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Abstract. The boundary element method (BEM) is used in this work for modelling the fluid flow
around a vibrating micro-electro-mechanical system (MEMS). Device motion induces flow and, there-
fore, drag-forces develop on the surface of the MEMS with a damping effect on the MEMS vibration.
We assume that the fluid around MEMS can be treated as a continuum and, further on, that the flow can
be modelled as incompressible with a very low Reynolds number. Under such conditions, met in a large
number of MEMS in practice, the fluid flow can be accurately described by Stokes theory of quasi-steady
incompressible flow. We take into account MEMS deformation effects on fluid flow analysis.

Fast integration is performed using the collocation method. Self-integrals containing singular kernels
are analytically computed over linear triangles.

This model has been computationally implemented into the engineering software OOFELIE:MEMS,
developed by Open Engineering SA.

The accuracy of the model is tested using a benchmark problem – the flow around a sphere moving
with constant velocity–, with satisfactory results. Preliminary results of an application to MEMS are also
shown.
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1 INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) consist of fixed or moving micro-structures
playing the role of actuators or sensors in many advanced applications. Typical MEMS are
arrays of beams or plates where the thickness isO(1µm) and the length isO(10µm – 1mm).
MEMS motion or deformation can be induced by mechanical, electrical, thermal, acoustical or
photonic energy sources.

In this work, we are particularly interested in vibrating MEMS immersed in a fluid (typically,
air) environment. The aim is to determine the drag forces induced in the MEMS surface by the
fluid flowing around. Such forces have a damping effect on MEMS vibration.

The problem of MEMS vibration in a fluid media will be assumed to be governed by the
quasi-steady incompressible Stokes equation. This approach is valid for MEMS under the fol-
lowing hypotheses:

• the frequency of vibration is low enough to turn inertia forces negligible compared to
viscous forces,

• the fluid around MEMS is assumed to behave as a continuum, and hence the fluid, even a
gas, is modelled as incompressible.

The previous hypotheses hold in a large number of MEMS in practice (Mukherjee et al., 2005;
Frangi and Tausch, 2005; Frangi and Di Gioia, 2005; Frangi et al., 2006; Wang et al., 2006).
The first hypothesis is verified when the typical length of the MEMS device is smaller that the
penetration length, which depends on the vibration frequency and the fluid density. The second
hypothesis holds for gases when the Knudsen numberKn, that is the ratio of the mean free path
of the gas molecule to the characteristic length of the flow, does not exceed 0.001 (Ding and Ye,
2004).

Continuum hypothesis is closely linked to the non-slip condition at the surface of the MEMS,
only valid for slightly rarified gases. Recently,Ding and Ye(2004) andFrangi et al.(2006)
developed boundary element methods that take into account the slip-flow regime, extending the
validity of the continuum hypothesis toKn≤ 0.1. In a preliminary approach, these effects will
be neglected in the current work.

On the other hand, unlike the above-mentioned works assuming the MEMS to be rigid-bodies
to the purpose of fluid analysis, we will take into account the effect of MEMS deformation on
fluid flow.

It is usually assumed that in the case of deformable bodies, certain terms in the fluid flow
computation can be neglected as if the body behaves as a rigid one (Kim and Karrila, 1991;
Ding and Ye, 2004; Mukherjee et al., 2005; Frangi and Tausch, 2005; Frangi and Di Gioia,
2005; Frangi et al., 2006; Wang et al., 2006). For the sake of generality, the effect of MEMS
deformation on fluid flow will be accounted for in this work.

The current model is available into the software OOFELIE::MEMS, a virtual prototyping
tool for the analysis and design of MEMS developed by Open Engineering SA.

The outline of the paper is as follows. In Section2, the Stokes equations for incompressible
steady flow are derived, together with its fundamental solution and the Green identity that con-
stitute the base of the boundary integral formulation of Stokes equations. Sections3 and4 are
devoted to the integral representation of interior and exterior flow problems, respectively, con-
sidering points located either inside or outside the flow domain, or at the interface. In Section5,
we develop a boundary element method to solve the exterior problem at boundary points, which
is the problem we are particularly interested in. Section6 describes the analytical integration of
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singular integrals. Finally, in Section7, the current model is applied to the classical benchmark
of a sphere translating in a viscous fluid, as well as to simulate a vibrating beam in a MEMS.

2 BEM STOKES EQUATIONS

The flow of an incompressible Newtonian fluid in a domainΩ is governed by the following
equations:

∂Vi

∂xi

= 0, mass balance (or continuity) equation, (1)

ρ

(
∂Vi

∂t
+ uj

∂Vi

∂xj

)
= Fi +

∂σij

∂xj

, momentum balance equation, (2)

σij = µ

(
∂Vi

∂xj

+
∂Vj

∂xi

)
− Pδij, constitutive equation, (3)

whereVi is the velocity,σij is the stress tensor,P is the pressure,ρ is the fluid density,µ is
the dynamic viscosity of the fluid,Fi is the body force per unit mass,δij is the Kronecker delta
(δij = 1 if i = j, δij = 0 if i 6= j), xi is the Cartesian coordinate along thei-axis, andt is the
time.

We will next linearize the equations of fluid motion. Let us assume that the velocity field
V and the pressure fieldP can be expressed as the sum of small perturbations with respect to
reference statesV0 andP0 respectively, i.e.:

P = P0 + p, V = V0 + v.

We assume further that the fluid is at rest at the reference state (V0 = 0, P0 = const). Then,
the continuity equation (1) reduces to

∂vi

∂xi

= 0, (4)

and by considering the constitutive law (3), the last term of the r.h.s. of the momentum equation
(2) takes the form

∂σij

∂xj

= −∂P

∂xi

+ µ
∂2vi

∂xj∂xj

= − ∂p

∂xi

+ µ
∂2vi

∂xj∂xj

. (5)

Then, in the case of negligible body forces (Fi = 0), the momentum equation (2) can be
expressed as

ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
= − ∂p

∂xi

+ µ
∂2vi

∂xj∂xj

.

Finally, the hypothesis of small perturbations allows us to ignore the second-order term in
the above equation, obtaining:

ρ
∂vi

∂t
+

∂p

∂xi

− µ
∂2vi

∂xj∂xj

= 0, (6)

which, together with the incompressibility condition (4), constitute theunsteady (linearized)
Stokes equations.
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A last simplification consists of considering the inertia forces negligible compared to viscous
forces. This assumption can usually be made in MEMS applications for frequencies below
100Hz (Mukherjee et al., 2005; Frangi and Tausch, 2005; Frangi and Di Gioia, 2005; Frangi
et al., 2006; Wang et al., 2006). This yields thequasi-steady (linearized) Stokes equationsthat
can be written as:

∂vi

∂xi

= 0 (7)

∂p

∂xi

− µ
∂2vi

∂xj∂xj

= 0. (8)

2.1 Fundamental solution

Let us consider the quasi-steady Stokes problem:

∂vi

∂xi

= 0,

∂p

∂xi

− µ
∂2vi

∂xj∂xj

= giδ(x− y) ∀x, y ∈ R3,

whereδ is the Dirac delta function, such that the forcegi is concentrated at pointy (the “load”
or “source” point). The solution of this problem –the so-called fundamental solution– can be
expressed as (Kim and Karrila, 1991):

vi(x) = Gij(x, y)gj,

p(x) = Hi(x, y)gi,

whereGij andHi are the kernels defined as:

Gij(x, y) =
1

8πµ

(
δij

r
+

rirj

r3

)
, (9)

Hi(x, y) =
1

4π

ri

r3
, (10)

with r = x− y andr = ‖r‖. The kernelGij is known as “Stokeslet”, and can be derived from
the Kelvin kernel for elasticity

Ge
ij =

1

16π(1− ν)µ

[
(3− 4ν)

δij

r
+

rirj

r3

]
(11)

when the Poisson ratioν equals 0.5 (incompressible case).

2.2 Green identity

Given a velocity fieldu and a pressure fieldq, the stressσij(u, q) is given by the expression:

σij(u, q) = −qδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
.
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Then, the following identity holds:

∂

∂xj

(σij (u, q) vi) =
∂σij

∂xj

vi + σij
∂vi

∂xj

=

(
− ∂q

∂xi

+ µ
∂2ui

∂xj∂xj

)
vi + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
∂vi

∂xj

=

(
− ∂q

∂xi

+ µ
∂2ui

∂xj∂xj

)
vi +

µ

2

(
∂ui

∂xj

+
∂uj

∂xi

)(
∂vi

∂xj

+
∂vj

∂xi

)
.

By integration on the domainΩ and after applying the Gauss theorem, we get the so-called
Green’s first formula (Power and Wrobel, 1995):

∫

Ω

(
∂q

∂yi

− µ
∂2ui

∂yj∂yj

)
vi dΩy =

µ

2

∫

Ω

(
∂ui

∂yj

+
∂uj

∂yi

)(
∂vi

∂yj

+
∂vj

∂yi

)
dΩy −

∫

Σ

σij (u, q) vinj dΣy, (12)

wheren is the unit vector normal toΣ pointing outwardsΩ, as shown in Figure1.

n

x

y

r

W

S

Figure 1:Domain for the analysis of interior Stokes flow.

3 DIRECT INTEGRAL REPRESENTATION FOR INTERIOR PROBLEM

For g given by the canonic unit vector in thek-direction, i.e.gj = δkj, it can be verified that

∂Hm

∂xk

− µ
∂2Gmk

∂xj∂xj

= δkmδ(x− y).

First, let us multiply the above equation byvk and then integrate over the domainΩ:
∫

Ω

(
∂Hm

∂yk

− µ
∂2Gmk

∂yj∂yj

)
vk dΩy =

∫

Ω

vmδ(x− y) dΩy.

Using the definition of Dirac function, the right-hand side of the last equation becomes
∫

Ω

vm(y)δ(x− y) dΩy = α(x)vm(x),

where

α(x) =

{
1 if x ∈ Ω,
0 if x /∈ Ω̄,
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beingΩ̄ = Ω ∪ Σ the closure of the (open) domainΩ.
By now using the Green identity (12), we obtain:

α(x)vm(x) =

∫

Ω

µ

2

(
∂Gmk

∂yj

+
∂Gjm

∂yk

)(
∂vk

∂yj

+
∂vj

∂yk

)
dΩy −

∫

Σ

Smkvk dΣy, (13)

whereSmk is the “tractionlet” kernel:

Smk(x, y) = Rkjm(x, y)nj(y), (14)

andRkjm the “stresslet” kernel:

Rkjm(x, y) = −Hmδkj + µ

(
∂Gmk

∂xj

+
∂Gjm

∂xk

)
= − 3

4π

rkrjrm

r5
. (15)

Secondly, we multiply the momentum equation (8) by Gmk and integrate overΩ:

∫

Ω

(
∂p

∂yk

− µ
∂2vk

∂yi∂yi

)
Gmk dΩy = 0.

After applying the Green identity (12), we get:
∫

Ω

µ

2

(
∂Gmk

∂yj

+
∂Gjm

∂yk

)(
∂vk

∂yj

+
∂vj

∂yk

)
dΩy −

∫

Σ

σkj (v, p) Gmknj dΣy = 0. (16)

Finally, subtracting equation (16) from equation (13), we get the boundary integral equation
for the velocity field in the interior ofΩ:

α(x)vm(x) =

∫

Σ

Gmkσkj (v, p) nj dΣy −
∫

Σ

Smkvk dΣy. (17)

3.1 Interior problem on the boundary

The boundary integral equation (17) becomes singular for points located at the boundary.
To avoid this singularity, let us replaceΩ in equation (17) by Ω ∪ Sε, beingSε a portion of a
little sphere of radiusε and centerx ∈ Σ, as shown in Figure2. Then, the boundary integral
expression of an interior Stokes problem at the boundary pointsx ∈ Σ can be obtained by taking
the limit of the equation (17) for interior points whenε → 0:

vm(x) = lim
ε→0

[∫

Σ−∂Si

Gmkσkj (v, p) nj dΣy −
∫

Σ−∂Si

Smkvk dΣy+

∫

∂Se

Gmkσkj (v, p) nj dΣy −
∫

∂Se

Smkvk dΣy

]
, (18)

where∂Si is the interface betweenΩ andSε, and∂Se is the remainder portion of the boundary
of Sε (see Figure2). The limit asε → 0 of the integral overΣ − ∂Si is the integral overΣ in
the sense of the Cauchy Principal Value (CPV) (Paŕıs and Cãnas, 1997), denoted as:

−
∫

Σ

f(y) dΣy = lim
ε→0

∫

Σ−∂Si

f(y) dΣy. (19)
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Figure 2:Domain for the analysis of interior Stokes flow at boundary points.

Sincev andσ are continuous fields,v → v(x) andσ → σ(x) asε → 0, then

C−
mk(x)vk(x) = −

∫

Σ

Gmkσkj (v, p) nj dΣy−−
∫

Σ

Smkvk dΣy +

(
lim
ε→0

∫

∂Se

Gmknj dΣy

)
σkj(x),

(20)

where

C−
mk(x) = δmk + lim

ε→0

∫

∂Se

Smk dΣy. (21)

Given the normal unit vector pointing outwards∂Se by nj = −rj/ε (see Figure2), we realize
that ∫

∂Se

Gmknj dΣy = − 1

8πµ

∫

∂Se

(
δkm

ε
+

rkrm

ε3

)
rj

ε
dΣy = O(ε),

and therefore

lim
ε→0

∫

∂Se

Gmknj dΣy = 0.

This is not the case for the integral∫

∂Se

Smk dΣy =
3

4π

∫

∂Se

rkrm

ε4
dΣy = O(1), (22)

whose limit is computed below regarding the shape of the surface atx.

3.1.1 Smooth surface

WhenΣ is smooth at the vicinity ofx, i.e. it exists a tangent plane atx, ∂Se can be assimilated
to a hemispheric surface asε → 0. This yields (Power and Wrobel, 1995)

lim
ε→0

∫

∂Se

Smk dΣy = −1

2
δmk, (23)

and hence

C−
mk(x) =

1

2
δmk. (24)

Therefore, when the surface is smooth at the vicinity ofx ∈ Σ, the boundary integral equation
describing interior Stokes flow at this point takes the form:

1

2
vm(x) = −

∫

Σ

Gmkσkj (v, p) nj dΣy −−
∫

Σ

Smkvk dΣy. (25)
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3.1.2 Non-smooth surface

Invoking the definition of the Cauchy Principal Value given by equation (19), we can write

lim
ε→0

∫

∂Se

Smk dΣy =

∫

Σ

Smk dΣy −−
∫

Σ

Smk dΣy. (26)

Considering an interior pointx ∈ Ω, we know afterPower and Wrobel(1995) that
∫

Σ

Smk dΣy = −δmk. (27)

Then,C−
mk(x) can be expressed as

C−
mk(x) = −−

∫

Σ

Smk dΣy. (28)

So, if the surface is not smooth in the neighborhood ofx ∈ Σ, the interior Stokes flow at this
point obeys the boundary integral equation

(
−−

∫

Σ

Smk dΣy

)
vm(x) = −

∫

Σ

Gmkσkj (v, p) nj dΣy −−
∫

Σ

Smkvk dΣy. (29)

4 DIRECT INTEGRAL REPRESENTATION FOR THE EXTERIOR PROBLEM

Let Ω be now a structure (e.g., a MEMS) surrounded by a domainΩ′ containing a fluid
medium, as shown in Figure3. The boundary ofΩ′ is composed of the internal surfaceΣ
(boundary ofΩ) and the external surfaceS∞. The formulation developed in the previous section
for interior problems is still valid when applied to the domainΩ′:

α′(x)vm(x) =

∫

Σ∪S∞
Gmkσkj (v, p) n′j dΣy −

∫

Σ∪S∞
Rkjmvkn

′
j dΣy,

where

α′(x) =

{
1 if x ∈ Ω′

0 if x /∈ Ω̄′

}
= 1− α, (30)

andn′ is the unit vector normal to the surface ofΩ′ (eitherΣ or S∞), pointing outwardsΩ′. At
the surfaceΣ, n′ is opposite to the previously defined normaln pointing outwards the structure
Ω.

Furthermore, whenΩ′ becomes infinitely large (for a given fixed structureΩ), contributions
coming fromS∞ become infinitely small and we get:

[1− α(x)] vm(x) =

∫

Σ

Smkvk dΣy −
∫

Σ

Gmkσkj (v, p) nj dΣy. (31)

4.1 Exterior problem on the boundary

Using a procedure analogous to that described in Section3.1, the extension of equation (31)
to pointsx ∈ Σ takes the form

Cmk(x)vk(x) = −
∫

Σ

Smkvk dΣy −−
∫

Σ

Gmkσkj (v, p) nj dΣy, (32)
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Figure 3:Domain for the analysis of exterior Stokes flow.

with

Cmk = δmk − C−
mk(x). (33)

If the surface in the vicinity ofx ∈ Σ is smooth, we takeC−
mk as defined by equation (24),

obtaining have

1

2
vm(x) = −

∫

Σ

Smkvk dΣy −−
∫

Σ

Gmkσkj (v, p) nj dΣy. (34)

Otherwise, we useC−
mk defined by equation (28) in case of non-smooth boundary in the vicinity

of x ∈ Σ to write:
(

δmk +−
∫

Σ

Smk dΣy

)
vk(x) = −

∫

Σ

Smkvk dΣy −−
∫

Σ

Gmkσkj (v, p) nj dΣy. (35)

4.2 Fluid/solid boundary conditions

Let Ω be a solid body immersed in a fluid environmentΩ′, such thatΣ represents the
fluid/solid interface. The stress vector (or traction) at this interface is given by

tk = σkjnj.

This vector can be computed in terms of the velocities at the boundary by solving the bound-
ary integral equation (32), written now as:

Cmk(x)vk(x) = −
∫

Σ

Smkvk dΣy −−
∫

Σ

Gmktk dΣy. (36)

As aforementioned, we are particularly interested in determining the drag forces induced
by an exterior flow on the surfaceΣ of the structureΩ. Such drag forces will play the role of
damping forces in the analysis of vibrations in the solid structure. For exterior Stokes problems,
t represents the force per unit area exerted by the solid on the liquid through the interfaceΣ, so
that the drag force (action of the liquid onto the solid) per unit area we are looking for is given
by t̃ = −t. Using t̃ instead oft, the previous equation takes the form

Cmk(x)vk(x) = −
∫

Σ

Smkvk dΣy +−
∫

Σ

Gmk t̃k dΣy. (37)
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5 BEM DISCRETIZATION

The boundary integral equation (37) will be discretized using the boundary element method.
To this end, the surfaceΣ is approximated using a mesh of linear triangular finite elements.
Then, the velocity and the drag force per unit area are approximated in the standard (Galerkin)
way:

v(x) = NJ(x)VJ ,

t̃(x) = NJ(x)TJ ,

whereNJ is the shape function associated to nodeJ andVJ andTJ the approximations to the
velocity and drag force per unit area, respectively, at this point. In 3D applications,Nj is the
diagonal matrix:

NJ(x) = NJ(x)I ,

whereNJ is the scalar shape function associated to nodeJ , such thatNJ(xI) = δIJ .
Introducing these approximations into equation (37), we obtain

[
C(x)NJ(x)−−

∫

Σ

S(x, y)NJ(y) dΣy dΣx

]
VJ =

[
−
∫

Σ

G(x, y)NJ(y) dΣy dΣx

]
TJ . (38)

5.1 Collocation discretization

The collocation method consists of enforcing the discretized boundary integral equation (38)
to hold at certain points called collocation points. Here, we adopt as collocation points the
nodal pointsxI ∈ Σ (I = 1, 2, . . . , N ). At each collocation point, the following linear system
is obtained:

AIJVJ = BIJTJ , (39)

with

AIJ = C(xI)δIJ −−
∫

Σ

S(xI , y)NJ(y) dΣy, (40)

BIJ = −
∫

Σ

G(xI , y)NJ(y) dΣy. (41)

Once the surfaceΣ has been discretized intoM boundary elementsΣe, the integrals in the
above equation can be computed by summing the contributions from every boundary element:

−
∫

Σ

f(xI , y) dΣy =
M∑

e=1

−
∫

Σe

f(xI , y) dΣy =
S∑

e=1

−
∫

Σe

f(xI , y) dΣy +
M∑

e=S+1

∫

Σe

f(xI , y) dΣy.

Let us notice that the integrals over those elementsΣ1, Σ2, . . . , ΣS containing the collocation
point xI exist only in the sense of CPV and can not be computed using standard quadrature
rules. Over the remainder elementsΣS+1, . . . , ΣM , standard numerical quadrature is used.
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6 COMPUTATION OF SINGULAR INTEGRALS

Let Σe ≡ P1 be a linear triangle with vertex nodes1, 2, 3. Let us assume that one of these
nodes, say node 1, coincides with the collocation pointI. Looking at both kernels (9) and (15),
we realize thatG(x1, y) andS(x1, y) tends to infinity asy → x1. Such singular kernels require
special treatment.

The integral involvingS is null over the linear (then flat) triangle containing the collocation
point. To demonstrate this, we realize that the position vectorr = x1 − y is orthogonal to the
surface normaln throughout such element, such thatrini = 0 at every point inside the element.
Then,

Sij(xI , y) = Rijknk = − 3

4π

rirj

r5
rknk = 0 ∀y ∈ P1. (42)

Let us focus then on the integral containingG:

BIJmn = −
∫

P1

Gmn(xI , y)Ni(y) dΣy =
1

8πµ
(DmnJ + FmnJ) , (43)

where

DmnJ = δmn−
∫

P1

NJ

r
dΣy, (44)

FmnJ = −
∫

P1

rmrn

r3
NJ dΣy. (45)

6.1 Change of coordinates

If ξ, η are the natural coordinates of the triangleP1, with origin at the collocation pointx1,
we can write

N1 = 1− ξ − η, N2 = ξ, N3 = η.

Further, we define the transformation(ξ, η) → (r, θ) as follows:

ξ =
r

c

(
b

h
cos θ − sin θ

)
, η =

r

c

(
−a

h
cos θ + sin θ

)
,

with r, θ, a, b, c andh defined in Figure4.
Using this change of coordinates, every integral overP1 can be computed as

−
∫

P1

f(ξ, η) dΣy =

∫ θ3

θ2

∫ h/ cos θ

0

f(ξ(r, θ), η(r, θ))r dr dθ. (46)

6.2 Computation ofDmni

Using equation (46) we obtain:

I00 = −
∫

P1

1

r
dΣy =

∫ θ3

θ2

∫ h/ cos θ

0

dr dθ = hIsec,

I10 = −
∫

P1

ξ

r
dΣy =

∫ θ3

θ2

∫ h/ cos θ

0

1

c

(
b

h
cos θ − sin θ

)
dr dθ =

bh

2c
Isec − h2

2c
Isec tan,

I01 = −
∫

P1

η

r
dΣy =

∫ θ3

θ2

∫ h/ cos θ

0

1

c

(
−a

h
cos θ + sin θ

)
dr dθ = −ah

2c
Isec +

h2

2c
Isec tan,
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Figure 4:Parameters defining the coordinates transformation in a triangle.

where

Isec =

∫ θ3

θ2

sec θ dθ = ln
sec θ3 + tan θ3

sec θ2 + tan θ2

= ln
d13 + b

d12 + a
,

Isec tan =

∫ θ3

θ2

sec θ tan θ dθ = sec θ3 − sec θ2 =
d13 − d12

h
,

with dij = ‖xj − xi‖ as the length of the sideij.
The termDmni can be now computed fori = 1, 2, 3 as

Dmn1 = δmnI00 −Dmn2 −Dmn3, Dmn2 = δmnI10, Dmn3 = δmnI01.

6.3 Computation ofFmni

First, let us realize that we can use the shape functionsNi to interpolate positions inside the
elementP1 (as usually done with isoparametric finite elements):

rm =
3∑

i=1

Ni(ξ, η)r(i)
m = ξr(2)

m + ηr(3)
m ,

wherer
(i)
m is thei-th component of the position vector of nodei, and we have assumed that the

origin coincides with the position of node 1. This yields:

rmrn = r(2)
m r(2)

n ξ2 +
(
r(2)
m r(3)

n + r(3)
m r(2)

n

)
ξη + r(3)

m r(3)
n η2.

Introducing this equation into the expression (45) for Fmni, we obtain

Fmn1 = r(2)
m r(2)

n J20 +
(
r(2)
m r(3)

n + r(3)
m r(2)

n

)
J11 + r(3)

m r(3)
n J02 − Fmn2 − Fmn3,

Fmn2 = r(2)
m r(2)

n J30 +
(
r(2)
m r(3)

n + r(3)
m r(2)

n

)
J21 + r(3)

m r(3)
n J12,

Fmn3 = r(2)
m r(2)

n J21 +
(
r(2)
m r(3)

n + r(3)
m r(2)

n

)
J12 + r(3)

m r(3)
n J03,
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being the integralsJij, computed in a way analogous to that employed in the previous section,
defined as follows:

J11 =
h2 − ab

hc2
Icos +

a + b

c2
Isin − h

c2
Isec,

J20 =
b2 − h2

hc2
Icos − 2

b

c2
Isin +

h

c2
Isec,

J02 =
a2 − h2

hc2
Icos − 2

a

c2
Isin +

h

c2
Isec,

J21 =
h2(a + 2b)− ab2

2hc3
Icos +

2ab + b2 − h2

2c3
Isin − h(a + 2b)

2c3
Isec +

h2

2c3
Isec tan,

J12 =
a2b− h2(2a + b)

2hc3
Icos − a2 + 2ab− h2

2c3
Isin +

h(2a + b)

2c3
Isec − h2

2c3
Isec tan,

J30 =
b3 − 3bh2

2hc3
Icos − 3b2 − h2

2c3
Isin +

3hb

2c3
Isec − h2

2c3
Isec tan,

J03 =
3ah2 − a3

2hc3
Icos +

3a2 − h2

2c3
Isin − 3ha

2c3
Isec +

h2

2c3
Isec tan.

with

Icos =

∫ θ3

θ2

cos θ dθ = sin θ3 − sin θ2 =
b

d13

− a

d12

,

Isin =

∫ θ3

θ2

sin θ dθ = cos θ2 − cos θ3 =
h

d12

− h

d13

.

7 APPLICATIONS

7.1 Drag of a Stokes flow on a rigid sphere

In order to evaluate the accuracy of the model, it is applied to the classical benchmark of a
rigid sphere translating with constant velocityU in a fluid with viscosityµ. The resultant of
drag forces on the sphere isF = 6πµR‖U‖. Some of the meshes ofP1 elements used for the
analysis are shown in Figure5.

Figure (6) shows the accuracy of the current model compared to that obtained byFrangi and
Di Gioia (2005) using constant (P0) triangles as a function of the number of degrees of freedom
(d.o.f.).

The improvement of accuracy achieved with the current model thanks to the use of higher-
order elements is quickly realized: note, for instance, that the error for the mesh of 3888P1

elements (1946 nodes, 5838 d.o.f.) is smaller than that obtained byFrangi and Di Gioia(2005)
using a mesh of 12654P0 elements (37962 d.o.f.).

7.2 Drag on a vibrating MEMS

Let us consider the VIA vibrating beam accelerometer depicted in Figure7 developed by the
French aerospace laboratory ONERA (Le Traon et al., 1998; Masson, 2007). We are interested
in determining the quality factor which is defined for a damped system as (Blom et al., 1992)

Q = 2π
stored vibration energy

dissipated energy per period
. (47)

The part of the accelerometer that is the object of this study is the vibrating quartz beam high-
lighted in Figure7. This beam is clamped at both ends, and its dimensions are: lengthL = 2
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Figure 5:Some meshes for the translating sphere benchmark.
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Figure 6:Numerical error for the translating sphere benchmark.

mm, widthb = 30 µm, heighth = 60 µm. In practice, this beam vibrates in vacuum. However,
for the purposes of the present study, we will assume it vibrating in a air medium.

Let us discuss first the pertinence of the stationarity assumption applied to this case. Inertia
forces can be neglected when compared to viscous forces when frequency of vibrationω is
small enough, or equivalently, when the Reynolds numberReis much smaller than unity. If we
takeh as the characteristic dimension of the vibrating body, and introduce the penetration depth

δ =

√
2µ

ρω
, (48)

we know thatRe¿ 1 wheneverh/δ ¿ 1 (Landau and Lifshitz, 1959).
Unfortunately, in this case, the frequency of the vibration mode (the one we are interested

in) is ω = 4.45 × 105 s−1, and henceh/δ = 7.30, contradicting the initial stationary hypoth-
esis. Then, we carry out an analysis where the frequency of the first mode of vibration of the
given beam was decreased (by decreasing the Young modulus of the beam material) in order to
decreaseh/δ and detect the range of validity of the stationary hypothesis. Results are shown
in Figure8, where the numerically computed quality factor (Qn) is compared to the analytical
expression (Qa) from Zhang and Turner(2007). The present numerical model always overesti-
mate the quality factor. For currenth/δ = 7.30, Qn is one order of magnitude higher thanQa.
Note however thatQn → Qa ash/δ → 0, validating the application of this model for lowh/δ.

Anyway, the present problem involving high vibration frequencies can not be adequately
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represented as a steady Stokes problem. The model proposed byDing and Ye(2004) for os-
cillatory Stokes problems should provides a better approximation to high-frequency vibrating
MEMS, and will be considered in future works.

Let us finally point out that the influence of deformation was found very small in this case:
the computed quality factor differs 0.02% for models with and without deformation terms.

Vibrating
beam

Figure 7:ONERA’s VIA vibrating beam accelerometer.
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Figure 8:Numerically vs. analytically computed quality factor for the vibrating beam in ONERA’s accelerometer.

8 CONCLUSIONS

We developed a boundary element method to solve the incompressible Stokes problem in
general, and the exterior flow around MEMS in particular. We take into account the effect
of MEMS deformation on fluid flow for the sake of generality, even though it seems to be
negligible in practical applications. More studies are needed to support this observation in
general MEMS applications. In any case, the present model is capable of simulating rigid-
boundary problems with a satisfactory accuracy. In fact, the use of linear elements –richer that
the constant elements commonly used– together with the analytical integration of singular terms
–more accurate than numerical integration– contribute to improve the accuracy of the method.
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Finally, despite the steady Stokes describes satisfactorily a large number of MEMS in prac-
tice were the Reynolds number is low enough, it is not the case with the VIA accelerometer
we are particularly interested in. Future work will include the development of a model for
oscillatory Stokes flow allowing to simulate MEMS vibrating at higher frequencies.
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