pequeñas.
- b) Las secciones transversales permanecen planas y perpendiculares al eje neutro durante el movimiento.
- c) Las fibras longitudinales no se comprimen mutuamente.

En el caso de la teoría vigas Rayleigh, la ecuación gobernante del sistema para los intervalos anteriormente mencionados $[0, \eta_1], (\eta_1, \eta_2] y (\eta_2, 1]$ resulta:

$$\frac{d^4V}{d\eta^4} + (\beta l)^4 r^2 \frac{d^2V}{d\eta^2} - (\beta l)^4 V = 0$$
(30)

donde $R = \sqrt{\frac{I}{A}}$ y su adimensionalización $r = \frac{R}{l}$.

La solución general de la ecuación diferencial (30) para el sistema mostrado en la Figura 1 es:

$$V_{1}(\eta) = C_{1} \operatorname{sen}(\alpha_{1}l\eta) + C_{2} \cos(\alpha_{1}l\eta) + C_{3} \operatorname{senh}(\alpha_{2}l\eta) + C_{4} \cosh(\alpha_{2}l\eta) \quad 0 \le \eta \le \eta_{1}$$

$$V_{2}(\eta) = C_{5} \operatorname{sen}(\alpha_{1}l\eta) + C_{6} \cos(\alpha_{1}l\eta) + C_{7} \operatorname{senh}(\alpha_{2}l\eta) + C_{8} \cosh(\alpha_{2}l\eta) \quad \eta_{1} < \eta \le \eta_{2}$$

$$V_{3}(\eta) = C_{9} \operatorname{sen}(\alpha_{1}l\eta) + C_{10} \cos(\alpha_{1}l\eta) + C_{11} \operatorname{senh}(\alpha_{2}l\eta) + C_{12} \cosh(\alpha_{2}l\eta) \quad \eta_{2} < \eta \le 1$$
(31)

donde

$$\alpha_{1} = \beta \sqrt{\frac{(\beta l)^{2} r^{2}}{2} + \frac{1}{2} \sqrt{(\beta l)^{4} r^{4} + 4}}$$

$$\alpha_{2} = \beta \sqrt{-\frac{(\beta l)^{2} r^{2}}{2} + \frac{1}{2} \sqrt{(\beta l)^{4} r^{4} + 4}}$$
(32)

En este caso los siguientes parámetros se definen como::

$$\theta(x) = \frac{dV}{dx}, \ M(x) = -EI\frac{d^2V}{dx^2}, \ Q(x) = -EI\left(\frac{d^3V}{dx^3} + \left(\beta l\right)^4 r^2 \frac{dV}{dx}\right)$$
(33)

Al reemplazar (33) en las ecuaciones (4) a (11), resulta un sistema donde: En $\eta = \eta_1$:

$$V_1(\eta_1) = V_2(\eta_1)$$
 (34)

$$\frac{dV_1(\eta)}{d\eta}\bigg|_{\eta=\eta_1} = \frac{dV_2(\eta)}{d\eta}\bigg|_{\eta=\eta_1}$$
(35)

$$\frac{d^{3}V_{1}(\eta)}{d\eta^{3}}\Big|_{\eta=\eta_{1}} - \frac{d^{3}V_{2}(\eta)}{d\eta^{3}}\Big|_{\eta=\eta_{1}} = -M_{1}(\beta l)^{4}V_{1}(\eta_{1})$$
(36)

$$-\frac{d^{2}V_{1}(\eta)}{d\eta^{2}}\Big|_{\eta=\eta_{1}} + \frac{d^{2}V_{2}(\eta)}{d\eta^{2}}\Big|_{\eta=\eta_{1}} = -M_{1}c_{1}^{2}\left(\beta l\right)^{4}\frac{dV_{1}(\eta)}{d\eta}\Big|_{\eta=\eta_{1}}$$
(37)

En $\eta = \eta_2$:

$$V_2(\eta_2) = V_3(\eta_2)$$
 (38)

$$V_{2}(\eta_{2}) = V_{3}(\eta_{2})$$

$$\frac{dV_{2}(\eta)}{d\eta}\Big|_{\eta=\eta_{2}} = \frac{dV_{3}(\eta)}{d\eta}\Big|_{\eta=\eta_{2}}$$

$$(38)$$

$$(39)$$

$$\frac{d^{3}V_{2}(\eta)}{d\eta^{3}}\Big|_{\eta=\eta_{2}} - \frac{d^{3}V_{3}(\eta)}{d\eta^{3}}\Big|_{\eta=\eta_{2}} = -M_{2}(\beta l)^{4}V_{2}(\eta_{2})$$
(40)

$$-\frac{d^{2}V_{2}(\eta)}{d\eta^{2}}\Big|_{\eta=\eta_{2}} + \frac{d^{2}V_{3}(\eta)}{d\eta^{2}}\Big|_{\eta=\eta_{2}} = -M_{2}c_{2}^{2}(\beta l)^{4}\frac{dV_{2}(\eta)}{d\eta}\Big|_{\eta=\eta_{2}}$$
(41)

En $\eta = 0$:

$$\left(\frac{d^{3}V_{1}(\eta)}{d\eta^{3}} + (\beta l)^{4} r^{2} \frac{dV_{1}(\eta)}{d\eta}\right)\Big|_{\eta=0} = -K_{1}V_{1}(0)$$
(42)

$$\frac{d^2 V_1(\eta)}{d\eta^2}\Big|_{\eta=0} = K_3 \frac{dV_1(\eta)}{d\eta}\Big|_{\eta=0}$$
(43)

En $\eta = 1$:

$$\left. \left(\frac{d^3 V_3(\eta)}{d\eta^3} + \left(\beta l \right)^4 r^2 \frac{d V_3(\eta)}{d\eta} \right) \right|_{\eta=1} = K_2 V_3(1)$$
(44)

$$\frac{d^2 V_3(\eta)}{d\eta^2}\Big|_{\eta=1} = -K_4 \frac{dV_3(\eta)}{d\eta}\Big|_{\eta=1}$$
(45)

Cabe aclarar que en las condiciones de continuidad (36) y (40) no se han incluido los términos de las derivadas primeras en la condición de corte a uno y otro lado de la sección, debido a que se simplifican por las condiciones de continuidad (35) y (39), respectivamente. Esto no sucedería si en ese lugar existiese un cambio de sección transversal.

Luego reemplazando la expresión (31) a las ecuaciones (34) a (45), se obtiene un sistema lineal homogéneo en las constantes C_i 's, similar a (28) y de la misma forma que para la teoría Bernoulli-Euler se obtiene la ecuación de frecuencias.

2.5 Teoría de Timoshenko

Los clásicos artículos publicados por Timoshenko en 1921, acerca del efecto de deformación por el esfuerzo al corte en las vibraciones transversales de vigas, han tenido enorme influencia en el desarrollo de la dinámica estructural en el siglo veinte.

Tres décadas después que Timoshenko dedujo su famosa ecuación, Mindlin (1951) obtuvo su teoría de placas vibrantes, lo cual constituye otro hito en la teoría dinámica de elementos estructurales.

Para el caso de viga Timoshenko, las ecuaciones gobernantes del sistema, independizadas del tiempo, son:

$$\frac{d^4V}{d\eta^4} + H\frac{d^2V}{d\eta^2} + FV = 0 \tag{46}$$

$$\frac{d^4\Psi}{d\eta^4} + H\frac{d^2\Psi}{d\eta^2} + F\Psi = 0$$
(47)

donde $H = (\beta l)^4 r^2 (1+\phi)$, $F = (\beta l)^4 ((\beta l)^4 r^4 \phi - 1)$, $\phi = \frac{E}{\kappa G}$ y κ es el coeficiente de corte, que depende de la sección transversal de la viga. Para el caso de materiales isótropos $G = \frac{E}{2(1+\nu)}$, por lo tanto $\phi = \frac{2(1+\nu)}{\kappa}$.

Por lo tanto si F < 0, es decir $(\beta l)^4 r^4 \phi < 1$ las soluciones para (46) y para (47) son:

$$V(\eta) = C_1 \operatorname{sen}(\alpha_1 l\eta) + C_2 \cos(\alpha_1 l\eta) + C_3 \operatorname{senh}(\alpha_2 l\eta) + C_4 \cosh(\alpha_2 l\eta)$$
(48)

$$\Psi(\eta) = \delta\left(\frac{C_2}{\alpha_1}\operatorname{sen}(\alpha_1 l\eta) - \frac{C_1}{\alpha_1}\cos(\alpha_1 l\eta)\right) + \varepsilon\left(\frac{C_4}{\alpha_2}\operatorname{senh}(\alpha_2 l\eta) + \frac{C_3}{\alpha_2}\cosh(\alpha_2 l\eta)\right)$$
(49)

con:

$$\alpha_1 = \sqrt{\frac{H}{2} + \frac{1}{2}\sqrt{H^2 - 4F}}$$
(50)

$$\alpha_2 = \sqrt{-\frac{H}{2} + \frac{1}{2}\sqrt{H^2 - 4F}}$$
(51)

Entonces la solución para el sistema planteado en la Figura 1 queda de la forma: Para $0 \leq \eta \leq \eta_1$

$$V_1(\eta) = C_1 \operatorname{sen}(\alpha_1 l\eta) + C_2 \cos(\alpha_1 l\eta) + C_3 \operatorname{senh}(\alpha_2 l\eta) + C_4 \cosh(\alpha_2 l\eta)$$
(52a)

$$\Psi_{1}(\eta) = \delta\left(\frac{C_{2}}{\alpha_{1}}\operatorname{sen}(\alpha_{1}l\eta) - \frac{C_{1}}{\alpha_{1}}\cos(\alpha_{1}l\eta)\right) + \varepsilon\left(\frac{C_{4}}{\alpha_{2}}\operatorname{senh}(\alpha_{2}l\eta) + \frac{C_{3}}{\alpha_{2}}\cosh(\alpha_{2}l\eta)\right)$$
(52b)

para $\eta_1 < \eta \leq \eta_2$

$$V_2(\eta) = C_5 \operatorname{sen}(\alpha_1 l\eta) + C_6 \cos(\alpha_1 l\eta) + C_7 \operatorname{senh}(\alpha_2 l\eta) + C_8 \cosh(\alpha_2 l\eta)$$
(52c)

$$\Psi_{2}(\eta) = \delta\left(\frac{C_{6}}{\alpha_{1}}\operatorname{sen}(\alpha_{1}l\eta) - \frac{C_{5}}{\alpha_{1}}\cos(\alpha_{1}l\eta)\right) + \varepsilon\left(\frac{C_{8}}{\alpha_{2}}\operatorname{senh}(\alpha_{2}l\eta) + \frac{C_{7}}{\alpha_{2}}\cosh(\alpha_{2}l\eta)\right)$$
(52d)

para $\eta_2 \! < \! \eta \! \leq \! 1$

$$V_3(\eta) = C_9 \operatorname{sen}(\alpha_1 l\eta) + C_{10} \cos(\alpha_1 l\eta) + C_{11} \operatorname{senh}(\alpha_2 l\eta) + C_{12} \cosh(\alpha_2 l\eta)$$
(52e)

$$\Psi_{3}(\eta) = \delta\left(\frac{C_{10}}{\alpha_{1}}\operatorname{sen}(\alpha_{1}l\eta) - \frac{C_{9}}{\alpha_{1}}\cos(\alpha_{1}l\eta)\right) + \varepsilon\left(\frac{C_{12}}{\alpha_{2}}\operatorname{senh}(\alpha_{2}l\eta) + \frac{C_{11}}{\alpha_{2}}\cosh(\alpha_{2}l\eta)\right)$$
(52f)

Los siguientes parámetros quedan definidos como:

$$\theta(x) = \Psi(x), \ M(x) = -EI \frac{d\Psi}{dx}, \ Q(x) = GA\kappa \left(\frac{dV}{dx} - \Psi\right)$$
 (53)

Entonces, reemplazando (53) en las ecuaciones (4) a (11), estas quedan definidas de la siguiente manera:

En $\eta = \eta_1$:

$$V_1(\eta_1) = V_2(\eta_1) \tag{54}$$

$$\Psi_1(\eta_1) = \Psi_2(\eta_1) \tag{55}$$

$$\left. \left(\frac{dV_1(\eta)}{d\eta} - \Psi_1(\eta) \right) \right|_{\eta = \eta_1} - M_1(\beta l)^4 r^2 \phi V_1(\eta) \Big|_{\eta = \eta_1} = \left(\frac{dV_2(\eta)}{d\eta} - \Psi_2(\eta) \right) \Big|_{\eta = \eta_1}$$
(56)

$$\frac{d\Psi_1(\eta)}{d\eta}\bigg|_{\eta=\eta_1} - M_1 c_1^2 \left(\beta l\right)^4 \Psi_1(\eta)\bigg|_{\eta=\eta_1} = \frac{d\Psi_2(\eta)}{d\eta}\bigg|_{\eta=\eta_1}$$
(57)

En $\eta = \eta_2$:

$$V_2(\eta_2) = V_3(\eta_2)$$
 (58)

$$\Psi_2(\eta_2) = \Psi_3(\eta_2) \tag{59}$$

$$\left(\frac{dV_{2}(\eta)}{d\eta} - \Psi_{2}(\eta)\right)\Big|_{\eta=\eta_{2}} - M_{2}(\beta l)^{4} r^{2} \phi V_{2}(\eta)\Big|_{\eta=\eta_{2}} = \left(\frac{dV_{3}(\eta)}{d\eta} - \Psi_{3}(\eta)\right)\Big|_{\eta=\eta_{2}}$$
(60)

$$\frac{d\Psi_{2}(\eta)}{d\eta}\Big|_{\eta=\eta_{2}} - M_{2}c_{2}^{2}\left(\beta l\right)^{4}\Psi_{2}(\eta)\Big|_{\eta=\eta_{2}} = \frac{d\Psi_{3}(\eta)}{d\eta}\Big|_{\eta=\eta_{2}}$$
(61)

En $\eta = 0$:

$$\left(\frac{dV_{1}(\eta)}{d\eta} - \Psi_{1}(\eta)\right)\Big|_{\eta=0} = K_{1}\phi r^{2}V_{1}(0)$$
(62)

$$\left. \frac{d\Psi_1(\eta)}{d\eta} \right|_{\eta=0} = K_3 \Psi_1(0) \tag{63}$$

En $\eta = 1$:

$$\left. \left(\frac{dV_3(\eta)}{d\eta} - \Psi_3(\eta) \right) \right|_{\eta=1} = -K_2 \phi r^2 V_3(1)$$
(64)

$$\left. \frac{d\Psi_3(\eta)}{d\eta} \right|_{\eta=1} = -K_4 \Psi_3(1) \tag{65}$$

Reemplazando las funciones (52), en las ecuaciones (54) a (65), se llega a un sistema homogéneo en las constantes C_i , de la forma (28), cuya solución no trivial del sistema es la ecuación (29).

3 CASOS PARTICULARES

Como se ha dicho, asignando valores particulares a las constantes de los vínculos elásticos puede obtenerse cualquier condición de vínculos extremos para la viga.

3.1 Viga biempotrada

Este caso se consigue haciendo tender a infinito las constantes de resortes traslacionales y rotacionales:

$$K_1 \to \infty; \ K_2 \to \infty; \ K_3 \to \infty; \ K_4 \to \infty$$
 (66)

de modo que no haya desplazamiento y giro en los extremos de la viga.

En las Tablas 1 y 2 se muestran los coeficientes de frecuencia $\Omega = (\beta l)^2$ para la viga biempotrada con una masa ubicada en la posición central, calculados con las diferentes teorías.

M_c	Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
		Berr	noulli-Euler		
0.10	19.9795	61.6728	112.122	199.859	279.070
0.25	17.4761	61.6728	105.323	199.859	267.071
0.50	14.8000	61.6728	99.9981	199.859	259.205
1.00	11.8182	61.6728	95.7568	199.859	253.731
		Rayle	igh $r = 0.01$		
0.10	19.9696	61.5313	111.660	198.166	275.931
0.25	17.4694	61.5313	104.950	198.166	264.314
0.50	14.7959	61.5313	99.6847	198.166	256.668
1.00	11.8161	61.5313	95.4851	198.166	251.331
		Rayle	igh $r = 0.05$		
0.10	19.7369	58.3969	102.046	167.179	222.485
0.25	17.3122	58.3969	97.0222	167.179	216.178
0.50	14.6998	58.3969	92.9332	167.179	211.708
1.00	11.7669	58.3969	89.5731	167.179	208.414
	Ti	moshenko $r = 0$	0.01, $\kappa = 5/6$ y	v = 0.3	
0.10	19.8220	60.5189	108.618	190.135	260.538
0.25	17.3424	60.5189	102.056	190.135	249.197
0.50	14.6889	60.5189	96.8879	190.135	241.696
1.00	11.7305	60.5189	92.7610	190.135	236.462
	Ti	moshenko $r = 0$	0.05, $\kappa = 5/6$ y	v = 0.3	
0.10	16.9205	44.3300	70.2555	108.458	133.588
0.25	14.8595	44.3300	66.0083	108.458	126.272
0.50	12.6144	44.3300	62.4708	108.458	121.381
1.00	10.0845	44.3300	59.5887	108.458	118.078

Tabla 1: Primeros cinco coeficientes de frecuencia para una viga bi-empotrada con una masa M_c en la posición central y sin considerar su inercia rotacional (c = 0)

En la Tabla 1, se muestran los coeficientes de frecuencia $\Omega = (\beta l)^2$ para la viga biempotrada con una masa adosada en su sección central, de magnitud creciente y de la que no se tiene en cuenta su inercia rotatoria, utilizando las distintas teorías.

Obsérvese que al considerar solo la inercia traslatoria de la masa, las frecuencias correspondientes a modos altimétricos (con nodo central): segunda y cuarta, no modifican su valor con el incremento de M.

En la Tabla 2 se ha incorporado la inercia rotatoria de la masa, asignándosele valores crecientes del radio de giro de la misma, para un valor fijo de masa.

Como es lógico la inercia rotatoria de la masa centrada no incide en los valores de frecuencia de modos simétricos (primero, tercero y quinto)

С	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		Berr	noulli-Euler		
0.00	11.8182	61.6728	95.7568	199.859	253.731
0.01	11.8182	61.2701	95.7568	195.743	253.731
0.05	11.8182	52.0167	95.7568	126.731	253.731
0.10	11.8182	35.4137	95.7568	99.1230	250.047
		Rayle	righ $r = 0.01$		
0.00	11.8161	61.5313	95.4851	198.166	251.331
0.01	11.8161	61.1312	95.4851	194.156	251.331
0.05	11.8161	51.9338	95.4851	126.401	251.331
0.10	11.8161	35.3915	95.4851	98.8998	247.806
		Rayle	r = 0.05		
0.00	11.7669	58.3969	89.5731	167.179	208.414
0.01	11.7669	58.0511	89.5731	164.818	208.414
0.05	11.7669	50.0512	89.5731	119.005	208.414
0.10	11.7669	34.8665	89.5731	93.9785	207.358
	Ti	moshenko $r = 0$	0.01, $\kappa = 5/6$ y	v = 0.3	
0.00	11.7305	60.5189	92.7610	190.135	236.462
0.01	11.7305	60.1436	92.7610	186.776	236.462
0.05	11.7305	51.3923	92.7610	123.478	236.462
0.10	11.7305	35.1746	92.7610	96.1275	232.877
	Ti	moshenko $r = 0$	0.05, $\kappa = 5/6$ y	v = 0.3	
0.00	10.0845	44.3300	59.5887	108.458	118.078
0.01	10.0845	44.2016	59.5887	108.123	118.078
0.05	10.0845	40.7646	59.5887	87.3739	118.078
0.10	10.0845	30.6671	59.5887	63.0652	118.078

Tabla 2: Primeros cinco coeficientes de frecuencia para una viga bi-empotrada con una masa en la posición central $M_c = 1$ y considerando distintas magnitudes de su inercia rotacional.

Tabla 3: Primeros cinco coeficientes de frecuencia para una viga bi-empotrada Bernoulli-Euler con dos masas adosadas.

$\eta_1 = 0.25$	у <i>η</i> ₂ =0.75	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
$M_1 =$	$M_2 = 0$	22.3733	61.6728	120.903	199.859	298.556
$M_1 = M_2 = 0.01$	$c_1 = c_2 = 0$	22.2082	60.4224	118.719	199.233	297.761
	$c_1 = c_2 = 0.01$	22.2077	60.4218	118.714	199.163	297.606
	$c_1 = c_2 = 0.05$	22.1955	60.4084	118.589	197.460	293.869
	$c_1 = c_2 = 0.1$	22.1572	60.3660	118.188	192.105	281.932
	$c_1 = c_2 = 0$	20.8552	51.7112	104.748	195.197	292.917
M = M = 0.1	$c_1 = c_2 = 0.01$	20.8511	51.7081	104.705	194.525	291.437
$M_1 - M_2 = 0.1$	$c_1 = c_2 = 0.05$	20.7517	51.6309	103.624	178.290	255.105
	$c_1 = c_2 = 0.1$	20.4459	51.3673	99.5908	138.162	184.674
	$c_1 = c_2 = 0$	16.7883	34.7907	83.6373	189.136	286.484
$M_1 = M_2 = 0.5$	$c_1 = c_2 = 0.01$	16.7780	34.7867	83.4590	186.052	279.485
	$c_1 = c_2 = 0.05$	16.5345	34.6839	78.7052	126.420	168.846
	$c_1 = c_2 = 0.1$	15.8049	34.2873	63.6868	73.1019	117.445

Las Tablas 3 a 7 indican los valores de los primeros cinco coeficientes de frecuencias naturales de vibración de una viga biempotrada con dos masas utilizando las distintas teorías de vigas. Se consideran distintas magnitudes de masa y de su inercia rotatoria, así como el radio de giro adimensionalizado r de la viga.

$\eta_1 = 0.25$	y η ₂ =0.75	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
$M_1 =$	$M_2 = 0$	22.3595	61.5313	120.310	198.166	294.691
	$c_1 = c_2 = 0$	22.1948	60.2894	118.154	197.548	293.944
M = M = 0.01	$c_1 = c_2 = 0.01$	22.1943	60.2888	118.149	197.479	293.795
$M_1 - M_2 - 0.01$	$c_1 = c_2 = 0.05$	22.1820	60.2754	118.026	195.820	290.186
	$c_1 = c_2 = 0.1$	22.1439	60.2332	117.631	190.603	278.667
	$c_1 = c_2 = 0$	20.8442	51.6283	104.340	193.560	289.388
M = M = 0.1	$c_1 = c_2 = 0.01$	20.8401	51.6252	104.298	192.905	287.954
$M_1 - M_2 - 0.1$	$c_1 = c_2 = 0.05$	20.7408	51.5482	103.232	177.074	252.792
	$c_1 = c_2 = 0.1$	20.4355	51.2855	99.2599	137.681	183.860
	$c_1 = c_2 = 0$	16.7827	34.7659	83.4030	187.573	283.312
$M_1 = M_2 = 0.5$	$c_1 = c_2 = 0.01$	16.7725	34.7618	83.2264	184.565	276.512
	$c_1 = c_2 = 0.05$	16.5292	34.6592	78.5188	126.041	168.265
	$c_1 = c_2 = 0.1$	15.8002	34.2632	63.6153	73.0441	117.126

Tabla 4: Primeros cinco coeficientes de frecuencia para una viga bi-empotrada Rayleigh (r=0.01) con dosmasas adosadas.

Tabla 5: Primeros cinco coeficientes de frecuencia para una viga bi-empotrada Rayleigh (*r*=0.05) con dos masas adosadas.

$\eta_1 = 0.25$	у <i>η</i> ₂ =0.75	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
$M_1 =$	$M_2 = 0$	22.0367	58.3969	108.248	167.179	231.730
$M_1 = M_2 = 0.01$	$c_1 = c_2 = 0$	21.8793	57.3341	106.609	166.695	231.518
	$c_1 = c_2 = 0.01$	21.8788	57.3336	106.605	166.654	231.440
	$c_1 = c_2 = 0.05$	21.8671	57.3216	57.3216	165.677	229.565
	$c_1 = c_2 = 0.1$	21.8304	57.2836	106.258	162.596	223.646
	$c_1 = c_2 = 0$	20.5850	49.7484	95.8014	163.568	230.200
M - M = 0.1	$c_1 = c_2 = 0.01$	20.5810	49.7455	95.7706	163.179	229.428
$M_1 - M_2 = 0.1$	$c_1 = c_2 = 0.05$	20.4851	49.6738	94.9967	153.685	210.713
	$c_1 = c_2 = 0.1$	20.1900	49.4305	92.1576	127.213	166.787
	$c_1 = c_2 = 0$	16.6515	34.1840	78.3210	158.834	228.330
M - M - 0.5	$c_1 = c_2 = 0.01$	16.6414	34.1800	78.1785	157.020	224.512
$M_1 = M_2 = 0.5$	$c_1 = c_2 = 0.05$	16.4030	34.0802	74.4052	117.672	155.608
	$c_1 = c_2 = 0.1$	15.6884	33.6977	61.9387	71.6770	110.295

$\eta_1 = 0.25 \text{ y} \eta_2 = 0.75$		Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
$M_1 =$	$M_2 = 0$	22.1893	60.5189	117.002	190.135	278.460
	$c_1 = c_2 = 0$	22.0250	59.2967	114.937	189.600	277.647
$M_1 = M_2 = 0.01$	$c_1 = c_2 = 0.01$	22.0245	59.2962	114.932	189.540	277.533
	$c_1 = c_2 = 0.05$	22.0127	59.2847	114.814	188.117	274.777
	$c_1 = c_2 = 0.1$	21.9760	59.2482	114.436	183.607	265.779
	$c_1 = c_2 = 0$	20.6781	50.7649	101.616	186.085	272.601
$M_{1} = M_{2} = 0.1$	$c_1 = c_2 = 0.01$	20.6741	50.7622	101.575	185.521	271.518
$m_1 - m_2 - 0.1$	$c_1 = c_2 = 0.05$	20.5788	50.6959	100.555	171.632	243.365
	$c_1 = c_2 = 0.1$	20.2850	50.4694	96.7526	134.935	179.764
	$c_1 = c_2 = 0$	16.6306	34.1509	81.2801	180.615	265.729
$M_1 = M_2 = 0.5$	$c_1 = c_2 = 0.01$	16.6208	34.1474	81.1118	178.011	260.641
	$c_1 = c_2 = 0.05$	16.3882	34.0596	76.6169	123.830	164.357
	$c_1 = c_2 = 0.1$	15.6882	33.7199	62.1899	71.7884	114.047

Tabla 6: Primeros cinco coeficientes de frecuencia para una viga bi-empotrada Timoshenko $(r = 0.01, \kappa = 5/6, \nu = 0.3)$ con dos masas adosadas.

Tabla 7: Primeros cinco coeficientes de frecuencia para una viga bi-empotrada Timoshenko $(r = 0.05, \kappa = 5/6, \nu = 0.3)$ con dos masas adosadas.

$\eta_1 = 0.25 \text{ y} \eta_2 = 0.75$		Ω_1	Ω_2	Ω_{3}	Ω_4	Ω_5
$M_1 =$	$M_2 = 0$	18.8371	44.3300	75.0768	108.458	143.485
	$c_1 = c_2 = 0$	18.6882	43.4728	74.0437	108.387	142.629
$M_1 = M_2 = 0.01$	$c_1 = c_2 = 0.01$	18.6879	43.4728	74.0416	108.378	142.621
	$c_1 = c_2 = 0.05$	18.6826	43.4726	73.9895	108.152	142.418
	$c_1 = c_2 = 0.1$	18.6661	43.4718	73.8234	107.414	141.728
	$c_1 = c_2 = 0$	17.4652	37.3383	66.7913	107.843	136.790
M - M = 0.1	$c_1 = c_2 = 0.01$	17.4635	37.3370	66.7734	107.751	136.711
$M_1 - M_2 = 0.1$	$c_1 = c_2 = 0.05$	17.4216	37.3382	66.3250	105.316	134.392
	$c_1 = c_2 = 0.1$	17.2902	37.3330	64.6832	94.9161	120.584
	$c_1 = c_2 = 0$	13.8216	25.0446	54.5438	106.565	128.506
$M_1 = M_2 = 0.5$	$c_1 = c_2 = 0.01$	13.8177	25.0446	54.4728	106.141	128.143
	$c_1 = c_2 = 0.05$	13.7236	25.0434	52.5545	90.6044	110.150
	$c_1 = c_2 = 0.1$	13.4245	25.0386	45.0141	56.0116	76.2813

3.2 A continuación y a titulo demostrativo se analizan los casos de la viga simplemente apoyada y de la viga en voladizo;

3.2.a Viga simplemente apoyada

Aquí la rigidez traslacional se toma infinita en ambos extremos de modo que no haya desplazamiento transversal y las constantes de rigidez rotacional nulas:

$$K_1 \to \infty; \ K_2 \to \infty; \ K_3 = 0; \ K_4 = 0$$

$$(67)$$

Los primeros cinco coeficientes de frecuencia Ω se indican en las Tablas 8 y 9 para la viga con una masa en la posición central.

Tabla 8: Primeros cinco coeficientes de frecuencia para una viga simplemente apoyada con una masa M_c en la posición central y sin considerar su inercia rotacional (c = 0)

M_c	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5			
	Bernoulli-Euler							
0.10	9.00782	39.4784	82.0754	157.914	230.167			
0.25	8.05187	39.4784	76.4800	157.914	219.388			
0.50	6.96598	39.4784	71.8155	157.914	212.042			
1.00	5.67960	39.4784	67.8884	157.914	206.789			
		Rayle	r = 0.01					
0.10	9.00412	39.4007	81.7661	156.681	227.732			
0.25	8.04923	39.4007	76.2289	156.681	217.260			
0.50	6.96427	39.4007	71.6058	156.681	210.096			
1.00	5.67868	39.4007	67.7085	156.681	204.960			
		Rayle	r = 0.05					
0.10	8.91668	37.6635	75.2514	133.711	185.596			
0.25	7.98665	37.6635	70.8539	133.711	179.567			
0.50	6.92370	37.6635	67.0606	133.711	175.151			
1.00	5.65667	37.6635	63.7741	133.711	171.819			
	Т	imoshenko $r = 0$	0.01, $\kappa = 5/6$ y	v = 0.3				
0.10	8.99023	39.1621	80.6498	153.067	219.541			
0.25	8.03658	39.1621	75.1436	153.067	209.122			
0.50	6.95300	39.1621	70.5405	153.067	201.980			
1.00	5.66911	39.1621	66.6606	153.067	196.868			
	Т	imoshenko $r = 0$	0.05, $\kappa = 5/6$ y	v = 0.3				
0.10	8.60210	33.5494	60.7571	101.384	128.755			
0.25	7.69780	33.5494	56.3603	101.384	121.321			
0.50	6.66425	33.5494	52.5703	101.384	116.247			
1.00	5.43500	33.5494	49.3563	101.384	112.762			

С	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		Ber	rnoulli-Euler		
0.00	5.67960	39.4784	67.8884	157.914	206.789
0.01	5.67960	39.3227	67.8884	155.369	206.789
0.05	5.67960	35.7280	67.8884	106.016	206.789
0.10	5.67960	27.5431	67.8884	75.3848	204.040
		Rayl	eigh $r = 0.01$		
0.00	5.67868	39.4007	67.7085	156.681	204.960
0.01	5.67868	39.2459	67.7085	154.196	204.960
0.05	5.67868	35.6714	67.7085	105.715	204.960
0.10	5.67868	27.5201	67.7085	75.2350	202.348
		Rayl	eigh $r = 0.05$		
0.00	5.65667	37.6635	63.7741	133.711	171.819
0.01	5.65667	37.5283	63.7741	132.174	171.819
0.05	5.65667	34.3884	63.7741	99.0089	171.819
0.10	5.65667	26.9812	63.7741	71.9127	171.443
		Timoshenko $r =$	0.01, $\kappa = 5/6$	y $v = 0.3$	
0.00	5.66911	39.1621	66.6606	153.067	196.868
0.01	5.66911	39.0119	66.6606	150.848	196.868
0.05	5.66911	35.5253	66.6606	104.4697	196.868
0.10	5.66911	27.4671	66.6606	74.0842	194.098
		Timoshenko $r =$	0.05, $\kappa = 5/6$	y $v = 0.3$	
0.00	5.43500	33.5494	49.3563	101.384	112.762
0.01	5.43500	33.4737	49.3563	101.014	112.762
0.05	5.43500	31.5674	49.3563	82.0020	112.762
0.10	5.43500	25.8167	49.3563	55.4919	109.838

Tabla 9: Primeros cinco coeficientes de frecuencia para una viga simplemente apoyada con una masa en la
posición central $M_c = 1$ y considerando su inercia rotacional.

3.2.b Viga en voladizo

Este caso tiene el extremo $\eta = 0$ empotrado y el extremo $\eta = 1$ libre, por lo que deberemos hacer:

$$K_1 \to \infty; \ K_2 = 0; \ K_3 \to \infty; \ K_4 = 0$$
 (68)

Los resultados se indican en las Tablas 10 y 11 para una viga con una masa en el extremo libre

Tabla 10: Primeros cinco coeficientes de frecuencia para una viga en voladizo con una masa en el extremo libre y sin considerar su inercia rotacional (c = 0)

М	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		Berr	noulli-Euler		
0.10	2.96784	19.3558	55.5182	110.708	185.346
0.25	2.47669	17.8516	53.0164	107.546	181.717
0.50	2.01630	16.9014	51.7009	106.058	180.123
1.00	1.55730	16.2501	50.8958	105.198	179.232
		Rayle	igh $r = 0.01$		
0.10	2.96734	19.3336	55.3600	110.102	183.680
0.25	2.47640	17.8354	52.8842	107.004	180.169
0.50	2.01614	16.8885	51.5806	105.542	178.621
1.00	1.55722	16.2391	50.7821	104.697	177.755
		Rayle	igh $r = 0.05$		
0.10	2.95533	18.8222	51.9355	98.0441	153.687
0.25	2.46930	17.4606	49.9847	96.0487	151.897
0.50	2.01227	16.5869	48.9243	95.0583	151.050
1.00	1.55543	15.9817	48.2621	94.4690	150.558
	Т	imoshenko $r = 0$	0.01, $\kappa = 5/6$ y	v = 0.3	
0.10	2.96547	19.2460	54.7529	107.886	177.893
0.25	2.47499	17.7576	52.3098	104.857	174.497
0.50	2.01507	16.8160	51.0214	103.425	172.997
1.00	1.55644	16.1700	50.2317	102.596	172.156
	Т	imoshenko $r = 0$	0.05, $\kappa = 5/6$ y	v = 0.3	
0.10	2.91055	17.0881	42.9720	74.2865	108.590
0.25	2.43527	15.8885	41.3008	72.5375	106.876
0.50	1.98635	15.1074	40.3738	71.6557	106.056
1.00	1.53636	14.5623	39.7905	71.1294	105.580

С	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
		Berr	noulli-Euler		
0.00	1.55730	16.2501	50.8958	105.198	179.232
0.01	1.55716	16.2171	50.6037	103.954	175.507
0.05	1.55388	15.4307	43.2558	78.0056	130.346
0.10	1.54368	13.2396	32.0696	66.8287	124.416
		Rayle	igh $r = 0.01$		
0.00	1.55722	16.2391	50.7821	104.697	177.755
0.01	1.55709	16.2062	50.4919	103.470	174.126
0.05	1.55380	15.4213	43.1930	77.8269	129.730
0.10	1.54360	13.2339	32.0470	66.6770	123.802
		Rayle	igh $r = 0.05$		
0.00	1.55543	15.9817	48.2621	94.4690	150.558
0.01	1.55529	15.9502	48.0136	93.5755	148.414
0.05	1.55202	15.2000	41.7549	73.8474	117.269
0.10	1.54185	13.1001	31.5156	63.3330	111.370
	Ti	moshenko $r = 0$	0.01, $\kappa = 5/6$ y	v = 0.3	
0.00	1.55644	16.1700	50.2317	102.596	172.156
0.01	1.55631	16.1377	49.9546	101.473	169.000
0.05	1.55303	15.3644	42.8965	76.7630	126.295
0.10	1.54286	13.2006	31.8515	65.6188	120.433
	Ti	moshenko $r = 0$	0.05, $\kappa = 5/6$ y	v = 0.3	
0.00	1.53636	14.5623	39.7905	71.1294	105.580
0.01	1.53623	14.5399	39.6791	70.8617	105.124
0.05	1.53315	13.9956	36.3630	59.3457	82.2777
0.10	1.52359	12.3490	27.9155	48.5696	77.3632

Tabla 11: Primeros cinco coeficientes de frecuencia para una viga en voladizo con una masa en el extremo libre M = 1 considerando la inercia rotacional de la misma.

3.3 Viga continua

Entre la cantidad de variables que ofrece este modelo, indicamos aquí uno de los tantos problemas que pueden resolverse, ver Figura 3.

Figura 3: Viga continua.

Para esto se deben tomar los siguientes parámetros:

$$K_1 \to \infty; \ K_2 \to \infty; \ K_3 = 0; \ K_4 = 0; \ M_1 \to \infty; \ M_2 \to \infty; \ c_1 = 0; \ c_2 = 0$$
 (69)

donde los subíndices numéricos corresponden a la Figura 1.

Los coeficientes de frecuencia se indican en las Tabla 12 para una disposición $\eta_1=0.25$ y $\eta_2=0.75$ y para $\eta_1=0.25$ y $\eta_2=0.5$.

	Tipo de viga	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5
	Bernoulli-Euler	61.6728	157.914	199.859	246.691	416.991
m = 0.25 m	Rayleigh $r = 0.01$	61.5313	156.680	198.168	244.450	409.362
$\eta_1 = 0.23 \text{ y}$	Rayleigh $r = 0.05$	58.3968	133.710	167.180	203.933	299.408
$\eta_2 = 0.75$	Timoshenko [*] $r = 0.01$	60.5189	153.066	190.134	229.735	380.426
	Timoshenko [*] $r = 0.05$	44.3300	101.383	108.458	114.071	179.375
	Bernoulli-Euler	51.4242	157.914	189.725	276.952	394.179
m = 0.25 u	Rayleigh $r = 0.01$	51.3152	156.680	188.159	274.174	387.358
$\eta_1 = 0.25 \text{ y}$ $\eta_2 = 0.5$	Rayleigh $r = 0.05$	48.8886	133.710	159.335	224.553	287.950
	Timoshenko [*] $r = 0.01$	50.6177	153.066	180.935	256.029	361.662
	Timoshenko [*] $r = 0.05$	39.0454	101.383	105.822	120.734	178.022

Tabla 12: Viga continua, primeros cinco coeficientes de frecuencia

4 CONCLUSIONES

Se ha obtenido la solución analítica exacta de un problema de aplicación tecnológica recurriendo a las tres teorías más difundidas para estudiar la vibración de vigas.

Obviamente, a medida que las distintas teorías son más complejas y se tienen en cuenta nuevos parámetros de deformación, como la inercia a la rotación de la viga y su deformación por corte los valores de frecuencia natural bajan.

Como es sabido, la deformación por cizalladura constituye la conexión más importante.

La conveniencia de aplicar la teoría más sencilla o la necesidad de recurrir a teorías más exactas ha sido largamente estudiada en la vibración de vigas sin masas adosadas.

Ahora bien, la presencia de las masas provoca una disminución de todas las frecuencias naturales del sistema debido a la energía cinética incorporada al sistema vibrante.

En consecuencia, es de interés determinar si se modifican los criterios que rigen la aplicación de las distintas teorías en el caso de vigas desnudas.

Observando los resultados de la presente investigación, se nota que con el incremento de las magnitudes de las masas o de sus inercias rotatorias disminuyen las diferencias relativas entre las diversas teorías.

No obstante, resulta claro la necesidad de aplicar la Teoría de Timoshenko en el caso de vigas de poca esbeltez (ver el caso r = 0.05 en todas las Tablas) lo que sucede aún en el caso estático.

En cuanto a las vigas esbeltas, la consideración de la inercia rotatoria (Teoría de Rayleigh) no tiene incidencia significativa en casi ningún caso. Prácticamente coincide con los valores de la Teoría de Bernoulli – Euler (alcanza a superar el 1% sólo en algunos casos para la quinta frecuencia).

En lo que hace a la Teoría de Timoshenko, su utilización es recomendable a partir de la tercera frecuencia natural.

5 AGRADECIMIENTOS.

El presente trabajo ha sido auspiciado por la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur, por el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y por la Agencia Nacional de Promoción Científica y Tecnológica

^{*} Para esos ejemplos se tomó $\kappa = 5/6$ y $\nu = 0.3$

(ANPCYT).

REFERENCIAS

- Bernoulli, D. Letters to Euler, Basel, 1735. Referencia extraida de Vibration of shells and plates. Werner Soedel. Marcel Dekker, INC. New York, (1981).
- Bruch, Jr., J.C. y Mitchell, T,P. Vibrations of a mass-loaded clamped-free Timoshenko beam. *Journal of Sound and Vibration* 114(2), pp. 341-345. (1987).
- Chang C. H., Free vibration of a simply supported beam carrying a rigid mass at the middle, *Journal of Sound and Vibration* 237(4) 733-744 (2000).
- Euler, L. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Berlin, 1744. Referencia extraida de *Vibration of shells and plates*. Werner Soedel. Marcel Dekker, Inc. New York, (1981).
- Han, S.M., Benaroya, H. y Wei, T., Dynamics of transversely vibrating beams using four engineering theories. *Journal of Sound and Vibration* 225(5), 935-988. (1999).
- Laura, P.A.A., Filipich, C.P. y Cortínez, V.H.. Vibrations of beams and plates carrying concentrated masses. *Journal of Sound and Vibration* 117(3), 459-465. (1987).
- Maiz, S., Bambill, D.V., Rossit, C.A. y Laura, P.A.A.. Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: exact solution *Journal of Sound and Vibration* 303 (3-5), 895–908, (2007).
- Mindlin R. D. Influence of the rotatory inertia and shear on flexural motion of isotropic elastic plates, *Journal of Applied Mechanics (Trans. ASME)*, 73, 31-38, (1951).
- Lord Rayleigh, The Theory of Sound, London, Macmillan & Co. (1877).
- Rossit, C.A. y Laura, P.A.A.. Transverse normal modes of vibration of a cantilever Timoshenko beam with a mass elastically mounted at the free end". *The Journal of the Acoustical Society of America* 110(6), 2837.2840. (2001).
- Timoshenko S. P. "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philosophical Magazine, 41, pp. 744-746, (1921)
- Wu, J.S. y Hsu, S.H.. A unified approach for the free vibration analyses of an elastically supported inmersed uniform beam carrying an eccentric tip mass with rotary inertia. *Journal of Sound and Vibration* 291(3-5), pp. 1122-114. (2006).
- Wu, J.S. y Hsu, S.H.. The discrete methods for free vibration analyses of an inmersed beam carrying an eccentric tip mass with rotary inertia. *Ocean Engineering*, 34(1), 54-68. (2007).