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Abstract. Integrated Motor Propulsors (IMP) are being considered for the propulsion system of future 
underwater vehicles. A key issue is the reduction of IMP mechanical vibration transmitted to the 
vehicle. To this end, vibration isolation of the IMP is a potential approach to reduce these vibrations.  
However, the isolation of the IMP from the vehicle body can potentially lead to a dynamic instability 
problem of the system. Coupled-mode flutter of aircraft wings is an example of such dynamic 
instability caused by the interaction of a flow with a flexible structure. For the particular case of the 
IMP, the instability occurs because the thrust generated by the IMP creates a static load that is always 
aligned with one of the IMP axes which is connected to the vehicle’s body through a compliant mount. 
This results in a following force acting on a flexible system much like a loose garden hose. The 
objective of this work is to develop the theoretical formulation to analyze the dynamic stability of soft 
mounted IMP systems, and to develop numerical tools and software to perform numerical simulations 
of the dynamic stability of soft mounted IMP systems taking into account the external fluid-loading 
effects. The approach here was to develop a generic, closed form modeling tool of the isolated IMP 
system to determine the dynamic stability of the system. The model includes the most important 
system parameters, e.g. IMP dynamic properties, isolation properties, fluid loading, and so forth. The 
formulation was numerically implemented in a computer code and examples will be presented. The 
stability of the system can be determined by inspection of the time history responses and/or an 
eigenvalue analysis, e.g. coalescence of natural frequencies. The data for these examples do not 
correspond to any particular IMP. However, the tool developed here can be used to analyze practical 
cases. 
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1 INTRODUCTION 

Integrated Motor Propulsors (IMP) are electric integrated thruster devices being 
considered for the propulsion system of underwater vehicles for military, industrial, and 
scientific applications (Brown et.al., 1989; Abu Sharkh et.al., 2004). A key issue is the 
reduction of IMP mechanical vibration transmitted to the vehicle.  To this end, vibration 
isolation of the IMP is a potential approach to reduce these vibrations.  However, the isolation 
of the IMP from the vehicle body can potentially lead to a dynamic instability problem of the 
system (Rocard and Meyer, 1958; Xie, 2006). Flutter of aircraft wings is an example of 
instability caused by the interaction of a flow with a flexible structure (Milne-Thomson, 
1958). 

In the present situation, the instability occurs because the thrust generated by the IMP 
creates a static load that is always aligned with the IMP axis which is connected to the 
vehicle’s body through a compliant mount. This results in a following force acting on a 
flexible system much like a loose garden hose. It is interesting to note that this instability was 
observed in preliminary experiments.  

The objective of this work is to develop the theoretical formulation for the dynamic 
stability analysis of soft mounted IMP systems. The approach is to develop a simple but 
effective closed form solution to the problem, e.g. rather than using time consuming 
numerical methods. The formulation was programmed and numerical examples are presented 
to illustrate the approach. The data for these examples do not correspond to any particular 
IMP. However, the tool developed here can be used to analyze practical cases. 

2 MODELING APPROACH 

The approach here is to develop a “generic” model of an isolated IMP system including its 
key parameters. Figure 1 illustrates an IMP isolated from a vehicle’s body, e.g. torpedo.  

 
      
 
 
 
  
 
 
 
 

Figure 1: Example of an isolated IMP. 

The model consists of basic components such as the IMP, the isolation, the vehicle body 
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the IMP is attached to, and the surrounding fluid. The IMP is modeled as a rigid cylindrical 
body of length L and radius a as shown in Figure 1. The motion of the IMP will be defined in 
terms of the translation and rotation vectors, ( ), ,x y zu u u  and ( ), ,x y zφ φ φ , respectively. The 
dynamics of the IMP are then defined simply in terms of its mass and the polar moments of 
inertia , e.g. IMPM  = mass, x

IMPJ , y
IMPI , and z

IMPI  = polar moment of inertia about the x, y, and 
z-axis through the center of gravity (cg), respectively. The fluid inside the IMP is assumed to 
be at rest and accounted for in the mass properties.  

The effect of the external fluid on the dynamics of the IMP (e.g. fluid loading effects) will 
be incorporated through equivalent mass and moment of inertias, e.g. Fluid IMPM −  = added 
fluid-IMP mass, y

Fluid IMPI −  and z
Fluid IMPI −  = added fluid second moment of inertia about the y 

and z-axis through the cg. Note that since the fluid is assumed inviscid, it does not contribute 
to the mass in the x-direction and polar moment of inertia about the x-axis. Once again the 
fluid will be assumed to be at rest. To find the fluid inertial terms, the equivalent fluid 
mechanical-impedance terms are determined from the closed form solution of a cylinder 
embedded in a baffle as shown in Figure 2. The IMP will then be allowed to independently 
move in the yu  and yφ  directions and the equivalent mechanical impedance terms computed.  

Finally, it is important to remark that the dynamics of the spinning propeller is not taken 
into account in this model (sometimes referred as Coriolis effect).  
 

 
 
 
 
 
 
 
 
 

Figure 2: Illustration of the approach to account for the effect of the fluid on the IMP dynamics. 

The isolation mounts are modeled as simple homogenous, isotropic, cylindrical-shaped, 
viscous mounts as shown in Figure 1. The motion of the mounts will be defined in terms of 
the translation and rotation of the two ends of the mount (referred as left and right ends) 
defined by ( ), , , , ,m m m m m m

x y z x y zu u u φ φ φ  and ( ), , , , ,m m m m m m
r x r y r z r x r y r zu u u φ φ φ , respectively. 

The dynamics of the mounts is then defined by a 12x12 fully coupled dynamic stiffness 
matrix. This matrix can be computed using numerical methods such as finite elements. 
However, this approach is beyond the scope of this work and a simplified model is used here. 
To this end, the mounts are assumed massless and to have uncoupled axial and shear motions. 
The dynamics of the isolator are defined by the axial and shear stiffness and equivalent 
viscous damping coefficients, e.g. m

xk , m
sk , m

sc  and m
xc . Note that the system of three 

vibration isolators has 18 degrees of freedom (dof), i.e. 6 dof per isolator. However, since the 
vibration absorbers are linked to a rigid body, the actual number of degrees of freedom is 
reduced to only 6. This fact was accounted for using static condensation (Guyan 
condensation) as will be explained in following sections (Meirovitch, 1970; Baruh, 1999, and 
1980). 

The vehicle’s body is assumed rigid as well as to have a mass much larger than the IMP. 

Infinite Baffle Infinite Baffle IMP
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( )yu t
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This assumption allows the modeling of the vehicle’s body as a fixed boundary condition at 
the end of the isolators, e.g. the motion at the left mount boundary vanishes.  

 
The main components of the analytical model are described in the following subsections. 

2.1 Kinematics of Model 

The kinematics of the IMP is described using two reference systems: one is fixed to the 
vehicle’s body (N) and considered to be an inertial reference frame, and the other is fixed to 
and moves with the IMP’s body (A) in such a way that the coordinates of points in the body 
do not change with time. These two reference systems and a generic IMP are represented in 
Figure 3a. 
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Figure 3: (a) Coordinate systems and (b) IMP motion. 
 
Point N is the origin of the torpedo-fixed (Newtonian) coordinate system, point A is the 

origin of the moving coordinate system, and point G is at the center of mass of the IMP. From 
Figure 3b, the position vector of point A is expressed as { }, , T

A A A AX Y Z=r . The velocity of 
point A with respect to the Newtonian system is given as 

{ }, ,
N TN

A A A A A
d X Y Z

dt
= =v r     (1) 

where the superscript N indicates that these are the components in the Newtonian system. It is 
also convenient to express the same velocity in terms of its components in the body-fixed 
system as 

{ }, , TB
A u v w=v      (2) 

where the superscript B indicates that these are the components in the body-fixed system. 
Because u, v, and w are not the derivatives of coordinates, the two sets of components need to 
be related. The orientation of the body with respect to the vehicle’s body is described by 
means of three Euler angles. Beginning with the two coordinate systems aligned, the IMP is 
rotated about the z-axis ( 3

ˆ -axisb ) through the angle ψ , next the IMP is rotated about the new 

position of the y-axis ( 2
ˆ -axisb ) through the angle θ , and finally the IMP is rotated about the 
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 e.g. torpedo 
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latest position of the x-axis ( 1
ˆ -axisb ) through the angle φ . Then, the two sets of velocity 

components for Av  are related as 

( )1
N B

A A=v J Ξ v      (3) 

where { }, , Tφ θ ψ=Ξ  and 

( )1

cos cos sin cos cos sin sin sin sin cos cos sin
sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos

ψ θ ψ φ ψ θ φ ψ φ ψ φ θ
ψ θ ψ φ ψ θ φ ψ φ ψ θ φ

θ θ φ θ φ

− + +⎡ ⎤
⎢ ⎥= + − +⎢ ⎥
⎢ ⎥−⎣ ⎦

J Ξ      (4) 

The acceleration of point A with respect to the fixed coordinate system expressed in terms 
of its components in the body-fixed coordinate system is given by 

 
2

2

N
N N B B

A A A

u u q w r v
d v v r u p w

dt
w w p v q u

+ −⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= = + × = + −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+ −⎩ ⎭ ⎩ ⎭

a r ω v    (5) 

where { }, , TN B p q r=ω  is the angular velocity of the IMP expressed in terms of its 

components in the body-fixed system. The components of  N Bω  are related to the derivatives 
of the Euler angles as follows 

( )2
N B=Ξ J Ξ ω      (6) 

where 

( )2

1 sin tan cos tan
0 cos sin

sin cos0
cos cos

φ θ φ θ
φ φ
φ φ
θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

J Ξ     (7) 

The velocity of the center of mass, G, with respect to the ground expressed in terms of its 
components in the body-fixed system, is given by 

G G
B B N B

G A G G G

G G

u q z r y
v v r x p z

w p y q x

+ −⎧ ⎫
⎪ ⎪= + × = + −⎨ ⎬
⎪ ⎪+ −⎩ ⎭

v ω r          (8) 

where { }, , T
G G G Gx y z=r  is the position of the center of mass with respect to point A, 

expressed in terms of its components in the body-fixed system. 
 
Finally, the acceleration of the center of mass with respect to the ground expressed in terms 

of its components in the body-fixed system is given by 
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 ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

2 2

G G
B N B B

G G G G

G G

G G G

G G G

G G G

u q z r y
v r x p z
w p y q x

u v r wq x q r y p q r z p r q

v w p u r y r p z q r p x q p r

w u q v p z p q x r p q y r q p

+ −⎧ ⎫
⎪ ⎪= + − + ×⎨ ⎬
⎪ ⎪+ −⎩ ⎭
⎧ ⎫− + − + + − + −
⎪ ⎪⎪ ⎪= − + − + + − + +⎨ ⎬
⎪ ⎪

− + − + + − + +⎪ ⎪⎩ ⎭

a ω v

  (9) 

where { }, , T N Bp q r = α  is the angular acceleration of the IMP. 
The transformations can be placed in a single expression as follows 

( )
( )

1 3 3

3 3 2

A

A
B

A AA

uX
vY
wZ
p
q
r

φ
θ
ψ

×

×

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎧ ⎫⎡ ⎤⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = = = =⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎩ ⎭ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎩ ⎭⎩ ⎭

r J Ξ 0 v
η J J νΞ 0 J Ξ ω

   (10) 

where 3 3×0  is the 3 3×  null matrix.   

2.2 Dynamics of Model 

The equations used to determine the motion of the body are now described. The equations 
of motion are written in the following form 

 Gm =a F       (11) 

where m is the mass of the body, Ga  is the acceleration of its center of mass (as obtained in 

the previous section), and { }, ,
T

x y zF F F=F  is the resultant force acting on the body 
expressed in terms of its components in the body-fixed system. The remaining equations of 
motion are given by 

( )  
N B N B N B

A A G A Am+ × + × =I α ω I ω r a M    (12) 

where N Bα  is the angular acceleration of the IMP, N Bω  is the angular velocity (as obtained 
in the previous section), Aa  is the acceleration of point A (as obtained in the previous 

section), { }, ,
T

A x y zM M M=M  is the resultant moment about point A, expressed in terms of 

its components in the body-fixed system, and AI  is the inertia tensor for point A in the body-
fixed coordinate system given by 

( ) ( ) 

A A A
xx xy xz

A A A
A xy yy yz G

A A A
xz yz zz

I I I
I I I m
I I I

⎡ ⎤− −
⎢ ⎥ ⎡ ⎤= − − = + ⋅ − ⊗⎣ ⎦⎢ ⎥
⎢ ⎥− −⎣ ⎦

I I π π U π π    (13) 

where GI  is the inertia tensor for point G in the body-fixed coordinate system, U  is the 
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second-order unit (or identity) tensor, G= −π r  (see Figure 3), and ⊗π π  is the tensor product 
of vector π . Writing equations (11) and (12) in terms of their components yields 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2 2

G G G x

G G G y

G G G z

m u v r wq x q r y p q r z p r q F

m v w p u r y r p z q r p x q p r F

m w u q v p z p q x r p q y r q p F

⎡ ⎤− + − + + − + − =⎣ ⎦
⎡ ⎤− + − + + − + + =⎣ ⎦
⎡ ⎤− + − + + − + + =⎣ ⎦

  (14) 

and 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2 2

2 2

2 2

A A A A A A
xx zz yy xz yz xy

G G x

A A A A A A
yy xx zz xy xz yz

G G y

A A A A A
zz yy xx yz xy

I p I I q r r p q I r q I p r q I

m y w u q v p z v w p u r M

I q I I r p p q r I p r I q p r I

m z u v r wq x w u q v p M

I r I I p q q r p I q p I r q

+ − − + + − + − +

+ − + − − + =⎡ ⎤⎣ ⎦

+ − − + + − + − +

+ − + − − + =⎡ ⎤⎣ ⎦

+ − − + + − + −( )
( ) ( )

A
xz

G G z

p I

m x v w p u r y u v r wq M

+

+ − + − − + =⎡ ⎤⎣ ⎦

  (15) 

These equations of motion can be rewritten in the following convenient form 

( )RB RB= −M ν L C ν ν      (16) 

where RBM  is the unique, constant, inertia matrix given by 

0 0 0
0 0 0
0 0 0
0

0
0

G G

G G

G G
A A ARB

G G xx xy xz
A A A

G G xy yy yz
A A A

G G xz yz zz

m m z m y
m m z m x

m m y m x
m z m y I I I

m z m x I I I
m y m x I I I

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

M    (17) 

RBC  is a nonunique, time-varying matrix given by 

3 3 12

21 22
RB

×⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 C
C C C      (18) 

where 
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12

21 12

22

0

G G G G

G G G G

G G G G

G G G G
T

G G G G

G G G G

A A A A A A
yz xz zz yz xy yy

A A
yz xz

y q z r x q w x r v
m y p w z r x p y r u

z p v z q u x p y q

y q z r y p w z p v
m x q w z r x p z q u

x r v y r u x p y q

I q I p I r I r I p I q
I q I p

+ − + − −⎡ ⎤
⎢ ⎥= − − + − +⎢ ⎥
⎢ ⎥− + − − +⎣ ⎦
− − + −⎡ ⎤
⎢ ⎥= − − − + = −⎢ ⎥
⎢ ⎥+ − − −⎣ ⎦

− − − + −
= − + −

C

C C

C 0
0

A A A A
zz xz xy xx

A A A A A A
yz xy yy xz xy xx

I r I r I q I p
I r I p I q I r I q I p

⎡ ⎤
⎢ ⎥− − +⎢ ⎥
⎢ ⎥− − + + −⎣ ⎦

  (19) 

and L  is the vector of loads given by 

{ }, , , , ,
T

x y z x y zF F F M M M=L     (20) 

Equations (10) and (16) are to be integrated simultaneously. Generally, the procedure is to 
integrate (16) to find ν  and then to integrate (10) to find η . The method presented in this 
work was developed to solve problems for which the components of L depend on η , ν , ν , 
and t (time); thus, the acceleration, ν , appears on both sides of the governing equations, 
explicitly on the left-hand side and implicitly in the force terms on the right-hand side. For 
application to ships and torpedoes, this dependence produces the so-called added-inertia 
terms, which appear to increase the mass as well as the moments and products of inertia of the 
body. Of course, the appearance of ν  on both sides of the equations creates problems for the 
traditional numerical schemes, especially when the added mass itself depends on the motion 
of the body and changes with time, as in the case of ships.  The numerical integration scheme 
to be used is the Hammings-Gill modified-predictor-corrector algorithm that was developed 
to handle this case. 

2.3 Vibration Isolators 

As mentioned before, the system of three vibration isolators has 18 degrees of freedom 
(dof), i.e. 6 dof per isolator. However, since the vibration isolators are linked to a rigid body, 
the actual number of degrees of freedom is reduced to 6. This fact will be accounted by 
considering the IMP’s center of mass, G , as the “master node” and the three nodes where the 
isolator connects to the IMP as “slave nodes”. This idea allows to connect some dof  (so-
called “slave” dof) to corresponding dof (according to their physical meaning) of another dof 
manager (so-called “master” dof). The master-slave principle allows simple modeling of the 
torpedo-isolators-IMP structure, where multiple elements are connected by introducing 
multiple nodes sharing displacement/rotations dofs. As a result, the dynamics of the vibration 
isolators (modeled as beams) is coupled with the dynamics of the IMP. This is accomplished 
by introducing the effect of the isolators, through a stiffness and damping matrix, as a load 
term in eq.(20), i.e. forces and moments at point A. In order to relate the master dof (i.e., the 
dof of the IMP’s center of mass) to the slave dof (i.e. the dof of the points where the vibration 
isolators are attached to the IMP), kinematic constraints must be imposed. 

For the sake of conciseness, the details of the dynamic equations and kinematic constrains 
are described in detail here but they can be found in Preidikman et.al. (2006).  
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2.4 Fluid Loading Effect 

The effect of the external fluid on the dynamics of the IMP is incorporated through equivalent 
mass and moments of inertia in its equations of motion, i.e. an inertia matrix due to fluid 
loading is “added” to the inertia matrix in eq.(17). This is accomplished by finding the 
pressure distribution over the surface of the cylinder due to a rigid body motion or rotation 
when the body is immersed in a fluid (Cremer et.al., 1988; Fahy F., 1985, Junger and Feit, 
1986). Once the pressure distribution as a function of frequency is obtained, the mechanical 
impedance is then computed as a function of frequency. The impedance values are then used 
to determine the equivalent added mass and added moment of inertia. The equivalent fluid 
mechanical-impedance terms will be determined from the closed form solution of the cylinder 
embedded in a baffle as shown in Figure 2. The IMP will then be allowed to independently 
move in the yu  and yφ  directions and the equivalent mechanical impedance terms computed. 
The same impedance values can be used in the z-direction, i.e. for zu  and zφ . Since the fluid 
is assumed inviscid (no viscosity), it does not contribute to the mass in the x-direction and the 
polar moment of inertia about the x-axis. Once again the fluid is assumed to be at rest for this 
analysis. The IMP is modeled as a cylinder of radius a and length L as shown in Figure 2. To 
compute the pressure distribution, a baffled cylinder model is used. The infinite baffles are 
used in order to have an infinite-length function for the displacement in the x-direction. This 
makes possible the use of the wavenumber transform. 

For the sake of conciseness, the details of the computation of the fluid loading can be 
found in Preidikman et.al. (2006).  

3 LINEARIZATION OF THE EQUATIONS OF MOTION 

To solve the equations of motion, they are first linearized about the near equilibrium 
position. In general, the linearized equations of motion of a nonconservative system are of the 
form 

C GP+ + − =M x Dx K x K x 0     (21) 

where M , D , CK , and  GK  are the mass, damping, elastic, and geometric matrices of 
dimension n n× , respectively, and P  is the load parameter. The matrices M , D , and CK  are 
symmetric. For nonconservative systems GK  is not symmetric, i.e. T

G G≠K K . Modal 
expansion is applied for the solution of the system in eq.(21). Using the undamped 
eigenvalues 0iω , and eigenvectors 0iξ  ( 1, ,i n= … ), the modal equations become   

2
0

1

0, 1, 2, , .
n

i i i i i ij j
j

q d q q P b q i nω
=

+ + − = =∑ …     (22) 

where id  is the damping coefficient for the i-th mode. 
Seeking a solution of the form ( ) tt eλ=q ζ  and substituting into eq.(22) results in 

( )2 2
0n n Pλ λ× + + − =I d ω b ζ 0      (23) 

where b  is a full matrix and 

{ } { }2 2 2 2
0 10 20 0 1 2, , , , , , ,n ndiag diag d d dω ω ω= =ω d… …     (24) 
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In order to have non-trivial solutions, the determinant of the coefficient matrix (a lambda-
matrix) must be zero, i.e. 

( )2 2
0det 0n n Pλ λ× + + − =I d ω b      (25) 

which leads to a polynomial equation of degree 2n  in λ . The roots of eq.(25) are in general 
complex numbers of the form ( ) ( ) ( )P P i Pλ α ω= ± . Depending on the change of the 

eigenvalues ( )Pλ  as the load parameter P  is increased, instability of the structure can occur. 
In our case, as it will be shown in the results section, when the load parameter 0P = , the 
eigenvalues are purely imaginary. If two adjacent frequencies, say ( )r Pω  and ( )s Pω , come 

together when P  increases, one has a double root ( ) ( )r crit s crit critP Pω ω ω= =  at critP P= . The 
response of the system, from these two critical modes, is of the form 

( ) ( ) ( ) ( ) ( )sin coscrit crit critq t A Bt t C Dt tω ω= + + +     (26) 

which is oscillatory and with amplitude growing linearly with time. Since the instability is 
contributed by two modes, this is known as coupled-mode flutter. The coalescence of the 
eigenvalues is used to determine the stability of the system. 

4 NUMERICAL RESULTS 

The approach developed in the previous sections was implemented in a computer code. As 
an illustrative example of application of the numerical/computational tool developed in this 
effort, a case without damping is considered. As shown in Figure 4, when the load parameter 

0P =  the eigenvalues are purely imaginary. Because of the symmetry of the IMP and the 
isolators, 1 2ω ω=  and 4 5ω ω= . In this particular case, the adjacent frequencies 

( ) ( )1 2P Pω ω=  and ( ) ( )4 5P Pω ω=  come together when P  reaches the critical value 
57.366P = . At that point one has double roots (actually quadruple roots in our case, due to 

the symmetry mentioned)  ( ) ( ) ( ) ( )1 2 4 5 0.6451crit crit crit crit critP P P Pω ω ω ω ω= = = = =  (see 
Figure 4). The response of the system from these critical modes is oscillatory and grows 
linearly with time as shown in Figures 5 and 6. 

 

 
Figure 4: Coupled-mode flutter – Changes of the eigenvalues with the load parameter 
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The effect of damping can be easily included. It has been proved by Kelvin that damping 
has a stabilizing effect for conservative (non-gyroscopic) systems. However, it is important to 
mention that for nonconservative systems damping can have a destabilizing effect. Therefore, 
it is noted that for conservative systems it is safe in practice to neglect small damping in 
analysis and design. This is not the case for nonconservative systems; even a small damping 
may lead to a significant drop in the load that the structure is able to carry. 
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Figure 5: Coupled-mode flutter – Subcritical and critical responses: ( )y t  
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Figure 6: Coupled-mode flutter – Subcritical and critical responses: ( )tθ  
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5 CONCLUSIONS 

The theoretical formulation for the dynamic stability analysis of soft mounted IMP systems 
was developed. The closed form approach developed here accounts for most of the physical 
aspects of the problem. The IMP is considered as a rigid body, the soft mounts are modeled as 
elastic beams, the external fluid-loading effects are incorporated as inertial terms, and the 
thrust as a follower force is modeled. The formulation was numerically implemented in a 
computer code and an example was presented. The stability of the system can be determined 
by inspections of the time history responses and/or an eigenvalue analysis, e.g. coalescence of 
natural frequencies.  

The formulation can be improved in several aspects. However, there are two main 
improvements possible. Firstly, the formulation developed here allows identifying onset of 
instability (due to the linearization of the problem). However, it does not allow establishing if 
the instability will evolve into a limit cycle. This post-critical response requires the solution 
of the non-linear model. Secondly, the dynamic effect of the spinning propeller will have a 
stabilization effect (the degree of which is not known) that it is not accounted for in this 
formulation. This effect can be incorporated by including the gyroscopic stiffness matrix for 
the propeller.  
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