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Abstract. Topological Optimization provides a powerful framework to obtain the optimal domain 
topology for several engineering problems. The Topological Derivative is a function which 
characterizes the sensitivity of a given problem to the change of its topology, like opening a small hole 
in a continuum or changing the connectivity of rods in a truss. 
A numerical approach for the topological optimization of 2D linear elastic problems using Boundary 
Elements is presented in this work. The formulation of the problem is based on recent results which 
allow computing the topological derivative from strain and stress results. The Boundary Element 
analysis is done using a standard direct formulation. Models are discretized using linear elements and 
a periodic distribution of internal points over the domain. The total potential energy is selected as cost 
function. The evaluation of the topological derivative at internal points is performed as a post-
processing procedure. Afterwards, material is removed from the model by deleting the internal points 
with the lowest values of the topological derivate. The new geometry is then remeshed using a 
weighted Delaunay triangularization algorithm capable of detecting “holes” at those positions where 
internal points have been removed. The procedure is repeated until a given stopping criteria is 
satisfied. 
The proposed strategy proved to be flexible and robust. A number of examples are solved and results 
are compared to those available in the literature. 
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1 INTRODUCTION 

Structural optimization is a major concern in the design of mechanical systems. The 
classical problem in engineering design consists in finding the optimum geometric 
configuration of a body that maximizes or minimizes a given cost function while it satisfies 
the problem boundary conditions. During the last twenty years a number of numerical 
techniques have been developed to solve the problem efficiently. 

Following Ceá et al.(2000), structural optimization techniques can be classified as follows: 
• Size optimization: only the cross sections of the structure are optimized. This approach 

is specially suited for the optimization of beam/bar structures. 
• Shape optimization: the optimal geometry is searched within a class of domains having 

the same topology as the initial design, that is, no holes are introduced in the 
optimization domain. 

• Topology optimization: the shape and connectivity of the domain are both design 
variables; the introduction of a new boundary is permitted via the creation of holes. This 
versatile approach is capable of delivering optimal designs with a priori poor 
information on the optimal shape of the structure, and it possess the ability of producing 
the best overall structure (Tanskanen, 2002). 

Homogenization methods are possibly the most used approach for topology optimization 
(Bensoe et al., 1988). In these methods a material model with micro-scale voids is introduced 
and the topology optimization problem is defined by seeking the optimal porosity of such a 
porous medium using one of the optimality criteria. In this way, the homogenization 
technique is capable of producing internal holes without prior knowledge of their existence. 
However, the homogenization method often produces designs with infinitesimal pores that 
make the structure not manufacturable. A number of variations of the homogenization method 
have been investigated to deal with these issues, such as penalization of intermediate densities 
and filtering procedures (Sigmund et al., 1998). On the other hand, there exist the so-called 
level set methods which are based on the moving of free boundaries (Wang et al., 2004, 
2006). Although very effective, the main drawback of level set methods is that they require of 
pre-existent holes within the model domain in order to conduct a topological optimization. 
The topological derivative provides an alternative approach for shape optimization. It was 
firstly introduced by Ceá et al. (1974) by combining a fixed point method with the natural 
extension of the classical shape gradient. The basic idea behind the topological derivative is 
the evaluation of cost function sensitivity to the creation of a hole. In this way, wherever this 
sensitivity is low enough (or high enough depending on the nature of the problem) the 
material can be progressively eliminated. Topological derivative methods aim to solve the 
aforementioned limitations of the homogenization methods. 

A numerical approach for the topological optimization of 2D elastic problems using 
Boundary Elements is presented in this work. The formulation of the problem is based on the 
results by Novotny et al. (2003), who introduced a new procedure for computing the 
topological derivative which allows overcoming some mathematical difficulties involved in 
its classical definition. The boundary element analysis is done using a standard direct 
formulation. Models are discretized using linear elements and a periodic distribution of 
internal points over the domain. The total strain energy is selected as cost function. 
Afterwards, material is removed from the model by deleting the internal points with the 
lowest (or highest) values of the topological derivate. The new geometry is remeshed using an 
Extended Delaunay Tessellation algorithm capable of detecting “holes” at those positions 
where internal points and nodes have been removed. In this way, the procedure avoids using 
intermediate densities, the classical limitation of the homogenization methods. The procedure 
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is repeated until a given stopping criteria is satisfied. The performance of the proposed 
strategy is illustrated for a number of examples and their results compared to solutions 
available in the literature. 

Although the FEM has been the main numerical tool for the implementation of topology 
optimization techniques, there are implementations using BEM (see Marckerle, 2003) and 
free boundary parametrization methods (Wang et al., 2006). To the authors’ knowledge, the 
only antecedent in the implementation of the Novotny et al. (2003) approach for the 
computation of the topological derivative using BEM are the recent works by Cisilino (2006) 
and Marckzak (2005) for potential problems and by Marckzak (2006) for elastic  problems. 
Both implementations, that due to Marckzak (2005, 2006) and the one presented by Cisilino 
(2006) use similar procedures for the computation of the topological derivative results. 
However, they differ in the strategy proposed for the creation of the holes and the model 
update and remeshing. The procedures introduced by Cisilino (2006) for potential problems 
are extended here to elasticity problems.  

2 TOPOLOGICAL SENSITIVITY ANALYSIS 

The original definition of the topological derivative, TD , relates the sensitivity of a cost 
function ( )ψ Ω  when the topology of the optimization domain Ω  is altered by creating a 
small cavity or hole. However, the direct application and implementation of this concept is 
not straightforward, as it is not possible to establish a homeomorphism between the domains 
with different topologies (domains with and without the hole). 

Novotny et al. (2003) proposed an alternative definition of the  that overcomes the 
problem. They assimilated the creation of a hole to the perturbation of a pre-existing hole 
whose radius tends to zero (see 

TD

Figure 1). Therefore, both topologies of the optimization 
domain  are now similar and it is possible to establish a homeomorphism between them. 
According to this new definition, the expression for the 

Ω

TD  is 

( ) ( ) ( )
( ) ( )0

0

limTD x
f f

ε δε ε

ε
δε

ψ ψ
ε δε ε

+

→
→

Ω − Ω
=

+ −
 (1)

where ( )εψ Ω  and ( )ε δεψ +Ω  are the cost function evaluated for the reference and perturbed 
domain, ε  is the initial radius of the hole, δε is a small perturbation of the hole radius and 
f is a regularization function. The function f  is problem dependent and ( ) 0f ε →  

when 0ε → .  
It could be argued that the new definition of the TD  in equation (1) merely provides the 

sensitivity of the problem when the size of the hole is perturbed and not when it is effectively 
created (as one has in the original definition of the topological derivative). However, it is 
understood that to expand a hole of radius ε , when 0ε → , is nothing more than creating it (a 
complete mathematical proof that establishes the relation between both definitions of the  
is given by 

TD
Novotny et al. (2003)). Moreover, the relationship between the two definitions 

constitutes the formal relation between the  and the shape sensitivity analysis. The 
advantage of the novel definition for the topological derivative given by Eq. (1) is that the 
whole mathematical framework developed for the shape sensitivity analysis can now be used 
to compute the . 

TD

TD
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Figure 1: New definition of the  as proponed by Novotny et al (2003): (a) Original domain with pre-existing 

hole 
TD

( )εψ Ω , (b) Perturbed domain ( )ε δεψ +Ω  

3 THE TOPOLOGICAL DERIVATIVE FOR ELASTICITY PROBLEMS 

In the present work the  is applied to the optimization of two dimensional 
elastostatics. Following 

TD
Novotny et al. (2002, 2003), the topological derivative equations are 

briefly reviewed next, considering a mechanical model restricted to infinitesimal strains and 
displacements with a linear isotropic constitutive relation. 

Let εΩ be the domain of a deformable body with a small hole with boundary Bε∂ . The 

boundary N D Bε εΓ = Γ ∪Γ ∪∂  is submitted to a set of surface tractions t  on the Neumann 
boundary  and displacement constraints on the Dirichlet boundary NΓ DΓ . An homogeneous 

Neumann condition  0t =  is imposed on the hole boundary Bε∂ . Then, in absence of body 
forces the mechanical model can be described using the following variational formulation in 
terms of the displacement field, uε . Find uε such that 

( ) ( )
N

u w d t w d
ε

ε ε ε ε ε εσ ε
Ω Γ

⋅ Ω = ⋅∫ ∫ εΓ
, 

(2) 

where wε is a field of admissible displacement variations which satisfies the condition 0wε =  
on DΓ ; and εσ and εε  are the stress and strain fields respectively. 

The boundary-value problem given in Equation (2) for the reference configuration εΩ , 
must also be satisfied in the perturbed configuration ε δε+Ω (see Section 2). In this way the 
variational formulation for the perturbed configuration is 

( ) ( )
N

u w d t w d
ε δε

ε δε ε δε ε δε ε δε ε δε ε δε ε δεσ ε
+

+ + + + + + +
Ω Γ

⋅ Ω = ⋅∫ ∫ Γ , (3)

where it has been assumed that the external loads remain fixed during the shape change. 
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The cost function ( )ψ Ω  is, in a certain way, arbitrary. For the case of elasticity problems 
the total strain energy can be adopted. The expression of the total strain energy for the 
reference domain is 

( ) ( ) ( )1
2 N

u u d tu d
ε

ε ε ε ε ε ε ε εσ ε
Ω Γ

Ω = ⋅ Ω − Γ∫ ∫  (4)ψ

where the domain integral in the right hand side represents the total strain energy stored in the 
body and the boundary integral represents the external work. This objective function is 
equivalent to optimize the mean compliance of the problem. 

The optimization problem can be stated as the minimization of the total potential energy 
(4) with the weak (variational) form of the state equations (2) and (3) as constraints. All these 
three equations can be used to derive the expression for the  using equation (1). This result 
was obtained by 

TD
Novotny et al. (2003) using Reynold’s transport theorem and the concept of 

material derivatives of spatial fields: 

( ) ( ) ( ) ( )
0

1 1lim
2T

B
D x u u d B

f ε
ε ε ε ε εε

σ ε
ε→ ∂

= ⋅∫ ∂  (5)

Finally, an asymptotic analysis is performed in order to know the behaviour of the 
displacement solution uε , as well as the associated strain and stress fields, εσ and εε , when 

0ε → . From this asymptotic analysis the final expression for the  in the original domain 
Ω (without the hole) are obtained:   

TD

  ( ) ( )2

2 3 1
1 2 1TD x tr trν

ν ν
−

= ⋅ +
+ −

σ ε σ ε  (6)

for plane stress and 

  ( ) ( ) ( )( )
( )

1 4 1
2 1

2 1 2TD x tr tr
ν ν

ν
ν

− −
= − ⋅ +

−
σ ε σ ε  (7)

for plane strain.   
The symbol  ν in expressions (6) and (7) stand for the Poisson ratioν, while  and trtrσ ε  

stand for the trace of the stress and strain tensors respectively. 
 

4 BEM IMPLEMENTATION 

The implemented algorithm solves the optimization problem incrementally, by 
progressively removing a small portion of the domain per increment (usually known as hard 
kill algorithm (Eschenauer et al., 2001)). In addition to the constrains mentioned in the 
previous section,  it is necessary to consider some additional constraint in the problem in 
order to avoid that the algorithm leads merely to the trivial solution of the problem, i.e. the 
complete extinction of the optimization domain.  The simple way used in this work to tackle 
this problem consists in introducing a stopping criteria consisting in a goal minimum material 

volume fraction 
( )
( )min 0

finalvol

vol
γ

Ω
=

Ω
.  

 The algorithm can be summarized as follows (the index j  stands for increment number): 
i. Provide an initial domain 0j=Ω  and the stopping criterion (Figure 2a). 
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ii. Solve the BEM model for the jΩ domain (Figure 2b). Compute the stress σ and strain 
ε fields at internal and boundary points. 

iii. Compute the ( )TD x  using the formulas (6) or (7) 

iv. Select the points with the minimum values of TD  (a few percent of the total number of 
points) 

v. Create holes by removing the points selected in step iv (Figure 2c). 
vi. Check stopping criterion. If necessary, make 1j j= + , define a new domain jΩ , 

remesh the BEM model (Figure 2d) and go to step ii. 
vii. At this stage the desired final topology is obtained. 

 
Figure 2: BEM implementation: (a) Problem definition and boundary conditions, (b) Initial BEM model, (c) 

Elimination internal points, (d) BEM model remeshing. 

(a) 

DΓ  

NΓ  

(b) 

(c) 

u u=  
t t=   

n

(d) 

 

Boundary Element Analysis 
Since the  is a function of the stress and strains only, its evaluation does not require 

any special BEM implementation. Moreover, the recovery of the local  value can be easily 
implemented as a post-processing procedure. The present implementation is based on a 
parallel version of the BEM code SERBA which accompanies the book by 

TD

TD

Paris and Cañas 
(1997). The so-called SERBAPA (SERBA PArallel) was coded using MPI (Message Passing 
Interface) standard and it runs on Beowulf Cluster set up using Linux and built using five 
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Pentium 4 CPUs. It is worth to note that in addition to the computing time improvement for 
the problem solution, SERBAPA resulted in important time savings in the postprocesing 
when computing stresses and strains at internal points. This is due the important number of 
internal points used in the model discretization (see section bellow). 

Model discretization and remeshing 
The model discretization and remeshing strategies are key issues for the performance of 

the implemented algorithm. The initial BEM model is discretized using two-node linear 
elements and a regular array of internal points following the pattern depicted in Figure 2b. 
The removal of internal and boundary points in every increment is followed by a model 
remeshing. With this purpose the program MeshSuite, based on an α-shapes algorithm is 
employed (Calvo et al, 2003). Alpha shapes can be viewed as Delaunay triangularization of a 
point set weighted by the parameter α. Alpha shapes formalize the intuitive notion of shape, 
and for varying parameter α, it ranges from crude to fine shapes. The most crude shape is the 
convex hull itself, which is obtained for very large values of α. As α decreases, the shape 
shrinks and develops cavities that may join to form holes. In this work the parameter α is 
selected as the average distance between boundary nodes. This is the reason why internal 
points are distributed on the model domain using a regular array. Upon the input of the 
coordinates of the boundary nodes and internal points after each optimization step (see Figure 
2c), MeshSuite outputs the connectivity of the new model boundary (see Figure 2d). Thus, 
those points not used as boundary nodes are assimilated to internal points in the new 
discretization.  
 

J

(a) 

 
Figure 3: (a) Problems arising during the automatic model remeshing, multi-connected boundary nodes and 

“islands” disconnected from the main model boundary, (b) Suitable model discretization after the deletion of the 
conflicting points. 

(b) 
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Depending on the spatial distribution of the points, two problems may arise in the new 

boundary discretization (see Figure 3a): i) a multi-connected boundary points which take part 
in the connectivity of two (or even more) boundaries; and ii) there are closed contours 
defining “islands” disconnected from the main model boundary. Both problems are remedied 
by simply removing the conflicting points from the model. Multi-connected points are 
identified after checking that every valid boundary node belongs to the connectivity of two 
boundary elements only. On the other hand, for the deletion of the disconnected portions of 
the model it is necessary to test whether a closed contour defines an “island” or a hole. This is 
done by defining an auxiliary point in the direction of the outward normal to the contour (see 
point J in Figure 3a). If it is verified that the auxiliary point is outside the contour the 
conflicting points constitute an “island” and they are removed. It is worth noting that the two 
checks mentioned above are performed in every increment of the optimization algorithm. 
Moreover, the checks are performed repeatedly until no problems are detected, since the 
deletion of a point as a consequence of previous checks could lead to the occurrence of new 
conflicting situations. 

5 EXAMPLES 

Results for three examples are presented in this section. In order to assess the 
performance of the BEM algorithm, the first two examples are well known validation 
examples. The last example is dedicated to an application problem. 

For all examples, the material used is steel with modulus of elasticity of 210 GPa and 
Poisson´s ratio ν=0.3.  All the examples are in plane stress condition. 

5.1 Short Cantilever Beam with Load at the Middle of the Free Vertical Edge 

This first validation example consists in the short cantilever beam illustrated in Figure 4a. 
The optimization domain is a square of size 10m×10m, discretized using 400 boundary 
elements and 9801 internal points following the pattern shown in Figure 2b. The left side of 
the domain was fixed (zero displacement boundary condition) and a total vertical load 

 was applied at the middle of the right side. The load P was applied over a length 
d=0.4 m (four boundary elements). The specified minimum material volume fraction is 
γmin=0.2. 

40P = N

)

Two methods were used for setting the amount of removed material. The first one 
consisted in removing a constant amount of material in every increment, this amount 
computed as a percentage of the initial model volume 0(vol Ω . Using this strategy (which in 
what follows will be referenced as the “constant method”) the problem was solved removing 
5%, 1% and 0.2% of the initial model volume in every increment. In the second method the 
amount of removed material was updated in very increment, that is, the amount of removed 
material is computed as a percentage of the current model volume . In this way the 
actual amount of removed material diminishes with the progress of the optimization process. 
A percentage of 5% was used when solving the problem using the so-called “updated 
method”. 

( )jvol Ω
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(a) 

P= 40 N 

 
 

(b) 

P= 40 N 

Figure 4: Geometry for the examples 1 and 2. Short cantilever beams with loads applied (a) at the middle of the 
middle and (b) at the top of the free vertical edge. 

 
Figure 5 displays the evolution of the normalized cost function in terms of the material 

volume fraction for the solutions computed using the constant and the updated methods. 
Besides, Figure 6 illustrates the intermediate (volume fraction in the range 0.45 0.48jγ≤ ≤ ) 
and final geometries (volume fraction 0.20 0.23jγ≤ ≤ ) obtained using the constant method.  

The results in Figure 5 allow verifying the convergence of the optimization scheme. The 
three sets of results obtained using the constant method show that the overall value of the cost 
function diminishes with the reduction of the amount of material removed per increment. At 
the same time it can be seen that the three sets of results behave similarly up the a volume 
fraction 0.50γ ≈  (the normalized cost function at this point ranges from 02.02 1.88≤ Ψ Ψ ≤  
for a material removal rates of  5% and 0.2% respectively), and then start diverging. In 
essence, the 5% solution starts producing more “expensive” results when compared to 1% and 
0.2% removal rates. This observation is in accordance with the geometries illustrated in 
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Figure 6. The intermediate results show that the 1% and 0.2% geometries respond to the same 
basic design: two principal “>-shape” structures connected by auxiliary beams (see Figures 
6b-1 and c-1), while the 5% approach produced a different design consisting in a single 
exterior “>-shape” structure with an internal regular lattice (see Figure 6a-1). Similarly, the 
final geometries resulting from the 1% and 0.2% solutions are almost identical (see Figures 
6b-2 and c-2), and they present a significant improvement in terms of the cost-function 
minimization when compared to the 5% solution (see Figure 5). 
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Figure 5: Example 1: evolution of the normalized cost functions in terms of the material volume fraction. 
 
 
Figure 7 depicts the evolution of the model geometry with the material volume fraction 

computed using the updated method. When compared with the results in Figure 6, it can be 
observed that the intermediate geometry for 0.50γ =  (Figure 7c) looks like a transition of 
those obtained using the constant method with material removal rates of 1% and 5% shown in 
Figures 6a-1 and b-1 (the new solution combines portions of an interior “>-shape” structure 
with a small lattice). Besides, the normalized cost 0Ψ Ψ  associated to this geometry is 
within the range indicated for the constant-method results (see Figure 5). For the rest of the 
simulation the cost function presents a similar behaviour to that of the 5% constant-method 
solution. Moreover, the configurations of the model geometries at 0.21γ =  (the result 
corresponding to the specified minimum material volume fraction) posses the same 
configuration (see Figure 6a-1 and Figure 7d). 

Finally, the problem was solved using the updated method with a specified minimum 
material volume fraction γmin=0.07. The resulting intermediate geometry for 0.13γ =  and the 
final geometry for 0.075γ =  are illustrated in Figures 7e and 7f respectively. The final 
solution is in agreement with that obtained by other authors (see for example Wang et al, 

1861



2003). It is worth to mention that updated method was the only capable of achieving such a 
demanding material volume fraction reduction. All the solutions attempted using the constant 
method with the above reported material removal rates failed to produce valid models for 
material volume fractions 0.15γ < . This is because at a given stage the algorithm removed an 
excessive amount of material which resulted in disconnected geometry. 

 

                      

           

           
 

 

           

            

           

 

           

(a-1) 
5% constant 

γ=0.48 

(a-1) 
5% constant 

γ=0.24 

(b-1) 
1% constant 

γ=0.47 

(b-2) 
1% constant 

γ=0.21 

(c-1) 
0.2% constant 

γ=0.45 

(c-2) 
0.2% 

constant 
0 21

Figure 6: Example 1: intermediate and final geometries computed using different material removal rates with the 
constant method. 
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(a) 
γ=0.81 

(b) 
γ=0.63 

(c) 
γ=0.46 

(d) 
γ=0.23 

(e) 
γ=0.13 

(f) 
γ=0.075 

 
Figure 7: Example 1: evolution of the model geometry with the material volume fraction. Solution computed 

using an updated method. 
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5.2 Short Cantilever Beam with the Load at the Top of the Free Vertical Edge 

The geometry of the second validation example is illustrated in Figure 4b. The problem has 
the same dimensions, discretization and boundary conditions to that of the first example, with 
the only exception that the load P is now placed at the top corner of its right edge. Like in the 
first example the load P was applied over a length d=0.4 m (four boundary elements). The 
specified minimum material volume fraction is γmin=0.3. 

Figure 8 displays the evolution of the normalized cost function in terms of the material 
volume fraction for both solutions. The problem was solved using the constant method, with 
material removal rates of 5% and 1%. The results present similar behaviours to those obtained 
for the first example. The cost functions for both solutions behave almost coincident up a 
volume fraction 0.50γ ≈ , and then start diverging. The 5% solution produces more 
“expensive” results than the 1% solution.  

The evolution of the problem geometries are depicted in Figure 9. As it can be seen, both 
solutions converge to the same final configuration, which is in accordance to that reported by 
other authors (Marckzak (2006), Novotny et al. (2002)).  
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Figure 8: Example 2: evolution of the normalized cost functions in terms of the material volume fraction. 
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(b-1) (a-1) 
1% constant 5% constant 

γ=0.80 γ=0.80 

(b-2) (a-2) 
1% constant 5% constant 

γ=0.50 γ=0.50 

(b-3) (a-3) 
1% constant 5% constant 

γ=0.30 γ=0.30 

Figure 9: Example 2: intermediate and final geometries computed using different material removal rates. 
 

5.3 Design of a Hook 

This last example consists in a design of a hook to lift a load. The initial optimization domain 
is chosen as a rectangular plate with dimensions 100mm×150mm with a circular hole used to 
introduce a bolt to connect the hook to the lifting mechanisms, and a slot used access the 
loading point (see Figure 10a). The problem was discretized using 783 boundary elements 
and 22482 internal points. The problem was solved using the constant method, with a material 
removal rate of 1%. The specified minimum material volume fraction is γmin=0.30. 
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P 

          
 (a) Initial geometry (b)   γ=0.60 
 
 

                                            

(c)   γ=0.40 (d)   γ=0.27  
 
 
Figure 10: Example 3: (a) initial design and evolution of the model geometry with the material volume fraction 

(b to d).  
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Figures 10b to 10d  depict the evolution of the optimization procedure. One the 
optimization was completed; the resulting geometry was smoothed in order to provide a 
manufacturable final design (see Figure 11a). The final design was solved using a new BEM 
model and the obtained results compared to those of the initial geometry. The normalized cost 
for the final design is 0Ψ Ψ =0.7, while the displacement of the loading point is incremented 
only 35%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                    (b) 

Figure 11: Example 3: (a) final design and (b) comparison of the displaced configurations for the initial and 
final designs (displacements are magnified 50 times) 

 

6 CONCLUSIONS 

An effective BEM implementation for the topological optimization of 2D elastic structures 
was presented in this work. The problem formulation is based on some recent results by 
Novotny et al. (2003), who introduced a new procedure for computing the topological 
derivative which allows overcoming some mathematical difficulties involved in its classical 
definition.  

The optimization problem is solved incrementally, by progressively removing a small 
portion of the domain per increment. BEM models are discretized using linear elements and a 
regular array of internal points. The topological derivative is computed at boundary nodes and 
internal points from the strain and stress results. In every step the material removal is done by 
deleting those internal points and/or boundary nodes with the lowest values of the topological 
derivative. The material removal is followed by a model remeshing which consists in 
weighted Delaunay triangularization algorithm and a checking procedure devised to avoid the 
occurrence of invalid BEM models. The process is repeated until the given stopping criterion 
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(the goal minimum material volume fraction) is achieved. 
The proposed method proves to be efficient and robust. Its performance is assessed by 

solving a number of benchmark problems and an application example. 
 

ACKNOWLEDGEMENTS 

The authors wish to express their gratitude to N. Calvo (CIMEC, Argentina) for providing the 
MeshSuite software used for the automatic BEM model discretization. This work has been 
partially supported by the Agencia de Promoción Científica de la República Argentina under 
grants PICT 12-14114 and the ALFA Project ELBENET “Europe-Latin America Boundary 
Element Network” sponsored by the European Union. 

REFERENCES 

Calvo N, Idelsohn S.R. and Oñate E., The extended Delaunay tessellation. Engineering 
Computations, 20/5-6, 2003. 

Ceá J., Gioan A., and Michel J., Adaptation de la méthode du gradient a a un probleme 
d’idenfification de domaine. In : Lectures Notes in Computer Science, Vol. 11, 371-402, 
Springer, Berlín, 1974. 

Ceá J., Garreau S., Guillaume P. and Masmoudi M., The shape and topological optimization 
connection. Comput. Methods Appl. Engrg., 188:713-726, 2000. 

Cisilino A.P., Topology Optimization of 2D Potential Problems Using Boundary Elements. 
Computer Modelling in Engineering & Sciences, 15/2: 99-106, 2006. 

Bensoe M.P. and Kikuchi N., Generating optimal topologies in structural design using a 
homogenization method. Comput. Methods Appl. Mech. Engrg, 71:197-224, 1988. 

Eschenauer H.A. and Olhoff N., Topology optimization of continuum structures: a review. 
Appl. Mech. Rev., 54: 331-390, 2001. 

Mackerle R., Topology and shape optimization of structures using FEM and BEM – a 
bibliography (1999-2001). Finite Elements in Analysis and Design, 39: 243-253, 2003. 

Marckzak R.J., Topology optimization and boundary elements – A preliminary 
implementation for linear heat transfer. Proceddings of the XXVI Iberian Latin-American 
Congress on Computational Methods in Engineering CILAMCE 2005, Espírito Santo, 
Brazil, 2005. 

Marckzak R.J., A Boundary element implementation for topology optimization of elastic 
structures. Proceddings of the XXVII Iberian Latin-American Congress on Computational 
Methods in Engineering CILAMCE 2006, Belem, Brazil, 2006. 

Novotny A.A., Feijoo R.A., Padra C. C. and Taroco E., The topological-shape sensitivity 
analysis and its applications in optimal design. Mecanica Computacional XXI. Proceeding 
of the First South American Congress on Computational Mechanics. S.R. Idelsohn, V.E. 
Sonzogni and A. Cardona (Eds.), Santa Fe, Argentina, 2002. 

Novotny A.A., Feijoo R.A., Taroco E. and Padra C.C., Topological sensitivity analysis. 
Comput. Methods Appl. Mech. Engrg., 192:803-829, 2003. 

Paris F. and Cañas J., Boundary Element Method: Fundamentals and Applications. Oxford 
Science Publications, USA, 1997. 

Sigmund O. and Peterson J., Numerical inestabilities in topology optimization: A survey on 
procedures dealing with checkerboards, mesh dependencies and local minima. Structural 
Optimization, 16:68-75, 1998. 

Tanskanen P., The evolutionary structural optimization method: theoretical aspects. Computer 

1868

http://www.amazon.com/Boundary-Element-Method-Fundamentals-Applications/dp/0198565437/sr=1-3/qid=1168288861/ref=sr_1_3/105-6387495-3842842?ie=UTF8&s=books
http://www.amazon.com/Boundary-Element-Method-Fundamentals-Applications/dp/0198565437/sr=1-3/qid=1168288861/ref=sr_1_3/105-6387495-3842842?ie=UTF8&s=books


Methods in Applied Mathematics and Engineering, 190:4081-4193, 2002. 
Wang M.Y., Wang X. and Guo D., A level set method for structural topology optimization. 

Comput. Methods Appl. Mech. Engrg., 192:227-246, 2003.  
Wang M.Y. and Wang X., PDE-Driven level sets, shape sensitivity and curvature Flow for 

Structural Topology Optimization. Computer Methods in Engineering Science, 6/4:373-
395, 2004. 

Wang M.Y. and Wang X., Structural shape and topology optimization using an implicit free 
boundary parametrization method. Computer Methods in Engineering Science, 13/2:119-
147, 2006. 

 
 
 
 
 

1869


