
HIGH PERFORMANCE COMPUTING USING SERIAL
APPLICATIONS: EXPLOITING TOOLS OF THE QUEUE SYSTEM

M. F. Ciappinaa,b and W. R. Craverob

aMax Planck Institute for the Physics of Complex Systems, Nöthnizer Str. 38, D-01187, Dresden,
Germany, ciappi@pks.mpg.de

bCONICET and Departamento de Fı́sica, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB,
Bah́ıa Blanca, Argentina, wcravero@uns.edu.ar

Keywords: Parallel programming tools, queue systems, computationaltime optimization.

Abstract. During the last years we have been witnesses to an impressive growth in thecalculation
power of computational systems. Furthermore, software tools and programming languages have followed
these advances providing new techniques and programming paradigms to use the installed hardware in
more efficient ways, including the use of parallel programming. Unfortunately, to take full advantage
of the power of these computational systems it is necessary, in most cases,to rewrite and optimize
our older routines and, more often than not, to attack the problem again fromscratch. Nowadays it is
usual for many people working in research institutions to have access to a cluster of computers managed
by an intelligent queue system. This tool allows to manage the load and the different users priorities
efficiently. In this work we show how it is possible to continue using our old and reliable routines,
written in any language, and, at the same time, to take advantage of a simple distribution technique to
reduce dramatically the computational time. We will show several examples where we have applied this
technique emphasizing the fact that it is not necessary to modify substantiallyour original programs.
These examples comprise different problems in collision physics, some of them including Monte Carlo
approaches, and processes in laser-atom and molecule interactions, in which it is necessary to deal with
Fourier Transforms techniques.

Eqr{tkijv"B"4229"Cuqekcekôp"Ctigpvkpc"fg"Ogeâpkec"Eqorwvcekqpcn"
jvvr<11yyy0coecqpnkpg0qti0ct

Ogeâpkec"Eqorwvcekqpcn"Xqn"ZZXK."rr0455-467
Ugtikq"C0"Gncumct."Gnxkq"C0"Rknqvvc."Igtoâp"C0"Vqttgu"*Gfu0+

Eôtfqdc."Ctigpvkpc."Qevwdtg"4229

455

1 INTRODUCTION

The growth in the computer systems has fulfilled, or in some cases exceeded, the well-known
Law of Moore, who established the duplication of the numbersof transistors integrated in a
processor, which is closely related to the computational power itself, every 24 months (Moore
(1965)). The evolution of the programming languages has been alsoquite evident. On these
new languages innumerable tools have been developed and implemented both in the so-called
Free Software and within the framework of proprietary one. Since the upcoming of PC clusters
managed by Linux operating system, the parallelization tools have been profusely developed
and nowadays are being used intensively in these systems. Nevertheless, a great number of
algorithms and routines created in the past to solve specificproblems, have been written and
are still being used in serial form. In order to parallelize these piece of codes and to use them
in an efficient way in clusters, it is necessary to rewrite them from scratchor to perform a
great amount of changes. This may invalidate already certified codes or may simply not be
technically or economically viable. Let us mention as an example, the countless routines in
FORTRAN language (77 or 90) that have proved largely their effectiveness and reliability, that
cannot take full advantage of the computational power of theparallel systems, since they were
built in an serial programming environment.

There exists a great number of problems in which it is necessary to use the same program or
routine hundreds or thousands of times, only changing one orseveral of the entrance parame-
ters. Among these problems we can mention the calculation ofdifferential cross sections within
the framework of atomic collisions. These magnitudes are the result of experiments performed
in the atomic physics facilities around the world. From a theoretical point of view, the compu-
tation and modeling of differential cross sections imply a great number of calculations, usually
involving the computation of special functions and the use of multidimensional integration.
With the impressive advance of the experimental techniques, it has been necessary to refine
even more the theoretical approaches and to make many tests with numerous parameters. It is
for that reason that all the saving in computational time that can be obtained is welcome. Since
the collision theory has 5 or 6 decades of constant development, naturally an enormous number
of routines and programs have been developed. Many of them have largely proved their efficacy
and reliability and deserve to be reconsidered in this new context of parallel environments (for
a recent review of atomic and molecular physics see e.g.Drake(2006) and references therein).

In this work we will describe how to use our old programs and routines in a concurrent
way using tools that the software installed for cluster management and balance brings us, under
Linux operating system. It is necessary to briefly recall howthe environment in this kind of
systems works, how it sends programs to run, what is a queue and how it works and different
commands that we use along our work. Although we will apply our technique to problems
within the framework of atomic and molecular physics, we areconfident that it is perfectly
possible to extend ourrecipesdirectly to a number of diverse problems both in other physical
branches and computer science.

2 GRIDS AND SOFTWARE FOR CLUSTER MANAGEMENT

One can think a Grid as a collection of computational resources prepared to perform diverse
tasks, among them mathematical and/or scientific calculations. In its simpler form, a Grid
appear as a huge computing system that provides an unique access point to these distributed
systems. For the users, in most of the cases, it istransparentto perform tasks in this type
of systems. Furthermore, the efficient management of the installed resources in this kind of

456

huge and heterogeneous systems is a very complex task. Fortunately, there exists tools that
are installedabovethe operating system and will allow us to alleviate enormously these tasks.
Among them we can mention the software for management of grids and clusters known as
Sun Grid Engine (SGE), in its different flavors (Sun Microsystems Inc.(2002)). This tool, of
which we will describe some commands that we use throughout the work, perform the balance
and management of users in large computing systems and clusters under Unix/Linux operating
systems.

The users policies and load balance of a large computing system are of fundamental impor-
tance, since they will allow us to optimize and to take full advantage of the whole computational
resources installed. With SGE the users can send to execute thousand of programs without wor-
rying how these programs are being executed and which type ofresources they are using. Since
we use SGE at user level, not administrator, we will not describe here the details about the
versatility that this tool has to perform the load balance and the management of resources and
policy of priorities. We will only mention that SGE providesmany commands and tools to con-
struct different users policy and allow the management of the computational resources tailored
for each system and administrator.

SGE has numerous commands at user level, but we will use and describe in detail only a
couple of them, emphasizing some of their most important options. These commands will be
important for the execution purposes in which we are interested. Let us explain in a few words
what we call herejobs and which is the meaning ofqueuesin this context. We can do an
analogy between a Grid and the queue of a check–in in an airport. The jobscorrespond to the
passengers.Jobswaiting to be executed in a specific processor or node would bethe passengers
who are waiting for attention. The queues, which provide services for thejobs, are formed by
the airlines employees. As in the case of passengers, the requirements of eachjob, such as
memory, execution time, processor type, software licenses, among others, can be very different.
Consequently only certain queues are able to provide the necessary resources for eachjob.

Following such analogy, the SGE arbitrates the available resources and the requirements of
eachjob in the following way: a user sends a givenjob for execution and SGE obtains the
profile of requirements of it (memory, execution time, special architecture of the processor,
requirements of i/o and software, among others) from the user profile or from some definition
by default. Furthermore, the system obtains the user identity and stores the time at which the
job was sent for execution. Once a particular queue is availableto execute a newjob, the SGE
determines if such queue fulfill thejob requirements. If suchmatchingis successful, SGE sends
immediately thejobsof greater priority or those than have had the larger delay time. The queues
allow us to concurrent execution of severaljobs, but the optimization of this task will be one of
the task of the administrators, who also will decide about specific users and priority policies.

Throughout thetimelife, eachjob will be associated with a specific queue, that in the simplest
case will correspond to a unique processor in a certain node.If for some reason a queue is
suspended, all the associated jobs with it also will be suspended. Although, it is possible to
explicitly specify the queue in whichjobswill be executed, SGE automatically deal with this
task according to thejob profile and to the availability of resources in each queue. Wenote if we
sent explicitly for execution ajob to a determined queue, it will remainlinked to that queue and
as a result the SGE daemons will not be able to select the less loaded node with the subsequent
loss of performance and delays in the execution time.

Next, we describe how to send for execution a program and which are the most important
parameters in our context. The command to perform this last task isqsub and the syntax is the
following:

457

qsub job.sh

This command assume thatjob.sh is the name of ascript fileand that such file is placed in
the corresponding home directory. Theqsub command will confirm the successful sending of
the job in the following way:

your job 1 (‘‘job.sh’’)
has been submitted

We can obtain information about the state of ourjob doing

qstat -u username

whereusername is our user name in this environment. For eachjob the status report will
produce a list including the following items:

• Job ID, which represents a unique number that is included in the sending confirmation

• job scriptName

• job owner

• Status indicator; for exampler means running andt targeted to an specific queue and
ready to be executed

• Sending or start date and time

• Queue name in whichjob is being executed

Let us list the options of the commandqsub. One option that will be useful for us is

qsub -t N1-N2 job.sh

whereN1 andN2 are natural numbers. Even whenN1 andN2 can take any value, for simplicity
reason, and without loss of generality, we will only consider the caseN1=1 andN2=N. The
qsub command with this option will send to run anarray of N copies of thescript filejob.sh.
We can think that this option is of limited or none utility, since we are sending for execution
exactly the samescript file, i.e job.sh, N times. However, let us discuss how we can take
advantages of this scheme. First, SGE has associated for each array an index which is saved in
the variable $SGE TASK ID. This variable will take values between 1 andN, since we haveN
elements in ourarray of script files.

The second point to take into account is the possibility to redirect the standard input (key-
board) and output (screen) that the Linux operating system,based in older Unix environments,
bring us. That is, we know that with the commands< and> we can change the standard input
and output devices, i.e. the keyboard and the screen, respectively, to aphysicalinput and output
data files.

In the following example we will show in ascript filehow the-t 1-N option works together
with the input and output redirection. Let us consider the following script filecalledjob.sh

458

1 #!/bin/bash
2 #$ -o $HOME/wd/
3 #$ -e $HOME/wd/
4 #$ -l h_rss=1500M,h_fsize=3000M,
h_cpu=900:00:00,s_cpu=899:59:00,hw=x86_64
5 $HOME/wd/job.exe < $HOME/wd/data$SGE_TASK_ID.in
> $HOME/wd/data$SGE_TASK_ID.out

The first line describes the type of shell in which we will execute thescript file, in this case
thebash shell. Lines 2 and 3 correspond to specific directives used bytheqsub command.
The-o (-e) option redirect the output (errors) messages to the $HOME/wd/ directory. Line
4 contains directives related with thejob profile (see the discussion above in this section) and
specify the memory requirements, execution time and processor architecture needed for the cor-
rect execution of the programjob.exe (seeSun Microsystems Inc.(2002) for more details).

The most important line in our discussion is the number 5. We see that our programjob.exe
receives as input the filesdata$SGE TASK ID.in,

< $HOME/wd/data$SGE_TASK_ID.in

that will be different since $SGE TASK ID change for each element of the array. These files
contain the different parameters that allow us to execute concurrently the programjob.exe
for different cases (we will show examples in the next Section).

As the results obtained fromjob.exe will be different, since we are using different input
parameters, we should to save the results in different data files. This last task can be done with

> $HOME/wd/data$SGE_TASK_ID.out

One important point to be mention is that in our programjob.exe the input and output de-
vices, that will be parallelized after, should be put by default (keyboard and screen respectively).
For example, in FORTRAN 77 or 90 this task can be performed withthe commands

READ(*,*) V
READ(*,*) ANGLE

to read, e.g., the variablesV andANGLE and using

WRITE(*,*) FDCS,ENERGY

to write the variablesFDCS andENERGY. Afterward the standard input and output devices will
be redirected to data files, using the procedure we have described above, with the commands<
and> respectively.

We further note that both the redirection and the use of the SGE commands are independent
of the programming language in which our routines and programs were written and compiled.

2.1 Scalability

We can not consider scalable all the physics problems that are able to attack and model
computationally. Consequently, there exist problems, for example those associated with the
temporal evolution of physical systems, where the parallelization and scalability is particularly
complex. This difficulty is related to the fact that, in the most of the time–dependent cases, is
necessary to know the result of older time steps to perform calculations in the present temporal

459

one. On the other hand, there exists numerous problems wherethe scalability is trivial, in the
sense that is necessary to execute the same routine or program hundreds or thousand of times,
with different entrance parameters. We will describe in detail several examples this last kind
of problems in the next Section. Furthermore, it bears mentioning that along the examples we
will use our older serials routines, only with slightly modifications. We show how is possible to
increase substantially our productivity and we discuss theimplications of this.

3 APPLICATIONS

In the last Section we have described the tools we will use to attack and optimize some of
our problems. These tools allow us to maximize the performance of our computing systems.
Along this section we will show three examples in which we have been working recently. Two
of them are within the framework of collision physics and thelast one is inside the laser–
matter interaction area. Even when these three examples areinside the subject of atomic and
molecular physics, we are completely confident that ourrecipewould be easily extending to
other problems both in other branches of physics and other sciences. It is worth of mention
that, on one hand, we have used in all cases our older and largely proved routines and programs
implemented in an serial environment and, on the other hand,our approach is not restricted to
a particular programming language.

3.1 Fully Differential Cross Sections calculations for single ionization of helium by ion
impact

Starting a decade ago with the development of the experimental technique known as
COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy), the collision physics by ion
impact has attracted substantial attention. In these experiments, all the particle momenta are
measured in asingle shot. In the case of a single ionization processes the ionized electron mo-
mentum, the residual–ion one (also known as recoil–ion) and, using momentum conservation,
the projectile transfer momentum, are simultaneously obtained. Consequently we have a com-
plete description of such collision events. For this reasonit is important to develop theoretical
approaches that allow us to describe in detail these atomic processes. The magnitude measured
in the experiments is known as Fully Differential Cross Sections (FDCS). We will not enter in
greater detail of the theoretical models used to calculate the FDCS, only we will concentrate in
the most important parameters at the time of evaluating numerically FDCS.

Since we are considering single ionization of helium by ion impact, the parameters that we
will leave fixed in each process are: an atomic model for the helium and the projectile charge
and velocity, that corresponds to a given impact energy. FDCSis function of the momentum
transferq, that can be associated directly to the projectile scattering angle and to the energy
transferred to the atomic system, and of the electron variables, i.e. ionized electron energyEe

and electron ejection anglesθk andφk. Consequently, we will use as parameters in our input files
different values ofq, Ee, θk andφk. Concerning to the angular variables, we will choose the so–
called collision plane to directly compare with the experimental results (Schulzet al. (2003)).
In this way in each of our programs we will fix the value ofφk and we will varyθk suitably, for
example calculating 30–40 points between the range of0 ≤ θk ≤ 2π. Consequently, ourinput
variableswill be different values of the moment transferq and the ionized electron energyEe.

Following Ciappina and Cravero(2006) we see that it is necessary to perform calculations
of FDCS for single ionization of helium by 2 MeV/amu C6+ using the parameters:Ee = 1
eV, q = 0.45, 0.65, 1.0, 1.5 a.u.; Ee = 4 eV, q = 0.45, 0.65, 1.0, 1.5 a.u. y Ee = 10 eV,

460

q = 0.45, 0.65, 1.0, 1.5 a.u. and for different theoretical approaches (in such example FBA and
CDW–EIS). That means to execute the same routine a dozen times. For example, for the first
12 executions of our FDCS calculation program in one specific theory we have:

qsub -t 1-12 fdcs.sh

wherefdcs.sh is ourscript file that could be exemplified as follows

#!/bin/bash
#$ -o $HOME/fdcs/
#$ -e $HOME/fdcs/
#$ -l h_rss=1500M,h_fsize=3000M,h_cpu=900:00:00,
s_cpu=899:59:00,hw=x86_64
$HOME/wd/fdcs.exe < $HOME/fdcs/data$SGE_TASK_ID.in
> $HOME/fdcs/fdcs$SGE_TASK_ID.out

Here the input filesdata1.in-data12.in would contain

data1.in data2.in data3.in data4.in
1 1 1 1

0.45 0.65 1.0 1.5
data5.in data6.in data7.in data8.in

4 4 4 4
0.45 0.65 1.0 1.5

data9.in data10.in data11.in data12.in
10 10 10 10

0.45 0.65 1.0 1.5

On the other hand, the output filesfdcs1.out-fdcs12.out yields, for example, the
results showed inCiappina and Cravero(2006), i.e. two columns containing the electron angle
θk and the corresponding FDCS (in suitable units).

Let us show how is the scalability of our distribution technique. In Fig. 1 we plot the
computational time elapsed in FDCS calculations as a function of the number of processors, for
different theoretical approaches.

We can observe the excellent scalability of our technique. Meanwhile using a single pro-
cessor the elapsed time for the 12 FDCS calculations in CDW–EISfor the first set of results of
Ciappina and Cravero(2006) is about of 700 seconds, the same calculations using 12 Opteron
AMD (64 bits) with 2 GB of memory each and a clock speed of 2.6 GHz, take only 60 seconds,
i.e. one order of magnitude less. Even when we have used here only a dozen of input files, in
principle there are not limitation in the quantity of elements in our array ofjobs. Obviously,
the elapsed total time will depend of each particular cluster and of its load balance, since if we
send for execution an array with more elements than available processors, there will be waiting
times that will contribute to our productivity loss.

3.2 Dalitz plots calculations using Monte Carlo techniques to assess two– and three–body
interactions in single ionization of helium by ion impact

Our second example is based inCiappinaet al. (2006). In such work, the Dalitz plots, used
intensively within nuclear and particle physics, are implemented to assess the two– and three–
body interactions in single ionization of helium by ion impact. From a computational point of

461

1 2 3 4 5 6 7 8 9 10 11 12

10

100

1000

El
ap

se
d

tim
e

(s
ec

.)

Number of processors

Figure 1: Elapsed time in computations of FDCS for single ionization of helium by ion impact vs. number
of processors. Circles: FDCS in CDW-EIS fromCiappina and Cravero(2006), squares: FDCS in First Born
Approximation (FBA).

view, this problem represents a big challenge since, in order to make these graphics, it is nec-
essary to calculate Double Differential Cross Sections (DDCS), which are obtained integrating
the FDCS explained in the previous Section, tens and hundredsmillions of times to obtain
a good agreement with the experimental data (Schulzet al. (2004)). This task resembles the
usual Monte Carlo approach, in the sense that random numbers are used to model a physical
process. The procedure which we have used in this example is the following. First we have
performed tests for different number of events, i.e. DDCS forrandom values of the input pa-
rameters. These task allow us to (i) qualify our random number generators and (ii) estimate the
calculation time as a function of the event number. In Fig 2. we can observe the computational
time for values of 105, 106, 107 and . We should to say that in order to obtain a good agreement
with the existing experimental data, at least 108 events or more are necessary. In order to obtain
a Dalitz plots of this type with a CDW–EIS theory in a single processor we would have required
1 month of CPU time!. Here, our distribution scheme shows its maximum power.

Once we have chosen adequately our random number generator,the following step will
be to distribute the calculation in such a way to obtain results in a reasonable time. In this
case our input filesdata1.in-dataN.in will contain only therandom seedsto feed the
random number generators and we will divide the total numberof eventsNev by the number
of processors in which we are going to send to execute our program. For example, if we have
100 available processors, a reasonable number nowadays in medium–size clusters, we will be
able to calculate a Dalitz plots with 108 events in 10-12 hours, depending on the availability and
speed of the different nodes. This dramatic drop in the computational time has allowed us to
make many tests for different theories and parameters as canbe seen inCiappinaet al. (2006).

In a first view it could seem tedious to have to create, for example, 100 input files, but exists
numerous tools, both in the Linux operating system and in different programming languages,
that simplify this task. On the other hand, the management ofthe hundreds of output files does

462

105 106 107 108
0

5

10

15

20

25

30

El
ap

se
d

tim
e

(d
ay

s)

Events

Figure 2: Elapsed time in a Dalitz plot calculation for single ionization of helium by ion impact vs. the number of
events. Circles: DDCS in CDW–EIS theory (see text andCiappinaet al. (2006) for more details).

not represent a problem, since we only should toadd upthe results obtained for the DDCS in
each node for a specific point of a given Dalitz plot.

3.3 High-order harmonic generation in complex molecules using the Strong Field Ap-
proximation

Our final example is within the context of laser–matter interaction. We show how is possible
to employ our technique to a some kind of time–dependent problem: the high–order harmonic
generation (HHG). Complex atoms and molecules interacting with strong ultrashort laser pulses
are interesting systems to study many-body effects in an external field. Among these, the occur-
rence of interference effects arising from the atomic centers in a di- or polyatomic molecule is
one of the most vigorously pursued research topics. Furthermore, footprints of the interference
effects have been observed in other laser–induced processes, e.g in above threshold ionization
(Grasbonet al. (2001); Jarón-Beckeret al. (2004)) and in high harmonic generation spectra of
small molecules (Lein et al.(2002); Bakeret al.(2006); Vozzi et al.(2005)). We present a theo-
retical approach of high harmonic generation in complex molecules, emphasizing the numerical
aspects of the problem and we show our results for CO2 and C60.

The process of HHG, in which an atom or a molecule emits radiation at multiples of the
driving laser frequency, can be understood in terms of the so-called Lewenstein or three–step
model (Lewensteinet al. (1994)). The first step is the strong field ionization of the atom or
molecule as a consequence of the nonperturbative interaction with the coherent electromagnetic
radiation. The classical propagation of this electron in the field defines the second step of the
model. Finally, in the third step the electron recombines under the emission of a high-energy
photon. One of the main features of the HHG process is its coherence, that means the emitted
radiation can be used to create coherent UV or XUV pulses. Nowadays this short-wavelength
emitters promise delightful applications on the attosecond time scale.

463

Ab-initio numerical simulation of HHG in complex systems represents a challenge from the
computational point of view. Therefore, such calculationsare restricted to simple diatomic
systems, such as H+2 and H2. At present, the response of more complex molecules can be
analyzed using approximate theories and models only. Such molecules are however of particular
interest in view of recent experimental data (Bakeret al. (2006); Vozzi et al. (2005)).

Applying the Lewenstein ansatz (Lewensteinet al. (1994)) and using the single active elec-
tron (SAE) approximation, the time–dependent dipole moment of a molecular system driven by
an external field is given by:

D(t,R1, . . . ,RM) = −i

t∫

0

dt′
∫

d3p d∗

rec(p + A(t),R1, . . . ,RM)

×dion(p + A(t′),R1, . . . ,RM , t′) exp[−iS(p, t′, t)] + c.c., (1)

with S =
∫ t

t′
dt′′{[p + A(t′′)]2/2 + Ip} being the semiclassical action,Ip the ionization po-

tential of the target system in its electronic ground state and A(t) = −
∫ t

−∞
E(t′)dt′ is the

vector potential, whereE(t) is the electric field. The spectrum of the emitted light polarized
along a certain direction̂e is obtained by modulus squaring the Fourier transform of thedipole
acceleration alonĝe,

ê · a(Ω) =

∫ Tp

0

dt e · D̈(t) exp(iΩt), (2)

where the integration is carried out over the duration of thelaser pulseTp. Due to the anisotropy
of the molecular system, in contrast to atoms, the emitted radiation can be polarized along other
directions than the laser polarization axis. Here, we consider the harmonic radiation polarized
along the direction of the laser electric field,x̂, i.e. ax(Ω) = x̂ · a(Ω).

In Eq.(1), dion (drec) defines the ionization (recombination) amplitude (Lewensteinet al.
(1994); Altucci et al. (2006)) and represents the quantal mechanical formulation of an ioniza-
tion (recombination) event. The key point in these quantities is the initial molecular molecular
wavefunction, which we represent as a linear combination ofatomic orbitals centered at the
nuclear positionR1, . . .RM , Φ(r,R1, . . . ,RM) =

∑M

i=1

∑jmax

j=1
ai,jφi,j(r,Ri), with M is the

total number of the nuclei in the molecule,ai,j are the variational coefficients of the atomic
functionsφi, andjmax is the size of the basis set used. The orbitals are obtained using the
quantum chemical self-consistent Hartree-Fock GAUSSIAN and GAMESS code. Using such
codes is possible to obtain numerically atomic and molecular wavefunctions with a given de-
gree of accuracy, adding different complexity in the particles interactions. The mathematical
modeling of ground state molecular wavefunctions is a big challenge, since it is necessary to
deal with many-body quantum mechanical problem. The utilization of chemical codes allow us
to simplify enormously this problem and to concentrate our effort in the subsequent physical
phenomena. Thus, the dipole moment in Eq. (1) takes account of the structural symmetry, the
multi-center nuclear positions and the angular momentum ofthe molecular orbital.

In practice, the Lewenstein model in molecules provides more accurate results when the
momentum expectation-value (which we refer to here as the velocity form) is used to calculate
the dipole acceleration. This is exemplified by the spectra for an aligned CO2 molecule in Fig.
3. Both the results, obtained in the velocity (panels (a) to (c)) as well as in the length (panels (d)
to (f)) gauge, show characteristic minima, which appear dueto an interference of the electron
waves emitted from the two O atoms. Please note, that in the highest occupied molecular orbital

464

10-18
10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10

0 deg

(a)

10-33
10-32
10-31
10-30
10-29
10-28
10-27
10-26
10-25

0 deg

(d)

10-21
10-20
10-19
10-18
10-17
10-16
10-15
10-14

30 deg

(b)

10-16

10-15

10-14

10-13

10-12

10-11

10-10

30 deg

(e)

15 20 25 30 35 40 45
10-21
10-20
10-19
10-18
10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10

H
ar

m
on

ic
 in

te
ns

ity
 (a

rb
. u

ni
ts

)

Harmonic order

40 deg

(c)

15 20 25 30 35 40 45
10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

H
ar

m
on

ic
 in

te
ns

ity
 (a

rb
. u

ni
ts

)

Harmonic order

40 deg

(f)

Figure 3: Harmonic spectra of a CO2 molecule interacting with an laser pulse at a peak intensityof 2 × 10
14

W/cm2, a pulse duration of 30 fs and a wavelength of 800 nm. Panels (a), (b) and (c) show the results obtained in
the velocity gauge, while those in panels (c), (d) and (e) arecalculated in the length gauge. The vertical lines show
the minima predicted from the two-slit interference formula (Lein et al. (2002)).

of CO2 the contributions from the C atom are negligible and the molecule appears as a two-
center emitter. As can be seen from the Fig. 3, for the velocity gauge the position of the minima
agree well with the predictions of the two-slit interference formula (Lein et al. (2002)). This
observation is in agreement with recent experimental results (Vozzi et al. (2005)). In contrast,
the results obtained in length gauge fail to reproduce the two-slit interference results.

We have applied the above theory in velocity gauge to calculate HHG spectra for the fullerene
C60 at long wavelengths (Ciappinaet al. (2007)). First results for an ensemble of randomly
oriented molecules are shown in Fig. 4. Interestingly, the spectrum exhibits pronounced minima
too. They are due to a multi-slit interference effect of the partial electron waves emanating from
the 60 nuclear centers. We have confirmed this interpretation in test calculations, in which
we have added the contributions from the different nuclear centers incoherently and indeed the
minima disappeared. We expect that the observed oscillations and multislit behavior in the
HHG spectrum shows up for other fullerenes having a spherical structure with a large radius
too.

From a numerical point of view the main task is the calculation of the time dependent dipole
moment (Eq. (1)) and its subsequent Fourier Transform (Eq.(2)). In our example we divide
the pulse durationTp in, for example, 214 =16384 points. If we equally split this interval and
send for execution in different processors, we note that thefirst processes will finish quickly,
compared with the subsequent ones, since the integration start in 0 and the final integration time
will increase successively. To avoid this problem we employthe following technique. We divide
the total number of point in steps, for example, of 128, i.e. in the first processor we calculate
the points 1,128,256,etc. The second processor will work with 2,129,257, etc.

465

0 10 20 30 40 50 60 70 80 90 100 110
10-23

10-22

10-21

10-20

10-19
0 10 20 30 40 50 60 70

H
ar

m
on

ic
 y

ie
ld

 (a
rb

. u
ni

ts
)

Harmonic order

 Energy (eV)

Figure 4: HHG spectrum for a randomly oriented C60 molecule. The laser intensity isI = 5 × 10
13 W/cm2,

duration 50 fs and wavelengthλ = 1800 nm. The arrows indicates the minima predicted using a spherical model
for the ionization and recombination steps.

The whole scheme in the calculation Eq. (1) would be. First we send for execution one array
of 128 elements,

qsub -t 1-128 hhg.sh

wherehhg.sh is our script file that has the same characteristic than in our other cases. The
input files in this problem are quite simple, since they only contain natural consecutive numbers
from 1 to 128. In that way, the results of each program will be 128 points equally separated
in time. Afterward, we have to collect all the output files andto perform a time ordering. The
final step is the Fourier Transform calculation, that can be done directly using some of the FFT
routines existing in the free–software market.

4 CONCLUSIONS AND PERSPECTIVES

We have shown throughout this work that it is possible to perform a large number of numer-
ical calculations concurrently using our older serials routines, together with simple commands
provided by the software installed to manage and optimize clusters under Linux operating sys-
tem.

The intensive utilization of these tools has allowed us to solve problems impossible to deal
with in other ways, as it can be seen from the examples of the last Section. Furthermore we were
able to make a large number of simulations varying the relevant parameters in each specific
problem. Often these possibilities are not known by habitual users of old codes, who have
remained with the parallelization paradigms of the 80’ or early 90’s, when the main (or even
only) route to parallelization implied radical modifications of the programs’ codes.

466

The distribution technique described in this work, provided by tools available at the operating
system level, would allow useful and reliable codes to enjoythe benefits of the modern hardware
that clusters provide, with a negligible amount of additional programming effort.

Acknowledgments

This work is partially sponsored by PICTO UNS 931 of the ANPCyT and by the PGI Nr.
24/034 of the Universidad Nacional del Sur, Argentina. MFC acknowledges the Visitors Pro-
gram of the Max Planck Institute for the Physics of Complex Systems for financial support.

REFERENCES

C. Altucci et al. High-order harmonic generation in alkanes.Phys. Rev. A, 73:043411, 2006.
S. Bakeret al. Probing proton dynamics in molecules on an attosecond time scale. Science,

312:424, 2006.
M.F. Ciappina and W.R. Cravero. Fully differential cross sections for C6+ single ionization of

helium: the role of nucleus-nucleus interaction.J. Phys. B: At. Mol. Opt. Phys, 39:2183–
21984, 2006.

M. F. Ciappinaet al. Multislit interference patterns in high-order harmonic generation in C60.
submitted, 2007.

M.F Ciappinaet al. Theoretical description of two– and three–particle interactions in single
ionization of helium by ion impact.Phys. Rev. A, 74:042702, 2006.

G. W. F. Drake.Springer Handbook of Atomic, Molecular and Optical Physics. Springer, 2006.
F. Grasbonet al. Signatures of symmetry-induced quantum-interference effects observed in

above-threshold-ionization spectra of molecules.Phys. Rev. A, 63:041402, 2001.
A. Jarón-Beckeret al. Ionization of N2, O2, and linear carbon clusters in a strong laser pulse.

Phys. Rev. A, 69:023410, 2004.
M. Lein et al. Role of the intramolecular phase in high-harmonic generation. Phys. Rev. Lett.,

88:183903, 2002.
M. Lewensteinet al. Theory of high–harmonic generation by low–frequency laserfields.Phys.

Rev. A, 49:2117, 1994.
G. E. Moore. Cramming more components onto integrated circuits. Electronics, page 8, 1965.
M. Schulzet al. Three–dimensional imaging of atomic four–body processes.Nature, 422:48,

2003.
M. Schulzet al. Two-particle versus three-particle interactions in single ionization of helium

by ion impact.J. Phys. B: At. Mol. Opt. Phys., 37:4055–4067, 2004.
Sun Microsystems Inc.SunTMONE Grid Engine Administration and User’s Guide. Sun Mi-

crosystems Inc., 2002.
C. Vozziet al. Controlling two–center interference in molecular high harmonic generation.

Phys. Rev. Lett., 95:153902, 2005.

467

