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Abstract. The present work deals with the dynamic analysis of flexible, nonlinear mditisgstems
undergoing intermittent contact. The contact event is assumed of finitéatuaad the contact forces are
computed during the simulation. Two kinds of contacts are considered: ngidat condition, treated
by using the slack variable technique, and flexible contact, treated by sisitadple phenomenological
laws that relate the contact forces and the inter-penetration betwees bodéework is developed within
the framework of an energy preserving time integration scheme, that psowvittonditional stability for
the kind of systems analyzed in this work.
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1 INTRODUCTION

Intermittent contact can occur between two rigid or defdstedodies of the system or with
an external body. The nature of the contact can be accidersdahe impact of a member of
the system on an unexpected obstacle. Another source ahiittient contact are the clearances
in the joints of multibody systems, due to manufacturingenf@ctions or damage. Sometimes
intermittent contact is an inherent feature of the systenm ¢he case of cam-follower systems.
The various approaches to the modelling of unilateral curfil into two main categories,
depending on the assumed duration of the contact, as medtimnBottasso and TrainelBt-
tasso and Trainell2001) and BauchauBauchay2000.

The first approach (Impulsive Model) considers null the tdareof the contact. The configura-
tion of the system is assumed to be identical before and iaffgact and an appropriate model
is used for relating both states. This approach was firstqeeg by KaneKang 1962 and
extended by Khulief and Shaban&hulief and Shaband 986 taking into account the flexi-
bility of system components. There are two alternativei® theory: Newton’s method that
relates the relative normal velocities of the contactindgies using an appropriate restitution
coefficient, and Poisson’s metho@féiffer and Glocker1996 that divides the impact in two
phases: an initial compression phase brings the normadivesigelocity of the bodies to zero
through the application of an impulse at the contact locatiben an expansion phase applies
an impulse of opposite sign which magnitude is related tontlagnitude of the first impulse
through a restitution coefficient.

This first approach requires the implementation of an allgorifor exact detection of the time
instant in which the impact event is produced, at which theetintegration scheme has to be
stopped and the impulse magnitude is computed modifyingé¢haities. Several alternatives
have been proposed to this end. This strategy can be timeimamg and complicated in the
case of multiple impacts, as it may happen when modellingagchpetween flexible bodies in
contact or between several rigid bodies.

In the second approach (Continuous Model) the duration aftipact is assumed finite and the
time history of the forces acting between the bodies in air{tahich can be rigid or flexible)
is explicitly computed at the simulation. This is achievgdriroducing a suitable phenomeno-
logical model for the contact forces, usually expresseduiastions of the approach between
the contact bodies. As for all the contact models we have gpt@amnentary problem: either the
sum of the relative distance and the approach is greatezémnat(the contact forces vanish),
or the same sum is null and the relative distance is equal ppdsite to the approach (inter-
penetration with non-vanishing interaction forces).

In this work the contact event is assumed to be of finite domatiTwo different approaches
are used to model the intermittent contact: rigid and flexibipact. In the case of the rigid
impact, the unilateral contact condition is transformed im holonomic constraint by using a
slack variable. In the case of flexible impact, a simple maklat relates contact forces with
the inter-penetration between bodies is used. Both appesaate used to analyze the impact
between rigid and flexible bodies and compared, establisiimch one is the best choice for
each case.

2 FORMULATION OF THE PROBLEM

Let us describe a conservative mechanical system in terms géneralized coordinateg
submitted toR algebraic constraints

®(q) = 0. (1)
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Its dynamic properties can be derived from an appropriaterggion of the potential energy of
the systemV = V(q) and of its kinetic energy, which can be put in quadratic foritheaut loss

of generality

K= %’UTM’U. (2)

The(M x M) inertia matrixM can be assumed constant, symmetric and positive definie sin
velocitiesv are expressed inmaterial frame The latter are treated as quasi-coordinates and
thus take the form of linear combinations of generalizeddimate time derivatives

v = L(q)q, 3)

L(q) being a(M x N) matrix with A/ < N. This inequality covers the case in which the
description of angular velocities is made in terms of redumdotation parameters such as
Euler parameters. In this case the redundancy between peaahas to be removed by adding
appropriate constraints to the global sBt (

The motion equations result from the application of Hamigrinciple:

cS/tl2 {%UTM’U — uT (v—L(q)q) — V(q) — AT@(q)} Q=0 @

We successively perform variations on the variahled, v y q:
— the variation of the multiplierg restores the velocity equatior) (

— variation of the multipliers\ restores the constraints séj (

the variation of the velocities shows that the multipliers have the meaning of gener-
alized momenta
n=Mv (5)

— the variation of the generalized displacemenyselds

t2 oy odT 0
5T<————A+— Lg)* >+5‘TLT }dt:O 6
/tl{q 9q 9a 8q[( q)" pl q"L"p (6)

from which the dynamic equilibrium equations will be extext
Integration by parts off) yields

to
[5qTLTuK? +/ 5q”

t1

8]/ G@T a T d T —
{‘a_q_a—q”a_q[(“” pl -2 (L M)}dt = 0@

The combination off) and @) gives
p = ML(q)q (8)

Then, the equations of motion become a first order DAE systath variablesg, ;. andA:

.oV . 0 .
L7+ 9q +B"A+ LT — 9q [(Lq)Tp,} =0
p—ML(q)g=0 ®)
P(q) =0
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whereB = 0®/0q is the Jacobian matrix of constraints. Note that the lasttemms in ©-a)
can be written as

0 . :
L"p - 94 (L)' p] = G(p)q (10)
where the matrixG' () has the following components:
oL;; OL;

Gjp = i R ) 11
Jip Z; K ( 94, 94 (11)
Skew-symmetry oG follows immediately. The final form of the equations of matis thus:

LTﬂ+g—Z+BT>\+G( )g=0

n—ML(g)q =0 (12)

®(q) =0

3 THE TIME CONTINUOUS GALERKIN APPROXIMATION: ENERGY PRESER-
VATION SCHEME

3.1 Discretization of the equation of motion

t t,

n n+1
tn+1 /2

Figure 1: The time continuous Galerkin approximation optlisements and velocities

In the Galerkin approximation the equations of motion arloed in a weak (integral)
manner. The Galerkin approximation of the equations of omofl 2) is written as

g /_11 Wi(7) (¢ — L™ 'v) dr+

ho(* %

— [ W Mé+ L "G+ L "—

2/_1 2(7)< b+ LG+ L
whereW;(7) are the weight functiong is the time step size and a nondimensional time
variable ¢ = —1 att,, andr = 1 att,,, ;). By using piecewise linear interpolation functions for
the displacements and velocities (Figlyeand piecewise constant test functions and W,
we obtain the set of discrete equations:

+ LTBT)\) dr=0 (13)

(1 1 oV
hL +1M(vn+1 n) + EGnﬁ-%((In-&-l - qn) + a_q n+% n+1A = =0
L, 1 (14)
% %(qn-l—l qn) = 5(”n+1 +v,)

| Pryi(q) =0
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The matrime% depends on the adopted rotation parametrization. The gdriaation used
(Euler parameters) assures a constant mm,t;L;% as itis shown in a previous workéns et al,
2004 Lens 2006.

3.2 Energy preservation in the discrete scheme

The total energy of the systemd4q, g) = K(q) + V(q) where the kinetic energy has as a
final expressiorkC = %vTMv and the potential energy(q) is a function of the generalized
coordinatesy. The total energy change in a time step can be evaluated d¢omgpghe work
done by the elastic, constraint and inertia forces.

To prove the total energy preservation of the discrete seheve multiply (L4-a) by the dis-
placements jumgpq,.1 — g,)* over atime step

1 1
E(qn—i-l - qn)TLn—i-%M('Un—H - 'l)n> + E(qn—i-l - qn>TGn+%(qn+1 - qn)+
oV
(Gni1 — aqn)” 8—q . + (@ny1 — qn)TBZJr%An-F% =0 (19)

By looking at the first term we can identify the kinetic energgnp over a time step as:
1 1

E(anrl - Qn)TLnJr%M(/UnJrl - Un) = §(Un+1 + Un)TM(UnJrl - Un) = ’Cn+1 - Ky (16)
Due to the skew-symmetry of the matiix the second term becomes identically null.
1
E(qn+l - qn)TGnJr%((JnJrl - qn) =0 (17)

In the term of elastic forces derived from the potentialve substitute the derivative at the mid-
point(9V/dq),,. 1 by the approximatiooV/dq), . . (discrete directional derivati&onzalez
2 2
1999) that satisfies the condition:
v\
(qn—l—l - qn)T a_ = Vn+1 — Vn (18)
q ntl
2
In the constraint forces term we use again the concegisafete directional derivativevhere
now the Jacobian matrix of constrairﬁwé is replaced by the approximaticB:‘Hrl in order
2

to satisfy

(@n1 —Pn) = B, 1 (g1 — ) (19)
With this condition,
(Qn+1 - Qn)TBﬁ%Am% = (‘pnﬂ - ‘pn) >‘n+% (20)
The configuration at time, is assumed to be compatibte, = 0. Then, forcing
$,.1=0 (21)

we guarantee that the work of the constraints forces is zero.
By replacing equationsl@), (17), (18) and (L9) into equation {5 we may see that the total
energy change of the system over a time step results

€n+1 - gn - ,Cn—H - ICn + Vn—i—l - Vn =0 (22)

Therefore, the scheme formed by the equation8treserves the total energy of the system
if (18), (19) and 1) are satisfied.
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4 CONTACT CONDITION

In this section two different types of contact problems Wil addressed. At first, the con-
tacting bodies are assumed to be infinitely rigid, giving ttis the inequality condition > 0.
Next, the bodies are assumed to be deformable under hypothfesmall deformations. At
contact, a new variable is introduced. This quantity is defined as #ygproachand when
inter-penetration occurs we hawe> 0 andq < 0. Without inter-penetration we have that
a = 0 andq > 0. By combining both situations we arrive to the contact caadiy + a > 0,
which impliesq = —a for the case of inter-penetration. For this case, a suitaldomeno-
logical model for the contact forces as function of the applobetween contact bodies must
be taken into account. The magnitudexokill depend on the chosen potential contact model.
A schematic plot ofy anda with and without inter-penetration is shown in Figire

(a) (b)

q>0 g< 0, a=-q

Figure 2: (a) non inter-penetration cage= 0 andg > 0. (b) inter-penetration case;:= —a

4.1 Rigid Impact Between Bodies

The contact condition for rigid impact between two bodieansnequalityy > 0 which can
be transformed into an equality conditign- »* = 0 through the addition of a slack variable
Hence, the contact condition is enforced as a nonlineamioohic constraint

dP=q—1>=0 (23)

The constraint forces arise from

0q T
0D = {57”] [—2)\7’] 24)

and are discretized in such a way that the work they perfomistias over a time step. The
discrete forces are expressed as
Apyl
2
[—2)\,1_,_17“”4_%] (25)

wherer,, 41 = = (rny1+1,)/2. The work done by the discretized forces of constraint ismmatex
as(anH qﬁn)AME. In a similar manner as it was done in Sect®8, by enforcing®,,.; = 0
the vanishment of the discrete work and the avoidance ofriftgpienomenon are guaranteed.
Since the slack variable is not connected to any degreeeddm of the model, the variation
or gives rise to the non linear equatier2 )\, P1Tngl = 0 which possesses two solutions. The
first one,\,, 41 =0 is asociated to the non contact condition. The secondvolneg = 0 indi-
cates an actlve contact condition and implgs,; = —r,,, which together with?,,,; = ®,, =0

3010



results ing, .1 = riﬂ = 72 = g,. In other words, when the contact condition is activated, a
contact force\, +1 # 0 is developed and the relative distance between the comgglstidies
remains unchanged Finally, the relationship betweenciéds and displacements given by
equation {4-b): ' _
dn+1 + dn dn+1 — dn
) = - (26)
which yieldsg, 1 = ¢,. For further details, see referend&afichay2000.

4.2 Flexible Impact Between Bodies

When we consider the contact as flexible, the contact condt@zomesg + a > 0 where
a is the quantity defined as ttapproachbetween bodies. A suitable phenomenological model
for the contact forces expressed as function of the approaivieen the contact bodies must be
introduced. In this work we will adopt an elastic potentiglusing a piecewise linear contact
force like that plotted in Figur8&. As discussed in sectioB.2, the expression of the elastic

f

Figure 3: Elastic potential: piecewise linear contact éorc

forces for the energy preserving integration scheme mussifysdhe condition established by
equation {8):

ov|”
(qn-‘rl - Qn) a_q n+% = Vn-{—l - Vn (27)
where the potential(q) has for expression
q
v= [ fada+ Vi (28)
q0
hence the elastic force expression for the energy pregsesadneme writes
vl L f@da = [ flodg [ fla)dg 29)
0q |41 Gnt1 — Gn Gn+1 — Gn

By computing the derivative of this expression with respé%gl we obtain the stiffness
contribution as:

*

f(anrl)(anrl - Qn) - q(inﬂ f(Q)dq f(Qn—i-l) B %_:; n—l—%

K =2
<Qn+1 - Qn)2 (Qn—i-l - Qn)

(30)
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5 NUMERICAL EXAMPLES

In this section we present several examples of rigid andblexmpact between rigid and
flexible bodies, to show the performance of the proposedi#iign. The beam model used in
this paper is documented ibg€ns and Cardon&007 Lens 2006. The unconditional stability
of the integration scheme is guaranteed by the element fation, by providing the energy
preservation at each time step.

5.1 Tworigid pendulumswith mutual rigid impact

o4 ! o,

! m, = 1 #g
=1

l1:1

m, @

Figure 4: Two pendulums with mutual impact

Figure4 shows the problem of impact between two pendulums of unisraad length. The
problem has four degrees of freedgh = [z, 22 ¥ 2], and is subjected to two length
constraintsh, = x?3 + y} — (> = 0 and®, = 23 + y3 — (> = 0, and the intermittent contact
constraint. The right pendulum is dropped from its horiabpbsition with zero initial velocity.
Contact was modelled using the rigid impact approach of @eetil. Figure5 displays the

1 5

Pendule 1
0.8} 4 4} ‘.
Pendulg 1 "
0.6 | p 3t “
@ 04f | Al “‘
& ;
0.2 4 1k
IS
[}
& Of-—"t--- 1o~ ‘ O - Y
= b | : ‘ ' i
a 02r g' [ . ' Pendule 2 f i “1r
VI R { I B
o Vo Lol [ Lot o) ! |
[ I I ) . [ I i ol ) i
-0.6¢ | | Vo Lo v b Lo L A
Lo - . Vo Vo [ ‘ X !
- o Vo . v ¢ ' ‘ !
“08p Vo Vo o . . {4 Al A , :
L L) L) VL '\ .‘ L Pendule 2
-1 ‘ i, -5l . o J
0 5 . 10 15 .
Time Time

Figure 5: Displacements and velocities vs. time - X coorgina

time history of displacements and velocities for both bsdighere it can be seen once again
that the periodic character is perfectly preserved. Figushows that for this example the
scheme verifies first order accuracy, although the integratcheme is second order accurate
for standard problems. This loss of accuracy is caused bydglieimpact modelling.
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Convergence Study - Period error

10°°

10

ATIT

Data
- - - - Linear Fit

10®

10* 10 1072
Time Step Size h

Figure 6: Two pendulums mutual impact: convergence study

Figure 7: Double pendulum against a rigid wall

5.2 Double Rigid Pendulum Impacting a Rigid Wall

This example deals with a double pendulum that impacts againigid wall (Figure?,
my; = mo = 1 kg and¢; = ¢, = 1 m). The system is dropped from its horizontal position with
zero initial velocities. The simulation results are digigld in Figures8 and9, for a time step
size 0f0.0005 s. The impact can be clearly identified as a discontinuityhendisplacements
and a jump in the velocities.

5.3 Impact of a Simple Pendulum on a Rigid Stop

The last example deals with the impact of a simple penduluma agid stop. To model
the pendulum, two alternatives were taken into account:a(apid body model and (b) a
flexible beam model. The pendulumlsm long and is subjected to the action of the gravi-
tational field. The mass of the rigid bodyss = 0.25 kg. The beam data is: section area
A = 0.0005 m?, section inertiag, = 2 x 107" m* and/, = I, = 1 x 10~" m*, elastic modulus
E = 2.1 x 10" N/m?, mass density = 7800 kg/m?* and Poisson modulug = 0.3. The
pendulum was modelled using 10 beam elements. Figj0Ehows schematic draws of both
models. The initial condition is depicted in the figure, itbe pendulum is dropped from its
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Double Pendulum - At =0.0005 [s] Double Pendulum - At =0.0005 [s]
T 0.5 T T

x displacements
R — — —ydisplacements
T

/o /N

©
o
T

m, displacements [m]
m, displacements [m]

7.5 X
time [s] time [s]

Figure 8: Double pendulum: andy displacements for (a); and (b)ms

Double Pendulum - At =0.0005 [s]

Double Pendulum - A t=0.0005 [s]

x velocity
— — —y velocity

x velocity
— — —y velocity

m, velocities [m]
m, velocities [m]

40 25 50 75 0 25 5.0 75
time [s] time [s]

Figure 9: Double pendulum: andy velocities for (a)m; and (b)m.

e L o o L

(a) (b)

Figure 10: Impact of a simple pendulum on a rigid stop: (agrizpdy and (b) beam model

horizontal position with zero initial velocity. All resdtdisplayed in this section are for a time
step sizeAt = 0.000006 s.

Figurell-a shows the time response of displacemerdady of the massn for the rigid body
case. It can be seen that after the impact the mass retums point of depary = 0 due to the
energy preservation that is shown in Figafdeb.

For the case of the beam model we analyzed both contactatiters: the rigid and the flexible
iImpact, as described in sectioAsl and4.2. Several tests were performed for different time
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Rigid Model with Slack variable - At =0.00006 [s]
0 T ™~ T ~ 10

Rigid Model with Slack variable - At =0.00006 [s]
- T T T
x displacements

kinetic energy
— — — total energy

Tip displacements [m]
o
(4]
Energies
S

i i . . . .
0.6 0.9 1.2 1.5 0 0.3 0.6 0.9 1.2 1.5
time [s] time [s]

Figure 11: Rigid body model: (a) x and y tip displacements @)anergy preserving

step sizes and for different values of the constant stiffiies Figure 12 shows ther andy
displacements of the tip of the beam, for (a) the rigid impactlel with the slack variable and
(b) the flexible contact model with the piecewise linear eshforce. The value of the contact
stiffness for this case is, = 1 x 10® N/m?, the highest value of contact stiffness used in all
tests. We can see that for the first impact both responsesayeswnilar but after the second
impact they show very different behaviours.
We would like to note that in the case of using the flexible iotpaodel, the computed re-
sponses converged to a solution for decreasing values efdtep size. On the other hand,
when using the slack variable approach, the responses ¢edpfier the second impact dis-
played a chaotical behaviour for varying values of time siep.

Very rapid vibration oscillations are excited in the beateafhe first impact, as can be seen

Beam Model with Slack variable - A t=0.000006 [s]

\\ x displacements
-0.1 0 — — —ydisplacements |4 01 F
1

-02 -

Beam Model with Spring - A t = 0.000006 [s] - k 6= 1E5 [N/m ]

-03 -

04

Tip displacements [m]

o
o

Tip displacements [m]

time [s]

-0.5 -

-0.6

-0.7 -

-0.8 -

-09 -

x displacements
— — — ydisplacements

time [s]

Figure 12: Beam model: andy displacements for both models of impact (a) rigid (b) flegillith £, = 1 x
10® N/m

in Figures14-16. For this reason, the tip of the beam is rapidly oscillatibgha time of ap-
proaching the stop at second impact, and the computatiorotbmafter impact may present
very different responses, especially in the case of usiagitiid contact model.

By using the penalty approach, the problem is regularizednandbserve a small dependence
of the results on the time step size. It can be seen that tha beadel response converge to
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Beam Model with Spring - A t = 0.000006 [s] - k = 1E5 [N/m | Beam Model with Spring - A t = 0.000006 [s] - k §= 1E5 [N/m ]

o
[=)

B3 T T T
/ h // \\ / \\ /
01 F 451 oy P '4
i
/ ' — — — deformation + kinetic energy
021 40 oot : total enert i
\ 9y
! T
_. 03 351 ) \\ ¢ \ o
S / ' !
£ \ , \ )
£ -04 1 30+ l ¢ / \ .
!
g 3 ! ! ! !
8 05 > 25 ; t i ! .
N 2 | \ ! v ,
o w ' ! 1
2 .06 201 // | i \ ! 7
o ' \ i \ /
= 0.7 F 151 h \\ /! \ // T
4
x displacements 10l ,’ \ / y 1/ i
0.8 — — —ydisplacements / ! ! \
\ ) /
v ! \ , \ ;
0.9 A 5 N Vo 1
\ )/ Y N2
1 i i 0 n T n n
0 0.6 2 1.2 1.5 0 0.3 0.6 0.9 1.2 1.5
time [s] time [s]

Figure 13: Beam model: (a) andy tip displacements and (b) energy preserving for the flexibigact model
with ks = 1 x 10° N/m

the rigid body response when decreasing the value ok tle@efficient (Figurel3), since the
excited beam oscillations are smaller in this case.

) ) Beam Model with Slack variable - A t = 0.000006 [s]
Beam Model with Slack variable - At = 0.000006 [s] 50 ; ; . .
T T T

50

450 45

N
o

40t

Kinetic Energy
N
a
W W
S &
T

N
o
T

20F

Deformation Energy
N
(4]

0 0.3 0.6 0.9 1.2 1.5 0
time [s]

time [s]

Figure 14: Beam model: (a) kinetic energy and (b) defornmagioergy for the rigid impact model.

6 CONCLUSIONS

A methodology for nonlinear, flexible multibody systems argbing intermittent contact
has been presented. Contact duration is assumed finite andrtet force is computed in an
explicit way as part of the simulation.

The unilateral contact condition is transformed into a holmic constraint by using a slack
variable, in the case of rigid impact model. When the impacbissidered as flexible, a simple
model relating contact forces and the inter-penetratios wged.

It was observed that the rigid contact model does work finarf@armittent contact between
rigid bodies only. When we tried to use this model with defdotedodies, the results obtained
did not converge to a solution. The best results for flexiloldiés were obtained using the flex-
ible impact model.

Several numerical examples were presented to illustratediformance of the analyzed method-
ologies.
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Beam Model with Spring - A t = 0.000006 [s] - k , = 1E8 [N/m ] Beam Model with Spring - A t=0.000006 [s] - k = 1E8 [N/m ]
50 ;
50 ‘ ‘ ‘

451 ‘ 45
‘ 40t

35

w
=]
T

n
=]
T

Kinetic Energy
N
(9]
Deformation Energy
N
(4]

N
o
T

b
‘ HM‘ ‘\ H Il \MH TR

; i
0 03 06 0.8 1.2 1.5 0 03 06 09 1.2 1.5

time [s] time [s]
Figure 15: Beam model: (a) kinetic energy and (b) defornmaginergy for the flexible impact model, with =
1 x 108 N/m.

Beam Model with Spring - A t = 0.000006 [s] - kS =1E5[N/m ]

Beam Model with Spring - A t = 0.000006 [s] - k = 1E5 [N/m ]
50 ‘ ‘ 50 ‘

451 1

40t 1

35} bl

w
o
T
I

Kinetic Energy

20

Deformation Energy
N N
o (4]
T
i i

| i
0 0.3 0.6 0.9 1.2 15 0

. 0 0.3 0.6 0.9 1.2 1.5
time [s]

time [s]

Figure 16: Beam model: (a) kinetic energy and (b) defornma¢inergy for the flexible impact model, with =
1 x 10° N/m.
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