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Abstract. The present work compares the Yee, Warming and Harten, the Harten, the Yee and Kutler 
and the Hughson and Beran high resolution schemes applied to the solution of aeronautical and 
aerospace problems. All schemes are TVD flux difference splitting type and are second order accurate 
in space. The Euler equations in conservative form, employing a finite volume formulation and a 
structured spatial discretization, are solved in two-dimensions. The time integration is performed by a 
time splitting method and is first order accurate. The steady state physical problems of the supersonic 
flows along a ramp and around a blunt body configuration are studied. In the ramp problem, the 
Hughson and Beran scheme was the most critical because presented the most severe pressure field and 
the most intense Mach number field in relation to the others schemes. The shock and the expansion fan 
are better captured by the Yee, Warming and Harten and the Yee and Kutler schemes. The Harten and 
the Hughson and Beran schemes presented better pressure distribution than the others schemes when 
compared with the theory. The shock angle was best estimated by the Harten scheme. In the blunt 
body problem, the Harten scheme presented the most severe pressure field in relation to the others 
schemes. The aerodynamic coefficient of lift was better estimated in the solutions generated by the 
Harten and the Hughson and Beran schemes. The stagnation pressure ahead of the configuration is 
best predicted by the Harten scheme. As conclusion, the Harten scheme presents the most accurate 
solutions in comparison with the others schemes in both examples studied in this work, as well the 
most severe pressure field in the blunt body problem, high supersonic flow, characterizing it as the 
most conservative in relation to the others schemes to this type of flow, which indicates this one as a 
good scheme to the prediction of flow properties in the project phase of aerospace vehicles. 
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1 INTRODUCTION 

 High resolution upwind schemes have been developed since 1959, aiming to improve the 
generated solution quality, yielding more accurate solutions and more robust codes. The high 
resolution upwind schemes can be of flux vector splitting type or flux difference splitting 
type. In the former case, more robust algorithms are yielded, while in the later case, more 
accuracy is obtained. Several studies were reported involving high resolution algorithms in 
the international literature, as for example: 
 Roe (1981) presented a work that emphasized that several numerical schemes to the 
solution of the hyperbolic conservation equations were based on exploring the information 
obtained in the solution of a sequence of Riemann problems. It was verified that in the 
existent schemes the major part of this information was degraded and that only certain 
solution aspects were solved. It was demonstrated that the information could be preserved by 
the construction of a matrix with a certain “U property”. After the construction of this matrix, 
its eigenvalues could be considered as wave velocities of the Riemann problem and the UL-UR 
projections over the matrix’s eigenvectors are the jumps which occur between intermediate 
stages. 
 Yee, Warming and Harten (1982) implemented a high resolution second order explicit 
method based on Harten’s ideas. The method had the following properties: (a) the scheme 
was developed in conservation form to ensure that the limit was a weak solution; (b) the 
scheme satisfied a proper entropy inequality to ensure that the limit solution would have only 
physically relevant discontinuities; and (c) the scheme was designed such that the numerical 
dissipation produced highly accurate weak solutions. The method was applied to the solution 
of a quasi-one-dimensional nozzle problem and to the two-dimensional shock reflection 
problem, yielding good results. An implicit implementation was also investigated to one- and 
two-dimensional cases. 
 Harten (1983) developed a class of new finite difference schemes, explicit and with second 
order of spatial accuracy to calculation of weak solutions of the hyperbolic conservation laws. 
These schemes highly non-linear were obtained by the application of a first order non-
oscillatory scheme to an appropriated modified flux function. The so derived second order 
schemes reached high resolution, while preserved the robustness property of the original non-
oscillatory scheme. 

Yee and Kutler (1985) presented a work which extended the Harten (1983) scheme to a 
generalized coordinate system, in two-dimensions. The method called “TVD scheme” by the 
authors was tested to the physical problem of a moving shock impinging a cylinder. The 
numerical results were compared with the MacCormack (1969) scheme, presenting good 
results.  

Hughson and Beran (1991) proposed an explicit, second order accurate in space, TVD 
(“Total Variation Diminishing”) scheme to solve the Euler equations in axis-symmetrical 
form, applied to the studies of the supersonic flow around a sphere and the hypersonic flow 
around a blunt body. The scheme was based on the modified flux function approximation of 
Harten (1983) and its extension from the two-dimensional space to the axis-symmetrical 
treatment was developed. Results were compared to the MacCormack (1969) algorithm’s 
solutions. High resolution aspects, capability of shock capture and robustness properties of 
this TVD scheme were investigated. 

In this work, the Yee, Warming and Harten (1982), the Harten (1983), the Yee and Kutler 
(1985) and the Hughson and Beran (1991) schemes are implemented, on a finite volume 
context and using an upwind and a structured spatial discretization, to solve the Euler 
equations, in two-dimensions, and are compared with themselves. All schemes are second 
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order accurate in space and are applied to the solution of the supersonic flows along a ramp 
and around a blunt body configuration. A spatially variable time step procedure is 
implemented aiming to accelerate the convergence of the schemes to the steady state 
condition. The effective gains in terms of convergence ratio with this procedure are reported 
in Maciel (2005). The results have demonstrated that the Hughson and Beran (1991) scheme 
yields the most severe results in the ramp problem, while the Harten (1983) scheme yields the 
most accurate results in both problems and the most severe results in the blunt body problem, 
indicating this scheme, a priori, as the best choice in relation to the tested schemes to simulate 
supersonic flows. More complete studies, involving more different physical problems, are 
aimed by this author with the intention of better highlighting the characteristics of these 
schemes. 

The motivation and justification of this work is to present TVD high resolution schemes, 
which are reported in the CFD literature as able to provide numerical solutions free of 
oscillations, on a finite volume context and test their abilities to provide good shock capturing 
properties. Furthermore, the CFD literature describes these schemes on a finite difference 
context and using a generalized coordinate system. Hence, this work represents an original 
contribution in the sense that the studied TVD schemes are described and implemented on a 
finite volume context. 

2 EULER EQUATIONS 

 The fluid movement is described by the Euler equations, which express the conservation of 
mass, of linear momentum and of energy to an inviscid, heat non-conductor and compressible 
mean, in the absence of external forces. In the integral and conservative forms, these 
equations can be represented by: 
 

     ( ) 0dSnFnEQdVt
S yexeV

=++∂∂ ∫∫ ,                                      (1) 
 

where Q is written to a Cartesian system, V is a cell volume, nx and ny are the components of 
the normal unity vector to the flux face, S is the surface area and Ee and Fe represent the 
components of the convective flux vector. Q, Ee and Fe are represented by: 
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being ρ the fluid density; u and v the Cartesian components of the velocity vector in the x and 
y directions, respectively; e the total energy per unity volume of the fluid mean; and p the 
static pressure of the fluid mean. 
 In all problems, the Euler equations were nondimensionalized in relation to the freestream 
density, ρ∞, and in relation to the freestream speed of sound, a∞. The matrix system of the 
Euler equations is closed with the state equation of a perfect gas: 
 

     [ ])vu(5.0e)1(p 22 +ρ−−γ=                                        (3) 
 

and γ  being the ratio of specific heats. The total enthalpy is determined by ( ) ρ+= peH . 
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3 YEE, WARMING AND HARTEN (1982) ALGORITHM 

 The Yee, Warming and Harten (1982) algorithm, second order accurate in space, is 
specified by the determination of the numerical flux vector at (i+½,j) interface. 
 Following a finite volume formalism, which is equivalent to a generalized system, the right 
and left cell volumes, as well the interface volume, necessaries to coordinate change, are 
defined by: 
 

    j,1iR VV += ,  j,iL VV =    and   ( )LRint VV5.0V += ,                             (4) 
 

in which “R” and “L” represent right and left states, respectively. The cell volume is defined 
by: 
 

( ) ( ) ( ) +−+−+−= +++++++++ j,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0V  

         ( ) ( ) ( ) 1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,i yxxyxxyxx5.0 +++++++++ −+−+− ,              (5) 
 

where a computational cell and its flux surfaces are defined in Fig. 1. 
 

Figure 1: Computational cell. 
 

The area components at interface are defined by: SsS xx
'

int_ =  and SsS yy
'

int_ = , where '
xs  

and '
ys  are defined as: Sss x

'
x =  and Sss y

'
y = , being ( ) 5.02

y
2
x ssS += . Expressions to sx 

and sy, which represent the Sx and Sy components always adopted in the positive orientation, 
are given in Tab. 1. 
 

Surface sx sy 
i,j-1/2 ( )j,ij,1i yy −− +  ( )j,ij,1i xx −+  

i+1/2,j ( )j,1i1j,1i yy +++ −  ( )1j,1ij,1i xx +++ −  

i,j+1/2 ( )1j,1i1j,i yy +++ −  ( )1j,i1j,1i xx +++ −  

i-1/2,j ( )j,i1j,i yy −+  ( )j,i1j,i xx −− +  
 

Table 1: Normalized values of sx and sy. 
 
The metric terms to this generalized coordinate system are defined as: 
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    intint_xx VSh = ,  intint_yy VSh =    and   intn VSh = .                 (6) 
 

 The properties calculated at the flux interface are obtained either by arithmetical average 
or by Roe (1981) average. In this work, the arithmetical average was used: 
 

       ( )LR ρ+ρ=ρ 5.0int , ( )LR uuu += 5.0int , ( )LR vvv += 5.0int   and  ( )LR HHH += 5.0int .     (7) 

                                                 ( ) ( )[ ]2
int

2
intintint 5.01 vuHa +−−γ= ,                                         (8) 

 

where aint is the speed of sound at the flux interface. The eigenvalues of the Euler equations, 
in the ξ direction, are given by: 
 

 yintxintcont hvhuU += ,  nintcont1 haU −=λ ,  cont32 U=λ=λ    and   nintcont4 haU +=λ .    (9) 
 

 The jumps of the conserved variables, necessary to the construction of the Yee, Warming 
and Harten (1982) dissipation function, are given by: 
 

        ( )LR eeVe −=∆ int , ( )LRV ρ−ρ=ρ∆ int , ( ) ( ) ( )[ ]LR uuVu ρ−ρ=ρ∆ int   and  ( ) ( ) ( )[ ]LR vvVv ρ−ρ=ρ∆ int . (10) 
 The α vectors at the (i+½,j) interface are calculated by the following expressions: 
 

                       ( )bbaa −=α 5.01 , aa−ρ∆=α2 , cc=α3    and   ( )bbaa +=α 5.04 .            (11) 
 

with: 
 

                              ( ) ( ) ( ) ( )[ ]vvuuvueaaa ρ∆−ρ∆−ρ∆++∆−γ= intint
2
int

2
int2

int
5.01 ;                    (12) 

                                    ( ) ( ) ( )[ ]vhvhuhuhabb yyxx ρ∆+ρ∆+−ρ∆= '
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'
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''
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1 ;                           (13) 

                                           ( ) ( ) ( )uhvhuhvhcc yxýx ρ∆−ρ∆−+ρ∆= '
int

'
int

'' ;                              (14) 

                                                      nxx hhh ='    and    nyy hhh =' .                                       (15) 
 

The Yee, Warming and Harten (1982) dissipation function uses the right-eigenvector matrix 
of the normal to the flux face Jacobian matrix in generalized coordinates: 
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 Two options to the ψl entropy function, responsible to guarantee that only relevant 
physical solutions are to be considered, are implemented aiming an entropy satisfying 
algorithm: 
 

     lll Zt =λ=ν ∆    and   25.02 +=ψ ll Z ;                           (17) 
 

Or: 
 

     ( )



δ<δδ+
δ≥

=ψ
flffl

fll
l ZifZ

ZifZ
,5.0

,
22 ,                           (18) 

 

where “l” varies from 1 to 4 (two-dimensional space) and δf assuming values between 0.1 and 
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0.5, being 0.2 the value recommended by Yee, Warming and Harten (1982). In the present 
studies, Eq. (17) was used to perform the numerical experiments. 
 The g~  function at the (i+½,j) interface is defined by: 
 

             ( ) l
ll

l Zg α−ψ= 25.0~ .                            (19) 
 

 The g numerical flux function, which is a limited function to avoid the formation of new 
extremes in the solution and is responsible to the second order accuracy of the scheme, is 
given by: 
    ( )( )l

l
ji

l
jil

l
ji signalggMINMAXsignalg ××= −+ ,2/1,2/1,

~,~;0.0 ,               (20) 
 

where signall is equal to 1.0 if l
jig ,2/1

~
+  ≥ 0.0 and -1.0 otherwise. 

 The θ term, responsible to the artificial compression, which enhances the resolution of the 
scheme at discontinuities, is defined as follows: 
 

  
( )
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0.0,0.0
0.0,
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, l

ji
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l
ji

l
ji

l
ji

l
jil

ji if
if

;           (21) 

 

The β  parameter at the (i+½,j) interface, which introduces the artificial compression term in 
the algorithm, is given by the following expression: 
 

     ),(MAX0.1 l
j,1i

l
j,ill +θθω+=β ,      (22) 

 

in which ωl assumes the following values: ω1 = 0.25 (non-linear field), ω2 = ω3 = 1.0 (linear 
field) and ω4 = 0.25 (non-linear field). The numerical characteristic speed, lϕ , at the (i+½,j) 
interface, which is responsible to transport the numerical information associated to the g 
numerical flux function, is defined by: 
 

         
( )




=α
≠αα−

=ϕ +

0.0,0.0
0.0,,,1

l

lll
ji

l
ji

l if
ifgg

.                            (23) 

 

 The entropy function is redefined considering lϕ  and lβ : llllZ ϕβ+ν= , and lψ  is 
recalculated according to Eq. (17) or to Eq. (18). Finally, the Yee, Warming and Harten 
(1982) dissipation function, to second order of spatial accuracy, is constructed by the 
following matrix-vector product: 
 

    { } [ ] ( )( ){ }
j21ijij1ijij21ij21iYWH tggRD

,/,,,,/,/ ++++ ∆ψα−+β= .    (24) 
 

 The convective numerical flux vector to the (i+½,j) interface is described by: 
 

     ( ) )l(
YWHinty

)l(
intx

)l(
int

)l(
j,2/1i D5.0VhFhEF ++=+ ,                           (25) 

 

with: 
 

      ( ))l(
L

)l(
R

)l(
int EE5.0E +=    and   ( ))l(

L
)l(

R
)l(

int FF5.0F += .               (26) 
 

The time integration follows the time splitting method, first order accurate, which divides the 
integration in two steps, each one associated with a specific spatial direction. In the initial 
step, it is possible to write: 
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                                      ( )n
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and in the final step: 
 

                                     ( )*
2/1,
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2/1,
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1
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ji
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ji FFV

tQ ;   1
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*
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A first order method was implemented as time integrator because only steady state solutions 
are aimed and, with it, time accurate solutions are not intended. 

4 HARTEN (1983) ALGORITHM 

 The Harten (1983) algorithm, second order accurate in space, follows the Eqs. (4) to (16). 
The next step is the definition of the entropy condition, which is defined by Eq. (17), νl, and 
Eq. (18). 
 The g~  function at the (i+½,j) interface is defined according to Eq. (19) and the g 
numerical flux function is given by Eq. (20). The numerical characteristic speed lϕ  at the 
(i+½,j) interface is defined according to Eq. (23). 
 The entropy function is redefined considering lϕ : lllZ ϕ+ν= , and lψ  is recalculated 
according to Eq. (18). Finally, the Harten (1983) dissipation function, to second order spatial 
accuracy, is constructed by the following matrix-vector product: 
 

    { } [ ] ( ){ }
jijijijijijiHarten tggRD

,2/1,,1,,2/1,2/1 ++++ ∆ψα−+= .    (29) 
 

 Equations (25) and (26) are used to conclude the numerical flux vector of the Harten 
(1983) scheme and the time integration is performed by the time splitting method defined by 
Eqs. (27) and (28). 

5 YEE AND KUTLER (1985) ALGORITHM 

 The Yee and Kutler (1985) algorithm, second order accurate in space, follows Eqs. (4) to 
(16). The next step consists in determining the θ function. This function is defined in terms of 
the differences of the gradients of the characteristic variables to take into account 
discontinuities effects and is responsible to artificial compression: 
 

    ( )
( )
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The κ function at the (i+½,j) interface is defined as follows: 
 

      ( )( )l
ji

l
jill MAX ,1, ,181 +θθω+=κ ,     (31) 

 

The g numerical flux function is determined by: 
 

    ( )( )l
l

ji
l

jil
l

ji signalMINMAXsignalg ×αα×= −+ ,2/1,2/1, ,;0,0 ,               (32) 
 

where signall assumes value 1.0 if l
ji ,2/1+α  ≥ 0.0 and -1.0 otherwise. The numerical 

characteristic speed lϕ  at the (i+½,j) interface is calculated by the following expression: 
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( )





=α
≠αα−κ

=ϕ +

00if00
00ifgg

l

lll
ji

l
j1il

l .,.
.,,, .                           (33) 

 

The ψl  entropy function at the (i+½,j) interface is defined by: 
 

             ( ) 2502
lll .+ϕ+ν=ψ ,                                       (34) 

 

with νl defined according to Eq. (17). Finally, the Yee and Kutler (1985) dissipation function, 
to second order spatial accuracy, is constructed by the following matrix-vector product: 
 

         { } [ ] ( )( ){ }
j21ijij1ijij21ij21iKutlerYee tggRD

,/,,,,/,// ++++ ∆ψα−+κ= .                 (35) 
 

 Equations (25) and (26) are used to conclude the numerical flux vector of Yee and Kutler 
(1985) scheme and the time integration is performed by the time splitting method defined by 
Eqs. (27) and (28). 

6 HUGHSON AND BERAN (1991) ALGORITHM 

 The Hughson and Beran (1991) algorithm, second order accurate in space, follows Eqs. (4) 
to (16). The next step consists in determining the g numerical flux function. To non-linear 
fields (l = 1 and 4), it is possible to write: 
 

  ( )
( )

0.0
0.0,0.0
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jil

ji
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ji

l
ji

l
ji

l
ji

l
ji

l
ji

if

ifg .   (36) 

 

To linear fields (l = 2 and 3), it is possible to write: 
 

   ( )( )l
l

ji
l

jil
l

ji signalMINMAXsignalg ×αα×= +− ,2/1,2/1, ,;0.0 ,   (37) 
 

where signall is equals to 1.0 if l
ji ,2/1−α  ≥ 0.0 and -1.0 otherwise. After that, Equations (17) , 

νl term, and (18) are employed and the σl term at the (i+½,j) interface is defined: 
 

            ( )25.0 lll Z−ψ=σ .                                        (38) 
 

The lϕ  numerical characteristic speed at the (i+½,j) interface is defined by: 
 

         
( )





=α
≠αα−σ

=ϕ +

0.0,0.0
0.0,,,1

l

lll
ji

l
jil

l if
ifgg

.                (39) 

 

 The entropy function is redefined considering the lϕ  term: lllZ ϕ+ν=  and lψ  is 
recalculated according to Eq. (18). Finally, the Hughson and Beran (1991) dissipation 
function, to second order accuracy in space, is constructed by the following matrix-vector 
product: 
 

          { } [ ] ( )( ){ }
jijijijijijiBeranHughson tggRD

,2/1,,1,,2/1,2/1/ ++++
∆ψα−+σ= .           (40) 

 

 Equations (25) and (26) are used to conclude the numerical flux vector of Hughson and 
Beran (1991) scheme and the time integration is performed by the time splitting method 
defined by Eqs. (27) and (28). 
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7 SPATIALLY VARIABLE TIME STEP 

The basic idea of this procedure consists in keeping constant the CFL number in all 
calculation domain, allowing, hence, the use of appropriated time steps to each specific mesh 
region during the convergence process. Hence, according to the definition of the CFL 
number, it is possible to write: 
 

                                                            ( ) jijiji csCFLt ,,, ∆=∆ ,                                               (41) 
 

where CFL is the “Courant-Friedrichs-Lewy” number to provide numerical stability to the 
scheme; ( )[ ] jiji avuc ,

5.022
, ++=  is the maximum characteristic speed of information 

propagation in the calculation domain; and ( ) jis ,∆  is a characteristic length of information 
transport. On a finite volume context, ( ) jis ,∆  is chosen as the minor value found between the 
minor centroid distance, involving the (i,j) cell and a neighbor, and the minor cell side length. 

8 INITIAL AND BOUNDARY CONDITIONS 

8.1 Initial condition 

 To the physical problems studied in this work, freestream flow values are adopted for all 
properties as initial condition, in the whole calculation domain (Jameson and Mavriplis, 1986, 
and Maciel, 2002). Therefore, the vector of conserved variables is defined as: 
 

                         
T

2
ji M50

1
1MM1Q









+
−γγ

αα= ∞∞∞ .
)(

sincos, ,                               (42) 

 

being M∞ the freestream flow Mach number and α the flow attack angle. 

8.2 Boundary conditions 

 The boundary conditions are basically of three types: solid wall, entrance and exit. These 
conditions are implemented in special cells named ghost cells. 
(a) Wall condition: This condition imposes the flow tangency at the solid wall. This condition 
is satisfied considering the wall tangent velocity component of the ghost volume as equals to 
the respective velocity component of its real neighbor cell. At the same way, the wall normal 
velocity component of the ghost cell is equaled in value, but with opposite signal, to the 
respective velocity component of the real neighbor cell. 
 The pressure gradient normal to the wall is assumed be equal to zero, following an inviscid 
formulation. The same hypothesis is applied to the temperature gradient normal to the wall, 
considering adiabatic wall. The ghost volume density and pressure are extrapolated from the 
respective values of the real neighbor volume (zero order extrapolation), with these two 
conditions. The total energy is obtained by the state equation of a perfect gas. 
(b) Entrance condition: 
(b.1) Subsonic flow: Three properties are specified and one is extrapolated, based on analysis 
of information propagation along characteristic directions in the calculation domain (Maciel 
and Azevedo, 1998, and Maciel, 2002). In other words, three characteristic directions of 
information propagation point inward the computational domain and should be specified. 
Only the characteristic direction associated to the “(qn-a)” velocity can not be specified and 
should be determined by interior information of the calculation domain. The pressure was the 
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extrapolated variable from the real neighbor volume, to the studied problems. Density and 
velocity components had their values determined by the freestream flow properties. The total 
energy per unity fluid volume is determined by the state equation of a perfect gas. 
(b.2) Supersonic flow: All variables are fixed with their freestream flow values. 
(c) Exit condition: 
(c.1) Subsonic flow: Three characteristic directions of information propagation point outward 
the computational domain and should be extrapolated from interior information (Maciel and 
Azevedo, 1998, and Maciel, 2002). The characteristic direction associated to the “(qn-a)” 
velocity should be specified because it penetrates the calculation domain. In this case, the 
ghost volume’s pressure is specified by its freestream value. Density and velocity components 
are extrapolated and the total energy is obtained by the state equation of a perfect gas. 
(c.2) Supersonic flow: All variables are extrapolated from the interior domain due to the fact 
that all four characteristic directions of information propagation of the Euler equations point 
outward the calculation domain and, with it, nothing can be fixed. 

9 RESULTS 

 Tests were performed in a CELERON-1.2GHz and 128 Mbytes of RAM memory 
microcomputer. Converged results occurred to 4 orders of reduction in the value of the 
maximum residual. The maximum residual is defined as the maximum value obtained from 
the discretized conservation equations. The value used to γ was 1.4. To all problems, the 
attack angle was adopted equal to 0.0°. 
 In the present results, the following nomenclature is used to represent the studied schemes: 
 YWH – Represent Yee, Warming and Harten (1982) solutions; 
 H - Represent Harten (1983) solutions; 
 YK - Represent Yee and Kutler (1985) solutions; 
 HB - Represent Hughson and Beran (1991) solutions. 

9.1 Ramp physical problem 

 To this physical problem, an algebraic mesh with 61x100 points was used, which is 
composed of 5,940 rectangular volumes and of 6,100 nodes, on a finite volume context. The 
ramp configuration is described in Fig. 2. It was adopted a freestream Mach number of 2.0 as 
initial condition, characterizing a supersonic flow regime. 
 Figures 3 to 6 exhibit the density field obtained by the Yee, Warming and Harten (1982), 
the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) schemes, 
respectively. It is possible to note that the density field generated by the Hughson and Beran 
(1991) scheme is the densest in relation to the others schemes. The density fields generated by 
the Yee, Warming and Harten (1982) scheme and by the Yee and Kutler (1985) scheme are 
the same, as many in quantitative terms as in qualitative terms. 
 Figures 7 to 10 show the pressure field obtained by the Yee, Warming and Harten (1982), 
the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) schemes, 
respectively. The pressure field generated by the Hughson and Beran (1991) scheme is the 
most severe in relation to the others schemes. It is interesting to note that the Hughson and 
Beran (1991) and the Harten (1983) solutions present a red region (bigger pressure values) 
with the same size, when compared the pressure contours. These regions are bigger than the 
equivalent regions obtained by the Yee, Warming and Harten (1982) and the Yee and Kutler 

(1985) schemes. 
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Figure 2: Ramp configuration. 
 

  
               Figure 3: Density field (YWH).     Figure 4: Density field (H). 
 

  
                     Figure 5: Density field (YK).                                            Figure 6: Density field (HB). 
 
Moreover, the Yee, Warming and Harten (1982) and the Yee and Kutler (1985) schemes 
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present again the same solution. Although differences exist between the algorithms, both 
schemes have the same behavior in this example. Equations (21) and (22) behave in the same 
way as Eqs. (30) and (31), respectively. The different ways of providing artificial 
compression, which enhances the discontinuity resolution, have the same effects in this 
problem to these schemes. 
 

  
                  Figure 7: Pressure field (YWH).                              Figure 8: Pressure field (H). 
 

  
                    Figure 9: Pressure field (YK).                                           Figure 10: Pressure field (HB). 
 
 Figures 11 to 14 exhibit the Mach number field generated by the Yee, Warming and 
Harten (1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran 

(1991) schemes, respectively. The Mach number contours generated by the Hughson and 
Beran (1991) scheme is the most intense field in relation to the others schemes. The Hughson 
and Beran (1991) and the Harten (1983) schemes present again areas of more intense Mach 
numbers (blue area) extended in longer regions than the Yee, Warming and Harten (1982) and 
the Yee and Kutler (1985) schemes. 
 Figure 15 shows the pressure distributions along the ramp obtained by the Yee, Warming 
and Harten (1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran 

(1991) schemes. They are compared with the exact solutions from oblique shock theory and 
the Prandtl-Meyer expansion wave theory. 
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             Figure 11: Mach number field (YWH).           Figure 12: Mach number field (H).  
 

  
               Figure 13: Mach number field (YK).         Figure 14: Mach number field (HB). 
 

               Figure 15: Wall pressure distributions.                          Figure 16: Convergence histories. 
 
It is possible to note that the solutions generated by the Yee, Warming and Harten (1982) and 
the Yee and Kutler (1985) schemes are smoother than those generated by the Harten (1983) 
and the Hughson and Beran (1991) schemes, but they do not present oscillations at the shock 
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region, what characterizes better solutions, in qualitative terms, than the Harten (1983) and 
the Hughson and Beran (1991) ones. They are doing what is expected to high resolution 
schemes do: solutions of second order schemes free of oscillations at shock regions. In the 
solutions generated by the Harten (1983) and the Hughson and Beran (1991) schemes, the 
shock presents a small peak in relation to the theory, but the shock is sharp defined and the 
expansion fan is less smoothed. The Hughson and Beran (1991) scheme presents the most 
critical value of pressure at the ramp beginning, the shock position. All schemes overpredict 
the value of the pressure at the ramp (at the plateau region) in relation to the theoretical 
solution. The width of the constant pressure region after the shock (the plateau) at the ramp is 
better represented by the Harten (1983) and by the Hughson and Beran (1991) schemes, as 
also the pressure at the end of the expansion fan, after the ramp. The Yee, Warming and 
Harten (1982) and the Yee and Kutler (1985) schemes also presents the same solution in terms 
of pressure distribution. 
 Figure 16 exhibits the convergence history obtained by the Yee, Warming and Harten 

(1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) 
schemes. The Harten (1983) and the Hughson and Beran (1991) schemes requires only one-
third of the iterations that the Yee, Warming and Harten (1982) and the Yee and Kutler (1985) 
schemes need to convergence. All histories are approximately linear and without meaningful 
oscillations. 
 Other way to quantitatively verify if the solutions generated by each scheme are 
satisfactory consists in determining the shock angle of the oblique shock wave, β, measured 
in relation to the initial direction of the flow field. Anderson (1984) (pages 352 and 353) 
presents a diagram with values of the shock angle, β, to oblique shock waves. The value of 
this angle is determined as function of the freestream Mach number and of the deflection 
angle of the flow after the shock wave, φ. To φ = 20º (ramp inclination angle) and to a 
freestream Mach number equals to 2.0, it is possible to obtain from this diagram a value to β 
equals to 53.0º. Using a transfer in Figures 7, 8, 9 and 10, it is possible to obtain the values of 
β to each scheme, as well the respective errors, shown in Tab. 1. Hence, the results highlight 
that the Harten (1983) scheme is the most accurate of the studied schemes. 
 

Algorithm: β: Error (%): 
Yee, Warming and Harten (1982) 55.0 3.8 

Harten (1983) 54.0 1.9 
Yee and Kutler (1985) 54.5 2.8 

Hughson and Beran (1991) 54.5 2.8 
 

Table 1: Shock angle and percentage errors. 

9.2 Blunt body physical problem 

 To this physical problem, an algebraic mesh with 103x100 points or composed of 10,098 
rectangular volumes and 10,300 nodes was used. The far field was located at 20 times the 
curvature ratio of the blunt body nose. An exponential stretching of 5% was implemented in 
the η direction. The blunt body configuration is described in Fig. 17. 
 The freestream Mach number adopted for this simulation as initial condition was 5.0, 
characterizing a supersonic flow regime. 
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Figure 17: Blunt body configuration. 
 

  
                  Figure 18: Density field (YWH).                                          Figure 19: Density field (H). 
 

  
                     Figure 20: Density field (YK).                             Figure 21: Density field (HB). 
 
 Figures 18 to 21 exhibit the density field generated by the Yee, Warming and Harten 

(1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) 
algorithms, respectively. The density distribution generated by the Harten (1983) scheme is 
the densest in relation to the others schemes. The Yee, Warming and Harten (1982) and the 
Yee and Kutler (1985) solutions are the same. All solutions present good symmetry properties 
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in relation to the blunt body. 
 Figures 22 to 25 show the pressure field generated by the Yee, Warming and Harten 

(1982), by the Harten (1983), by the Yee and Kutler (1985) and by the Hughson and Beran 

(1991) schemes, respectively. The pressure field generated by the Harten (1983) scheme is the 
most severe in relation to the others schemes. Good symmetry properties are again observed 
in all solutions. 
 

  
                  Figure 22: Pressure field (YWH).                                         Figure 23: Pressure field (H). 
 

  
                    Figure 24: Pressure field (YK).                             Figure 25: Pressure field (HB). 
 
 Figures 26 to 29 exhibit the Mach number field obtained by the Yee, Warming and Harten 

(1982), the Harten (1983), the Yee and Kutler (1985) and the Hughson and Beran (1991) 
schemes, respectively. The Mach number fields are practically the same in quantitative terms, 
presenting some differences in qualitative aspects. 
 Table 2 exhibits the aerodynamic coefficients of lift and drag obtained by each scheme. As 
can be seen, the most correct value of cL was obtained by the solutions generated by the 
Harten (1983) and by the Hughson and Beran (1991) schemes. It tends to zero due to the 
symmetry of the geometry and due to the zero value of the attack angle. 
 Figure 30 shows the -Cp distributions around the blunt body geometry obtained by the 
schemes. There are no meaningful differences among the solutions generated by the 
algorithms, with all solutions obtaining the same value to the Cp peak at the configuration 
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nose (Cp = 1.68). Figure 31 exhibits the convergence histories of the studied schemes. 
 

  
             Figure 26: Mach number field (YWH).           Figure 27: Mach number field (H). 
 

  
               Figure 28: Mach number field (YK).                      Figure 29: Mach number field (HB). 
 

Algorithm: cL: cD: 
Yee, Warming and Harten (1982) 4.0x10-4 9.7x10-5 

Harten (1983) -1.3x10-4 4.3x10-5 
Yee and Kutler (1985) 4.0x10-4 8.7x10-5 

Hughson and Beran (1991) 1.3x10-4 5.3x10-5 
 

Table 2: Values of the aerodynamic coefficients cL and cD. 
 
 Another possibility to quantitative comparison of all schemes is the determination of the 
stagnation pressure ahead of the configuration. Anderson (1984) presents a table of normal 
shock wave properties in its B Appendix. This table permits the determination of some shock 
wave properties as function of the freestream Mach number. In front of the blunt body 
configuration, the shock wave presents a normal shock behavior, which permits the 
determination of the stagnation pressure, behind the shock wave, from the tables encountered 
in Anderson (1984). It is possible to determine the ratio ∞prpr0  from Anderson (1984), 
where pr0 is the stagnation pressure in front of the configuration and pr∞ is the freestream 
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pressure (equals to 1/γ with this nondimensionalization). 
 

                        Figure 30: -Cp distributions.                                       Figure 31: Convergence histories. 
 
 Hence, to this problem, M∞ = 5.0 corresponds to ∞prpr0 = 32.65 and remembering that 
pr∞  = 0.714, it is possible to conclude that pr0 = 23.31. Values of the stagnation pressure, 
with respective percentage errors, to each scheme are shown in Tab. 3. As can be seen, the 
Harten (1983) scheme yielded again the best result in terms of accuracy. 
 

Algorithm: pr0: Error (%): 
Yee, Warming and Harten (1982) 20.30 12.9 

Harten (1983) 20.39 12.5 
Yee and Kutler (1985) 20.30 12.9 

Hughson and Beran (1991) 20.35 12.7 
  

Table 3: Values of the stagnation pressure and percentage errors. 
 
 With the results of the ramp and of the blunt body, two schemes are better than the others. 
The solutions generated by the Hughson and Beran (1991) scheme in the ramp problem are 
the most critical in relation to the others schemes, while the Harten (1983) scheme yields the 
most accurate results in both problems and the most critical results in the blunt body problem. 

9.3 Numerical data of the simulations 

 

Ramp problem Blunt body 
problem 

 Algorithm: CFL: Iterations: CFL: Iterations: Cost*: 
Yee, Warming and Harten (1982) 0.3 3,348 0.9 1,906 0.0000755 

Harten (1983) 0.9 1,059 0.9 1,885 0.0000494 
Yee and Kutler (1985) 0.3 3,348 0.9 1,906 0.0000083 

Hughson and Beran (1991) 0.9 1,042 0.9 1,876 0.0000541 
* Measured in seconds/per volume/per iteration. 
 

Table 4. Numerical data of the simulations. 
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 Table 4 presents the data of the numerical experiments involving the supersonic flow along 
the ramp and around the blunt body studied in this work. It is possible to note that the Yee 
and Kutler (1985) scheme is the cheapest scheme, approximately 810% less expensive than 
the Yee, Warming and Harten (1982) scheme, the most expensive. 

10 CONCLUSIONS 

 The present work compares the flux difference splitting TVD algorithms of Yee, Warming 
and Harten (1982), of Harten (1983), of Yee and Kutler (1985) and of Hughson and Beran 

(1991), all schemes second order accurate in space, applied to aeronautical and aerospace 
problems in the two-dimensional space. The Euler equations, on a finite volume context, 
using an upwind and a structured spatial discretization, were solved. A spatially variable time 
step was employed to accelerate the convergence process to the steady state solution. The 
gains in terms of convergence ratio with this procedure were highlighted in Maciel (2005). 
The steady state physical problems of the supersonic flows along a ramp and around a blunt 
body configuration were solved. 
 All schemes have presented good solutions in qualitative and quantitative terms. In the 
ramp problem, the Hughson and Beran (1991) scheme was the most critical because presented 
the most severe pressure field and the most intense Mach number field in relation to the 
others schemes. The shock and the expansion fan are better captured by the Yee, Warming 
and Harten (1982) and the Yee and Kutler (1985) schemes, although smoother than the 
solutions generated by the Harten (1983) and the Hughson and Beran (1991) schemes, which 
presented a shock peak. The Harten (1983) and the Hughson and Beran (1991) schemes 
presented better pressure distribution than the others schemes when compared with the theory. 
The shock angle was best estimated by the Harten (1983) scheme. In the blunt body problem, 
the Harten (1983) scheme presented the most severe pressure field in relation to the others 
schemes, characterizing the most critical solution. The Mach number and the -Cp 
distributions of all schemes were practically the same. The aerodynamic coefficient of lift was 
better estimated in the solutions generated by the Harten (1983) and the Hughson and Beran 

(1991) schemes. The stagnation pressure in front of the configuration nose is best determined 
by the Harten (1983) scheme. The Yee and Kutler (1985) scheme, the cheapest scheme, is 
about 810% less expensive than the Yee, Warming and Harten (1982) scheme, the most 
expensive. The Yee, Warming and Harten (1982) and the Yee and Kutler (1985) schemes 
have presented the same solutions, where the different forms of defining the artificial 
compression terms of both schemes do not present meaningful differences. A more complete 
study, with more physical problems, will be accomplished by this author aiming to better 
highlight the characteristics of these schemes. 
 As conclusion, the Harten (1983) scheme presents the most accurate solutions in 
comparison with the others schemes in both examples studied in this work, as well the most 
severe pressure field in the blunt body problem, high supersonic flow, characterizing it as the 
most conservative in relation to the others schemes to this type of flow, which indicates this 
one as a good scheme to the prediction of flow properties in the project phase of aerospace 
vehicles. 
 Most critical or most severe solutions were characterized as the solutions which presented 
the biggest values of pressure in the pressure field generated by the schemes or the biggest 
value of Cp, which represents again biggest values of pressure. The pressure is the reference 
variable because it determines the level of the main dynamic effort which the configuration is 
submitted. 
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