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Abstract.
In this paper we present the solution of a partial differential equation system to model avascular

tumors growth. A detailed finite-difference numeric algorithm for solving the whole system is presented.
The system, that includes moving boundary condition and a two-point boundary equation, is solved
using a predictor-corrector scheme. The model is sensitive to the used numerical method, so a second-
order accurate algorithm is necessary rather than a standard first-order accuracy one. A contracting
mesh is also used in order to obtain the solution, as rate of change gets significantly high near tumor
bound. Parameters are swiped to cover a wide range of feasible physiological values. Previous published
works have taken into account the use of a single set of parameter values; therefore a single curve
was calculated. In contrast, we present a range of feasible solutions for tumor growth, covering a more
realistic scenario. A dynamical analysis and local behavior of the system is done. Chaotic situations arise
for particular set of parameter values, showing interesting fixed points where biological experiments may
be triggered.

Eqr{tkijv"B"4229"Cuqekcekôp"Ctigpvkpc"fg"Ogeâpkec"Eqorwvcekqpcn"
jvvr<11yyy0coecqpnkpg0qti0ct

Ogeâpkec"Eqorwvcekqpcn"Xqn"ZZXK."rr01788-1799
Ugtikq"C0"Gncumct."Gnxkq"C0"Rknqvvc."Igtoâp"C0"Vqttgu"*Gfu0+
Eôtfqdc."Ctigpvkpc."Qevwdtg"4229

1788



1 INTRODUCTION

The mathematics dedicated to the resolution of oncologic problems, called “oncologic math-
ematics”, is considered a new specialty in the interdisciplines Preziosi (2003); Byrne et al.
(2006) and it is based in the utilization of mathematical methods and models for the descrip-
tion and prediction of morphologic and physiologic aspects of the tumor development. Ward &
King’s models Ward and King (1997, 1999, 2003) describe the growth or regression of an avas-
cular microtumor versus the nutrient and/or drug concentration present in the medium. These
models can be experimentally applied to and validated by the biological model of multicellular
spheroids.

The model described in this paper is based on a system of nonlinear partial differential equa-
tions which assumes the existence of a continuum of cells in two possible states: alive or dead.
According to the concentration of a generic nutrient, the living cell may reproduce or die. Be-
sides, the external drug application can be modeled as a presence of a material able to diffuse to
the spheroid interior and to kill cells with linear or Michaelis-Menten kinetics. The division or
death of cells implies the expansion or contraction of the tumor volume, respectively, with the
consequent generation of an associated velocity field.

2 MODEL EQUATIONS

The model equations were first presented in Ward and King (1997) and have basically three
unknowns:

• living cells (n);

• local velocity of tumor cells (v);

• nutrient concentration (c).

These three unknowns depend on time and space with the following equations:

∂n

∂t
+∇ · (vn) = [km(c)− kd(c)]n (1)

∇ · v = km(c)nVL − kd(c)n(VL − VD) (2)

∂c

∂t
+∇ · (vc) = ∇ · (D∇c)− [βkm(c) + γ(c)]n (3)

where km y kd are the mitosis and cellular death ratios respectively; VL and VD the living
and dead cell volume; γ the nutrient consumption rate of a cell in interphase; and β the nutrient
consumption rate of a cell in mitosis.

km(c) =
Acm1

cm1
c + cm1

kd(c) = B

(
1− σcm2

cm2
d + cm2

)
where cc is the critical concentration for cell proliferation, cd the critical concentration for cell
survival and σ the basal rate of cell death without nutrient limitations. In figure 1 we show km

and kd for different values of m1 and m2.
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Figure 1: km and kd functions, with A = B = 1, σ = 0.9, cc = 0.2 Casciari et al. (1992); Hlatky et al. (1988) and
cd = 0.1. The figure shows that km and kd tend to a Heaviside function when m1 →∞.

2.1 Initial and boundary conditions

Boundary conditions considered are the tumour radius S(t), the outer nutrient concentration,
the velocity at the center of the tumor and a smoothness condition:

∂S

∂t
= v(t, S(t)), c(t, S(t)) = c0 (4)

∂c(t, 0)

∂r
= 0, v(t, 0) = 0 (5)

Initial conditions are represented by a unique cell submerged in a given nutrient concentra-
tion:

S(0) =
3

√
3

4π
VL, n(0, r) =

1

VL

, c(0, r) = c0 (6)

3 NUMERICAL SOLUTION

For solving the model presented in section 2, we first exploit the spherical symmetry of the
problem and then apply the non-dimensionalization.

3.1 Spherical Symmetry and Non-dimensionalization

We will denote a dimensionless variable with a hat (for example, n̂). The dimensionless
variables are:

n = n̂/VL c = c0ĉ t = t̂/A r = r0r̂ v = Ar0v̂ S = r0Ŝ with r0 = S(0)

The non-dimensionalization and the spherical symmetry leads to the following equations
system:

∂n̂

∂t̂
+ v̂

∂n̂

∂r̂
= [a(ĉ)− b(ĉ)n̂]n̂ (7)

1

r̂2

∂(r̂2v̂)

∂r̂
= b(ĉ)n̂ (8)
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ν

(
∂ĉ

∂t̂
+ v̂

∂ĉ

∂r̂
+ b(ĉ)ĉn̂

)
=

1

r̂2

∂

∂r̂

(
r̂2 ∂ĉ

∂r̂

)
− k(ĉ)n̂ (9)

where

k̂m(ĉ) =
ĉm1

ĉm1 + ĉm1
c

, k̂d(ĉ) =
B

A

(
1− σ

ĉm2

ĉm2 + ĉm2
d

)
(10)

a(ĉ) = k̂m(ĉ)− k̂d(ĉ) (11)

b(ĉ) = k̂m(ĉ)− (1− δ)k̂d(ĉ) = a(ĉ) + δk̂d(ĉ) (12)

k(ĉ) = β̂k̂m(ĉ) + γ̂(ĉ) (13)

where δ = VD/VL ∈ [0, 1], β̂ = r2
0βA/DVLc0, γ̂(ĉ) = r2

0γ(c)/DVLc0, ĉc = cc/c0, ĉd =
cd/c0 and ν = Ar2

0/D. a(ĉ) represents the rate of cell population growth, b(ĉ) the rate of volume
growth and k(ĉ) is proportional to the nutrient consumption of the system.

Taking into account that ν ≈ 10−5 and time unit ≈ 14 hours, we can rewrite equation 9
assuming the quasi-steady approximation as:

1

r̂2

∂

∂r̂

(
r̂2 ∂ĉ

∂r̂

)
= k(ĉ)n̂ (14)

For the symmetric dimensionless system, the boundary conditions are:

∂Ŝ

∂t̂
= v̂(t̂, Ŝ(t̂)), ĉ(t̂, Ŝ(t̂)) = 1 (15)

∂ĉ(t̂, 0)

∂r̂
= 0, v̂(t̂, 0) = 0 (16)

n̂(t̂, Ŝ(t̂)) =
a(1)ea(1)t̂

a(1)− b(1)(1− ea(1)t̂)
(17)

Equation 17 is obtained using the characteristics method in equation 7Ward and King (1997).
Initial conditions are:

Ŝ(0) = 1, ĉ(r̂, 0) = 1, n̂(r̂, 0) = 1 (18)

As we can see, boundary conditions belong to the moving boundary condition Crank (1987)
family of problems. In our case, the tumor radius acts as boundary and the growth of the tumor
is driven by the velocity field following the equation 15.
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3.2 Fixing the moving boundary

Before solving the system, the moving boundary is fixed by setting r̂ = Ŝ(t)r∗. So let
r∗ = r̂

Ŝ(t̂)
∈ [0, 1]. Then we must rewrite the differentials:

∂n̂(r̂, t̂)

∂t̂
=

∂n̂(r∗, t̂)

∂t̂
+

(
∂r∗

∂t̂

)
∂n̂(r∗, t̂)

∂r∗
=

∂n̂(r∗, t̂)

∂t̂
−

(
r̂
∂Ŝ

∂t̂

1

Ŝ2

)
∂n̂(r∗, t̂)

∂r∗
=

=
∂n̂(r∗, t̂)

∂t̂
−

(
r∗

∂Ŝ

∂t̂

1

Ŝ

)
∂n̂(r∗, t̂)

∂r∗

∂n̂(r̂, t̂)

∂r̂
=

∂t̂

∂r̂︸︷︷︸
=0

∂n̂(r∗, t̂)

∂t̂
+

∂r∗

∂r̂

∂n̂(r∗, t̂)

∂r∗
=

1

Ŝ

∂n̂(r∗, t̂)

∂r∗

Applying the same transformations for ĉ and v̂ we obtain the system for r∗ ∈ [0, 1]:

∂n̂

∂t̂
+

v̂(t̂, r∗)− r∗v̂(t̂, 1)

Ŝ

∂n̂

∂r∗
= [a(ĉ)− b(ĉ)n̂]n̂ (19)

1

r∗2
1

Ŝ

∂(r∗2v̂)

∂r∗
= b(ĉ)n̂ (20)

1

r∗2
1

Ŝ2

∂

∂r∗

(
r∗2

∂ĉ

∂r∗

)
= k(ĉ)n̂ (21)

3.3 Numerical Solution

The general scheme for the numerical solution is the one described in Ward and King (1997).
Equations are sequentially solved by the finite-difference method Smith (1986) in a predictor-
corrector scheme Gear (1971). The equation order is the following:

1. Tumour radius is updated by the outer velocity.

2. Nutrient concentration (eq. 21) is solved by a second-order accurate method.

3. The velocity equation (eq. 20) is approximated by the trapezium method Burden and
Faires (1985).

4. Cell population (eq. 19) is calculated by the method described in Courant et al. (1952).

The system is initialized with the initial conditions mentioned before. The previous sequence
is repeated at each time t, until convergence is achieved with a certain tolerance. We will use i
for spatial-domain and j for time-domain iterations. We will set F j

i = F j(xi) as the function
F evaluated in xi at the time corresponding to iteration j. The mesh used to solve the system
is a contracting mesh: hi = λhi−1 for i = 0, 1, ..., N with 0 < λ ≤ 1. k represents the time
increment.

1792



3.3.1 Tumour Radius

Tumor radius can be described by:∫ tj+1

tj

∂S

∂t
dt =

∫ tj+1

tj

v(t, 1) dt

As this is an ordinary differential equation the trapezium method can be used to obtain:

Sj+1 = Sj +
(vj+1

N + vj
N) k

2
(22)

3.3.2 Nutrient Concentration

The following equation belongs to the two-point boundary equation family:

∂

∂r

(
r2 ∂c

∂r

)
= r2 S2 k(c) n

We solve it by a second-order accurate finite-difference method:(
r2
i+ 1

2

ci+1 − ci

hi

− r2
i− 1

2

ci − ci−1

hi−1

)
2

hi + hi−1

= r2
i S2 k(ci) ni

The boundary condition indicates that concentration at r = 1 is 1. Then we approximate the
domain from i = N to i = 1. At r = 0, the boundary condition determines that derivative is 0.
So:

cN = 1

ci =

1
2
r2
i s2 k(ci) ni (hi + hi−1) hi hi−1 − r2

i+ 1
2

hi−1 ci+1 − r2
i− 1

2

hi ci−1

−r2
i+ 1

2

hi−1 − r2
i− 1

2

hi

for i = N − 1, N − 2, ..., 1

c0 =
(1 + λ)2c1 − c2

λ(λ + 2)
(23)

It is worth to notice that this is an implicit equation: ci is involved in both sides of the
equation. This is solved with the Newton’s method Burden and Faires (1985).

3.3.3 Velocity

Velocity field can be described by:∫ ri+1

ri

∂(r2v)

∂r
dr =

∫ ri+1

ri

r2 S b(c) n dr

Again, as this is an ordinary differential equation the trapezium method can be used. In this
case, the boundary condition of cell velocity is at r = 0 so we can approximate the domain
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from i = 0 to i = N obtaining:

v0 = 0

vi+1 =
1

r2
i+1

(
r2
i vi +

(
(r2

i+1 S b(ci+1) ni+1 + r2
i S b(ci) ni) hi

2

))
for i = 0, 1, ..., N − 1

(24)

3.3.4 Cell Population

Finally, we apply the method explained in Courant et al. (1952). The boundary condition
sets the cell population at outer boundary so we approximate the domain from i = N to i = 0.

nj+1
i − nj

i

k
+

vi − rivN

S

ni+1 − ni

hi

= [a(ci)− b(ci)ni]ni if
vi − rivN

S
≤ 0

nj+1
i − nj

i

k
+

vi − rivN

S

ni − ni−1

hi−1

= [a(ci)− b(ci)ni]ni if
vi − rivN

S
> 0

nj
i are the values calculated in the previous time step while ni, velocity and concentration

values are the ones obtained in the previous iteration.

nN =
a(1)ea(1)t

a(1)− b(1)(1− ea(1)t)

nj+1
i =

 nj
i + k

(
(a(ci)− b(ci)ni)ni − vi−rivN

S
ni+1−ni

hi

)
if vi−rivN

S
≤ 0

nj
i + k

(
(a(ci)− b(ci)ni)ni − vi−rivN

S
ni−ni−1

hi−1

)
if vi−rivN

S
> 0

(25)

4 LOCAL BEHAVIOR OF THE MODEL

If we insert Eq. 2 in the non-dimensionalizated dynamical Eqs. 1 and 3; we take off the
divergence terms; and we fix m1 = m2 = 1, A = 1 and cd = ce; we arrive to the following
system:

∂n

∂t
= −n2(

c

c + d
− (1− δ)(1− σ

c

c + d
) + n

(
(1 + σ)

c

c + d
− 1

)
(26)

∂c

∂t
= −c n

(
c

c + d
− (1− δ)(1− σ

c

c + d
)− cβ

c

c + d
− cγ

)
(27)

If we search fixed points in the phase space (n, c), we find a trivial solution at (n, c = 0). As
c = 0, there are no cells in the system so we obtain a constant behavior. On the other hand, we
find two more solutions: (n+, c+) and (n−, c−), corresponding to two non-trivial fixed points:

n± =
σc± − d

c± − (1− δ)(d + c±(1− σ))
(28)

c± =
(β + γ − d(1− δ))±

√
(β + γ − d(1− δ))2 − 4dγ(δ + (1− δ)σ)

−2(δ + (1− δ)σ)
(29)
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Seting σ = 0.9, δ = 0.5 and d = 0.1, we move the parameters β and γ to make the analysis
of local dynamics.

Fixing β = 0.05, but in general for any value of this parameter, we find variating γ that the
two fixed points define two branches: one stable and one unstable (figure 2).
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Figure 2: Local behavior for n and c, β = 0.05, σ = 0.9, δ = 0.5 and d = 0.1. γ = 0.38 defined where the real
eigenvalues join into conjugated values. For greater values we observe two branches: solid and dotted lines show
stable and unstable branches, respectively. For smaller values, the real part coincides while imaginary part differs,
defining a Hopf bifurcation.

If we set γ greater than 0.38, both fixed points are real and the evolution of the system into
the phase space shows that it falls into a stable solution (figure 3).
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Figure 3: Local behavior for n and c, β = 0.05, σ = 0.9, δ = 0.5, d = 0.1 and γ = 0.45. With γ > 0.38, the
system falls to stable solution.

On the contrary, if we set γ smaller than 0.38, both fixed points become complex conjugates
and the evolution of the system presents an oscillatory behavior typical of a Hofp bifurcation
(figure 4).

Figure 5 presents a successive zooming of the solution trajectory around the fixed points and
it reveals a chaotic behavior.

5 NUMERICAL RESULTS

The mesh used for solving the system was a 100-step contracting mesh, with λ = 0.95.
Normal and border values for the physically motivated parameters Ward and King (1997) are
shown in table 1.
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Figure 4: Local behavior for n and c, β = 0.05, σ = 0.9, δ = 0.5, d = 0.1 and γ = 0.3. With γ < 0.3, the
solution oscillates around fixed points.

γ

Figure 5: Local behavior for n and c, β = 0.05, σ = 0.9, δ = 0.5, d = 0.1 and γ = 0.3. Zoom into the phase
space of the solution show chaotic behaviour.

Note: Extreme values of β, cc and cd presented in this table correspond to the upper and
lower limiting curves exposed in Figure 6 and are in good agreement with the experimental
results obtained in Conger and Ziskin (1983); Li (1982).

Figure 6 shows the dimensionless tumor radius for three different parameter values. As ap-
pointed in bibliography, we observe an initial period in which the rate of growth increases, then
it slows down (although barely noticeably in the graph) and finally becomes constant Conger
and Ziskin (1983); Freyer and Sutherland (1986); Koch et al. (1973).
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Figure 6: The dimensionless tumor radius, S(t), plotted against time for different parameter values

For averaged parameter values the velocity of tumor growth obtained is 2µm/h. For other
possible values, we arrive to faster (3µm/h) or slower (1µm/h) tumor growth velocities.
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Table 1: Parameter values for different tumour growth velocities.

Parameter Normal Growth Slow Growth Fast Growth
σ 0.9
δ 0.5
β 0.005 0.01 0.0025
cc 0.1 0.2 0.05
cd 0.05 0.1 0.025

m1 = m2 1
B/A 1

γ 0

5.1 Shrinking to a necrotic core

It is stated that if the natural death rate of living cells is larger than their proliferation rate
then the tumor shrinks to a necrotic core Tao and Miaojun (2006). Clearly, if σ and δ are small
enough then this condition holds and we may expect that the living cells will eventually die.
Under this assumptions, the numerical solution showed a decreasing tumor radius toward a
necrotic core. In figure 7 we can observe how the tumor shrinks to a necrotic core due to living
cell depletion.
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Figure 7: Tumor shrinking to a necrotic core.

6 DISCUSSION

Cancer development modeling is a complex issue that has been widely explored in recent
years resulting in the production of numerous mathematical models with different approaches.
Many previous models of tumor growth represent the tumor as a mass with discrete inner lay-
ers separated by moving boundaries. Recently, nevertheless, there have appeared new models
formulated in terms of continuum densities of proliferating, quiescent and necrotic cells. These
models seem to be in many cases numerically more efficient, which result in more accurate sim-
ulations of reality Schaller and Meyer-Hermann (2006); Sherratt and Chaplain (2001). Ward’s
models are continuum models based in partial differential equations that describe the growth
or regression of avascular microtumors in response to the nutrient and/or drug concentration
present in the medium. Proliferation or death of tumor cells implies the expansion or contrac-
tion of the tumor volume, respectively, with the consequent generation of an associated velocity
field.
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Resolution of the mathematical model results in one of three long-term stable possible solu-
tions: the trivial solution (tumor death), the traveling wave solution (continuous tumor growth)
and a sub linear growth case in which cells reach a pseudo-steady-state in the core. It has
been recently theoretically proved that this model (that implies a free boundary problem Crank
(1987)) has a unique global solution Tao and Miaojun (2006). Under specific initial conditions
and natural assumptions on model parameters, this global solution converges to a trivial steady-
state of tumor death. This kind of model can be experimentally applied to and validated by the
biological model of multicellular spheroids, which is at present considered the optimum in vitro
model to study complex aspects of avascular tumor development Kunz-Schughart et al. (2004).

In this paper we explicitly detailed a numerical method to extent the mathematical model
previously proposed by Ward. His work applied a single set of parameter values, therefore a
single curve was calculated. In contrast, we present a range of feasible solutions for tumor
growth, depending on different possible biological responses corresponding to different tumor
cell lines. This covers a more realistic scenario. We also analyzed the local dynamics of the
model, and found a chaotic behavior for a specific set of parameter values. This may represent
an interesting issue to be studied more deeply, both mathematically and experimentally. Fi-
nally, our work validated numerically analytical works previously presented by others Tao and
Miaojun (2006).

Characterization of tumor growth kinetics in terms of clinically relevant parameters is in-
creasingly required in the optimization and personalization of treatments. The design of math-
ematical and computational models employing parameter values in the physiological range of
operation, together with its experimental validation, has the future perspective of its upgrade
and utilization in the modeling of different therapeutic strategies against the development of
avascular microtumors and micrometastasis.
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