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Abstract. The mesh influence for the solution of compressible flows with two explicit schemes is 
presented. The investigations measured the order of accuracy, absolute error and the computational 
cost with structured and unstructured meshes. Two explicit Taylor-Galerkin schemes (one-step and 
two-step) with a linear tetrahedral and tri-linear hexahedral elements are employed to analyze the 
compressible Euler and Navier-Stokes equations. Finally, some numerical analyses in inviscid and 
viscous flows are discussed. This article includes a reflection of an oblique shock and a viscous flow 
over an airfoil. 
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1 INTRODUCTION 

The rapid growth in the power and availability of computers in recent years has led to the 
development of  many schemes for solving the Euler and Navier-Stokes equations 
successfully, and as a result numerical simulations are beginning to complement or even 
replace experimental measurement. They allow simulations of internal and external fluid flow 
at different boundary conditions. In the aerospace industry today Computational Fluid 
Dynamics (CFD) plays an increasingly important role as a tool for design and analysis. 

Computational methods are continuously being required to deliver more accurate solutions 
for more complex realistic configurations at lower computational cost. Traditionally, 
structured mesh (quadrilateral or hexahedral elements) approach have been employed to 
discretize the computational domain. The natural ordering of quadrilateral/hexahedral 
elements enables the construction of very efficient numerical algorithms for solving the flow 
equations. While amenable to algorithmic efficiency, structured mesh are inherently difficult 
for discretizing complex geometries. In the case the complex configurations, the physical 
domains has to be decomposed into different subdomains (blocks), and the mesh has to 
generated separately for individual blocks. 

Unstructured  mesh methods originally emerged as a viable alternative to the structured 
mesh techniques for discretizing complex geometries. In unstructured meshes triangular 
elements in two dimensions and tetrahedral elements in three-dimensions are used. This not 
only provides greater flexibility for discretizing complex domains but also enables 
straightforward implementation of adaptive techniques where node may be added or deleted, 
while mesh connectivity is updated locally, in order to enhance solution accuracy. Although 
unstructured mesh methods provide flexibility for discretizing complex geometries, then have 
be the drawback of requiring larger in-core memory and more CPU effort than their structured 
counter-parts. 

The choice of the type of mesh element to be employed in the aerospace and aeronautical 
problems depends on the delivered accuracy, efficiency, and flexibility of the numerical 
solver. A two dimensional study by Aftosmis et al. (1994) observed little difference in 
accuracy between equivalent meshes of quadrilateral and triangular elements. Hexahedral 
meshes have a better accuracy than the tetrahedral meshes in three dimensional experiments 
(Baker, 2005).  

The time integration, for instance, can be performed in one of the two classical approaches, 
explicit or implicit techniques. Implicit methods are computationally more expensive, but 
have less stringent stability bounds. Explicit methods are relatively simple to code and 
implemented, and are easily cast in a form suitable for efficient parallelization. They require 
less memory than implicit methods, since only one flow field solution needs to be stored at a 
time.  

In the current work, two explicit Taylor-Galerkin schemes for solving the compressible 
Euler and Navier-Stokes equations in the context of structured and unstructured meshes are 
investigated. The present comparison intends to emphasize important features of these 
numerical schemes and elements. The tests include the reflection of an oblique shock for 
which there exists a closed-form solution to the compressible Euler equations, as well as the 
laminar transonic flow past an airfoil.  

2 THE GOVERNING EQUATIONS 

Let sdnΩ R⊂ and (0,T) be the spatial and temporal domains, respectively, where nsd = 3 is 
the number of space dimensions, and let Γ denote the boundary of Ω. The spatial and 
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temporal coordinates are denoted by x and t. We consider the conservation law form of the 
Navier-Stokes equations governing unsteady compressible flows with no source terms, 
written here in their dimensionless form 
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where U is the unknown vector of the conservation variables, Fi and Gi are, respectively, the 
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with i, j = 1,2,3. Here vi is the velocity component in the direction of the coordinate xi, ρ is 
the specific mass, p is the thermodynamic pressure, τij are the components of the viscous 
stress tensor, qj is the heat flux vector, e is the total specific energy and δij is the Kronecker 
delta function. 

For a calorically perfect gas, the equation of state and internal energy i are given by the 
following equations 

 ( )1p iγ ρ= − ,     1
2v i ii c T e v v= = −  (3) 

where T is the temperature and p vc cγ =  with cp and cv being the specific heat coefficients at 
constant pressure and constant volume, respectively. The viscous stress tensor τij  and the heat 
flux vector qj are defined as 

 ( ), , ,ij k k ij i j j iv v vτ λ δ µ= + + ,     ,j ij kq k T= −  (4) 

where k = 1,2,3. Here kij represents the components of the conductivity tensor, λ and µ are the 
volumetric and dynamic viscosity coefficients, respectively. The dynamic viscosity and 
coefficient of thermal conductivity depend an temperature and therefore are modeled using 
Sutherland’s law (White, 1974)  
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where Tref is the temperature reference and Sµ = 110 K and Sk = 194 K for atmospheric air. 
Initial and boundary conditions must be added to equations (1)-(2) in order to define 

uniquely the problem. 

3 A TAYLOR-GALERKIN FORMULATION 

The numerical scheme is obtained expanding in Taylor series the governing equation and 
applying after the space discretization process, using the Finite Element Method (FEM) in the 
context of the classical Bubnov-Galerkin scheme. These approach can be interpreted as the 
finite element version of the Lax-Wendroff scheme used in finite differences. Two schemes 
for explicit time integration (one-step and two-step methods) are investigated for solving the 
compressible inviscid/viscous flow problems. 
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This temporal integration provides second-order accuracy for time derivative. The 
formulation exclusively employs tetrahedral and hexahedral finite elements which provides 
second-order spatial accuracy. Linear unstructured finite elements were chosen because they 
can be easily generated for complex geometries and exactly integrated without numerical 
quadrature. To obtain important savings in CPU time and computer memory, an analytical 
evaluation of the eight node hexahedral element matrices was performed. 

3.1 Time discretization: The one-step scheme 

The one-step scheme is similar to that presented by Donea (1984). Expanding the 
conservation variables U at 1nt t +=  in Taylor series including the first and second derivatives, 
resulting in 
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with 1 1n n n+ +∆ = −U U U , being s1 and s2 the implicitness parameters defined such that 
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Substituting equation (7) into equation (6), and adopting 1 2 1 2s s= = , the following 
expression is obtained 
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Substituting equation (1) and its second derivative into equation (8), and neglecting high-
order terms, we obtain 
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where I is an iteration counter, 1 1n n n
i i i

+ +∆ = −F F F , 1 1n n n
i i i

+ +∆ = −G G G  and iA  is the 
convection Jacobian defined as i i= ∂ ∂A F U (Hughes and Tezduyar, 1984). 

In expression (9), the variables at time level n+1 are involved in the left and right sides of 
the equation, therefore it is necessary to use an iterative scheme.  

3.2 Time discretization: The two-step scheme 

The two-step scheme is similar to that presented by Kawahara and Hirano (1983). In the 
first step, corresponding to the time interval [ 1 2,n nt t + ], the unknown vector U at 1 2nt t +=  is 
expanded in Taylor series, resulting in 
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with 1 2 1 2n n n+ +∆ = −U U U . Substituting equation (1) and its second derivative into equation 
(10), and neglecting high-order terms, gives 
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In the second step, U at time 1nt +  is determined by expanding equation (1) in Taylor series, 
obtaining the following expression 
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with 1 1n n n+ +∆ = −U U U . Substituting equation (1) and its second derivative into equation (12), 
and neglecting high-order terms,  the following expression is obtained 
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where the convection Jacobian iA  is defined as i i= ∂ ∂A F U (Hughes and Tezduyar, 1984).  

3.3 Spatial discretization 

Applying the classical Bubnov-Galerkin weighted residual method in the context of the 
FEM to equation (9), for the one-step scheme, and equations (11) and (13), for the two-step 
scheme, the spatial discretization are obtained. The computational domain was divided into a 
finite number of tri-linear hexahedral elements (structured mesh) or linear tetrahedral 
elements (unstructured mesh). The consistent mass matrix is substituted by the lumped mass 
matrix and then these equations are solved with an explicit scheme.  

The proposed schemes are conditionally stable, and the local stability condition for 
element E is given by 
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where LE is a characteristic dimension of the element, a is the sound speed and δ is a safety 
coefficient (in this work the coefficient adopted were δ = 0.1 or 0.3). 

In order to stabilize the solution numerically, specially to control oscillations, and 
overshoots in the vicinity of the steep gradients such as of shock waves, discontinuities, and 
vortex sheets, where dissipation effects or shear stress take place in very thin layers of the 
flow, it is necessary to add numerical damping to the flow solver. An artificial viscosity 
model, as proposed by Argyris et al. (1990), is used due to its simplicity and efficiency in 
terms of CPU time. An artificial viscosity is added explicitly to the non-smoothed solution as 
follows 

 1 1 1Dn n
s L

+ + −= +U U M  (15) 
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where LM  is the assembled lumped mass matrix, 1n
s

+U  and 1n+U  are the smoothed and non-
smoothed solutions at t t+ ∆ , respectively. The vector D is given by 

 [ ]
ele

D = CFL CAF n
ele L eleele

S −∑ M M U  (16) 

where ele is an index referred to a specific element, CFL Et t= ∆ ∆  is the local Courant-
Friedrichs-Lewy number, CAF is an artificial damping coefficient given by the user, Sele is a 
pressure sensor at element level obtained as an average of nodal values Si. Values of Si are 
components of the following assembled global vector 
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where p is the pressure vector of a specific element, the bars indicate that absolute values of 
the corresponding terms must be taken and, finally, M is the consistent mass matrix at 
element level. 

The constant CAF must be specified with care in order to avoid interferences of artificial 
and physical viscosities. In this work 0.8 CAF 1.0≤ ≤  were adopted. 

4 NUMERICAL EXAMPLES 

In this section two examples are presented in order to evaluate the accuracy, the capability 
and the performance of the two explicit Taylor-Galerkin schemes in the context of structured / 
unstructured meshes applied to the solution of compressible inviscid and viscous problems.  

The test problems have been geometrically modeled as 3-D problems, the boundary 
conditions are chosen so that the 2-D flow field is simulated. Finally, it is assumed that the 
fluid has a specific heat ratio and a constant Prandtl number equal to 1.4 and 0.72, 
respectively. 

4.1 Reflection of an oblique shock in a inviscid flow 

 
Figure 1: Reflection of an oblique shock and boundary conditions 

The rectangular domain { }0 4.10, 0 1.0x y≤ ≤ ≤ ≤  and boundary conditions of this 
problem are shown in Figure 1. Along the inflow ABC all variables are fixed; zero normal 
velocity is imposed at the wall (AD) and along CD all variables are left free. The exact 
solution is formed by an incident shock with angle 29 º and a reflected shock with angle 
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23.28º . The solution after the second shock is: 2.687ρ = ; 2.934p = ; 1.942M = ; 

1 2.401v =  and 2 3 0v v= = . 
Four uniform meshes M1, M2, M3 and M4 consisting of 21 x11x 2 , 41 x 21x 2 , 

61 x 31x 2  and 81 x 41x 2  nodes, respectively were considered. The meshes with hexahedral 
elements contains 200, 800, 1800 and 3200 elements and the meshes with tetrahedral 1000, 
4000, 9000 and 16000 elements, respectively. The mesh with tetrahedral is obtained by 
subdividing each hexahedral element into five tetrahedral elements.  

In Figure 2 the meshes with hexahedral and tetrahedral elements, respectively, are shown 

 
Figure 2: Meshes with hexahedral and tetrahedral elements 

Figures 3 and 4 show the specific mass at y = 0.25 obtained with the four meshes of  
hexahedral (H) / tetrahedral (T) elements with the one-step and with the two-step (P2) 
schemes. The artificial damping coefficient used in this example, defined in equation (16), 
was CAF = 1.0. 

The results for hexahedral meshes exhibit a good agreement with exact solutions and 
numerical results reported in Shakib et al. (1991). A small oscillation in the vicinity of the 
second shock is observed when tetrahedral meshes are used. Also, these tetrahedral meshes 
fail to give an exact specific mass behind the second shock. In the mesh M4 only the 
tetrahedral mesh with one-step scheme overestimate the specific mass. 

The accuracy of the numerical solution for the problem is measured by the average error 
defined in the L1 norm and the L2 norm. For specific mass, the two norms are given by 
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where ρ e represents the exact solution and nno is the number of nodes.  
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Figure 3: Comparison between exact solution and numerical results of the specific mass along the line y = 0.25 

for mesh M1 and M2 

 
Figure 4: Comparison between exact solution and numerical results of the specific mass along the line y = 0.25 

for mesh M3 and M4 

 
Figure 5: Convergence study for the reflection of an oblique shock problem 

In the error convergence study, we presents plots of ( )1log L Ω  and ( )2log L Ω  versus 
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( )log h . The results for the specific mass are presented in Figure 5 for hexahedral / 
tetrahedral elements with the one-step and the two-step schemes. Analyzing Figure 5 it is 
observed that the error decreases as the grid size decreases. The average mesh density h for 
the hexahedral and tetrahedral meshes is defined as ( )1 31h nno= . 

In structured meshes a two-step scheme is slightly less accurate than the one-step scheme, 
while in unstructured meshes a one-step scheme is slightly less accurate than the two-step 
scheme. Finally, we point out that hexahedral elements have better accuracy than tetrahedral 
elements. The error is lower for hexahedral elements, independent of the finite element mesh. 

The asymptotic convergence rate of errors, given in Table 1, which is measured over the 
two finest meshes, is just slightly less than 2.0 for ( )1L Ω  norm. Note, however, that the order 

of convergence is slightly over 2.0 for ( )2L Ω  norm. This is indeed consistent with the 
second-order accuracy of the spatial discretization that was used.  

 
element / 
scheme L1 L2 

H 1.378 2.257 
HP2 1.213 2.241 

T 1.715 2.588 
TP2 1.907 2.470 

Table 1: Order of convergence for the example of the reflection of an oblique shock problem for meshes M1, 
M2, M3 and M4. 

Finally, tests were performed on three meshes as shown in Figure 6. The first mesh M5 is 
unstructured with almost uniform tetrahedral elements. The mesh M6 with tetrahedral 
element was initially refined in the shock waves regions and the last mesh M7 has distorted 
hexahedral elements. The mesh M2 is similar to mesh M7 without distorted elements. The 
meshes M5, M6 and M7 consisting of 3828, 6356 and 41 x 21x 2  nodes, respectively. The 
three meshes contains 14580, 27595 an 800 elements, respectively.  

 
Figure 6: Meshes M5, M6 and M7 with hexahedral and tetrahedral elements 
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Table 2 compares the mass specific error in both ( )1L Ω  and ( )2L Ω  norms for hexahedral 
/ tetrahedral elements with the one-step and the two-step schemes. In structured meshes (M7) 
a two-step scheme is lightly less accurate than the one-step scheme, while in unstructured 
meshes (M5 and M6) a one-step is slightly less accurate than the two-step scheme. The same 
behavior is observed with meshes M1, M2, M3 and M4. 

The mesh with distorted hexahedral elements (M7) is less accurate than the mesh with 
regular hexahedral elements (M2). It is evident that the distorted element has a strong 
influence in the accuracy. 

 
 norm L1 norm L2 

meshe
s one-step two-step one-step two-step 

M2H 0.0665 0.0758 0.00327 0.00352 
M5 0.221 0.218 0.00664 0.00658 
M6 0.299 0.288 0.00524 0.00501 
M7 0.0771 0.0879 0.00358 0.00386 

Table 2: Mass specific error for the example of the reflection of an oblique shock problem with meshes M5, M6 
and M7. 

4.2 Transonic viscous flow around an airfoil 

To investigate these schemes in viscous flows and the influence of different type of 
elements, the flow around a NACA 0012 airfoil is computed. The flow is specified by 

0.80M∞ = , the viscosity by Re = 500 and an angle of attack is equal to 10 deg. With these 
conditions, a separation bubble extends over more than an half of the upper surface. The 
airfoil wall is assumed to be adiabatic, and non-slip condition is specified for the velocity on 
the surface of the airfoil. 

 
Figure 7: Mach number contours on the mesh M2 with tetrahedral elements 

Solutions were obtained for three meshes consisting of 19680, 27860 and 40450 nodes, 
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respectively. The meshes with hexahedral elements have 9600, 13600 and 19800 elements 
meanwhile the meshes with tetrahedral have 48000, 68000 and 99000 elements, respectively. 
The mesh with tetrahedrals is obtained by subdividing each hexahedral into five tetrahedrals. 

A sample of Mach number contours and the streamlines at the mesh with 27860 nodes and 
68000 tetrahedrals using the one-step scheme is shown in Figure 7. 

Contours of pressure for the mesh with 19680 nodes and 9600 hexahedrals using the one-
step and two-step schemes are shown in Figures 8-a and 8-b. Both solutions are very similar 
and agree with those reported in Tang and Hafez (2001). A comparison of the friction 
coefficient distributions and the pressure coefficient distributions obtained from the finest 
meshes with hexahedral and tetrahedral elements using the one-step scheme are plotted in 
Figure 9. The present results are also in good agreement with those reporters by Hafez and 
Wahba (2007). In the leading ant trailing edges the difference between the present solutions 
and Hafez and Wahba’s solution for the friction coefficient distributions may be due to 
different formulations used. 

 
Figure 8: Contours of pressure on the mesh with hexahedral elements for the NACA 0012 airfoil using the one-

step and two-step schemes (a and b, respectively) 

 
Figure 9: Friction coefficient and pressure coefficient distributions over a NACA 0012 airfoil, compared with 

result obtained by Hafez and Wahba (2007) 

The behavior of the drag and lift coefficients with grid refinement on the hexahedral (H) 
and tetrahedral (T) meshes and the one-step / two-step (P2) schemes are plotted in Figure 10, 
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in order to further quantify the accuracy level of the computed pressure distribution. The 
artificial damping coefficient (CAF) used with the one-step / two-step schemes were 0.9 and 
0.8, respectively. 

It is interesting to note the monotone behavior of the drag coefficient with mesh 
refinement. The small difference between the lift coefficient on the M2 and M3 meshes 
indicate that the solutions on those meshes may be regarded as nearly mesh independent, 
however, the difference for the drag coefficient on those meshes is not quite grid independent 
yet. The drag and lift coefficients obtained by Forsyth and Jiang (1997) ranged between 
0.2430 0.2868dC≤ ≤  and 0.4145 0.5170lC≤ ≤ , respectively. The mesh with tetrahedral 
elements using the two-step scheme underpredicts the drag and lift coefficients compared 
with the same meshes using the one-step scheme.  

 
Figure 10: Variations of the drag and lift coefficients for the transonic viscous flow around a NACA 0012 airfoil 

5 CONCLUSION 

This paper emphasizes the accuracy and the efficiency of two explicit Taylor-Galerkin 
schemes in the context of meshes with hexahedral and tetrahedral elements. A comparison 
among the one-step and two-step scheme using hexahedral and tetrahedral elements leads to 
the following conclusions: (a) Simulations with meshes employing hexahedral elements, 
using either the one-step or the two-step scheme, are more accurate and robust in both 
example studied here, with respect to results employing meshes of tetrahedral elements; (b) In 
structured meshes a two-step scheme is slightly less accurate than the one-step scheme, while 
in unstructured meshes a one-step scheme is slightly less accurate than the two-step scheme, 
for the non-viscous flow problem; (c) Simulations with meshes employing tetrahedral 
elements using the two-step scheme is the most inaccurate in the case of the transonic viscous 
flow. Clearly, the artificial viscosity plays a fundamental role in the accuracy. The one-step 
scheme is less diffusive than the two-step scheme allowing to take a smaller value of the 
coefficient CAF in Equation (16).  

As in the one-step scheme some vectors and matrices are stored to avoid their calculation 
during the iterative process, the two-step scheme requires less memory (approximately 75 % 
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with respect to the one-step scheme) but it demands more processing time. 
In spite of the conclusions given previously, it is necessary to take into account that 

meshes with tetrahedral elements are more suitable for complex geometries. Another 
important subject is mesh adaption, which is an essential tool to obtain accurate results in 
problems involving, for example, strong shock waves, as in the first application (the inviscid 
flow). Adaptive meshes will be considered in future works. 
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